# Evaluation of a Population-Wide Mobile Health Physical Activity Program in 696907 Adults in Singapore 

Jiali Yao (D), MSc; Nicole Lim (D), BBA; Jeremy Tan (D), BEng; Andre Matthias Müller (D), PhD; Rob Martinus van Dam (iD), PhD; Cynthia Chen (iD), PhD; Chuen Seng Tan (iD, PhD*; Falk Müller-Riemenschneider (D), MBBS, MSc, MD*


#### Abstract

BACKGROUND: Evidence of scaled-up physical activity interventions is scarce. This study evaluates the uptake, engagement, and effectiveness of one such intervention program.

METHODS AND RESULTS: The program was open to individuals aged $\geq 17$ years in Singapore. The main intervention components comprised device-based daily physical activity recording paired with step count goals and financial rewards. According to the different reward opportunities, we divided the evaluation period (August 2017 to June 2018) into the baseline monitoring phase, the main challenge phase, and the maintenance phase. Uptake was assessed by the number of individuals registered, and engagement by the step recording duration after registration. The effectiveness was defined as changes in mean daily step count from baseline to the main challenge phase and the maintenance phase. A total of 696907 participants registered, including more Singapore citizens (versus noncitizens), women, and younger (aged 17-39 years) individuals. The evaluation of engagement and effectiveness included 421388 (60.5\%) participants who provided plausible characteristic information and step count data. The median duration of engagement was 74 (IQR, 14-149) days. Compared with the baseline of 7509 (SD, 3467) steps, mean daily step count increased by 1579 ( $95 \% \mathrm{Cl}, 1564-1594$ ) steps during the main challenge phase and 934 ( $95 \% \mathrm{Cl}, 916-952$ ) steps during the maintenance phase. Greater engagement and activity increase were found in participants who are citizens, women, aged $\geq 40$ years, non-obese, and using separate wearables (versus smartphones).


CONCLUSIONS: Mobile health physical activity interventions can successfully reach a large population and be effective in increasing physical activity, despite declining program engagement over time.

Key Words: mobile health $■$ physical activity $■$ primary prevention $■$ public health

Physical inactivity, a leading risk factor for noncommunicable diseases, has been prevalent globally with little improvement. ${ }^{1}$ Effective physical activity interventions need to be scaled up urgently to increase population physical activity. ${ }^{1,2}$ However, evidence of such scaled-up implementation has been limited, and the impact remains unclear. ${ }^{2,3}$

Recent advances in mobile and information technologies have provided unprecedented opportunities
to use mobile health (mHealth) approaches to scale up interventions, including the promotion of physical activity. ${ }^{4}$ The systematic review of reviews for the US 2018 Physical Activity Guideline supports the use of mHealth to improve physical activity. ${ }^{5}$ Another systematic review of randomized controlled trials and quasi-experimental studies further showed that mHealth interventions were more effective when they incorporated behavior change techniques, such as

[^0]
## CLINICAL PERSPECTIVE

## What Is New?

- This study presents a sustained scaled-up implementation of a mobile health physical activity intervention, which reached over 14\% of the adult population in Singapore between 2017 and 2018.
- Based on the objectively measured daily step count, we found that the program engaged $60 \%$ of the participants for a median of 74 days and increased their daily steps by about 1500 steps during the main intervention period.


## What Are the Clinical Implications?

- The evaluation shows that increasing physical activity in a large real-world population is achievable by harnessing technology, behavior change techniques, and multisectoral collaborations.

| Nonstandard Abbreviations and Acronyms |  |
| :--- | :--- |
| HPB | Health Promotion Board Singapore |
| mHealth | mobile health |
| NSC | National Steps Challenge |
| NSC3 | National Steps Challenge Season <br>  <br> Three |

self-monitoring, gamification, and financial incentives. ${ }^{6}$ However, this evidence mostly originated from relatively small studies conducted under controlled settings with short follow-up periods. ${ }^{4-6}$ Recently, several scaled-up mHealth physical activity interventions have emerged and demonstrated the potential of mHealth approaches in physical activity interventions ${ }^{2}$ (Data S1, Figure S1, and Table S1). However, the effectiveness of these interventions was usually not evaluated or based on small and highly selective subsamples. ${ }^{7-13}$ The 2 exceptions are the Carrot Rewards ( $\mathrm{N}=35014$ ) and the Stepathlon study ( $\mathrm{N}=69$ 219). Carrot Rewards found a small increase of 116 steps in daily step counts by the 12-week program in Canada. ${ }^{8}$ The Stepathlon study, which included participants from around the world, on the contrary, observed a large self-reported increase of 3515 steps by the 100-day intervention. ${ }^{9}$ The current evidence is thus scarce and inconsistent, and the impact of scaled-up mHealth physical activity interventions remains unclear.

The National Steps Challenge (NSC) is a nationwide physical activity program in Singapore that uses wearables, a smartphone application, and various behavior
change techniques. ${ }^{14}$ It is implemented by the Health Promotion Board (HPB) under the Ministry of Health Singapore. With 1 event season each year since 2015, the NSC focuses on stepping activities in adults and collects extensive program data for evaluations. Multiple factors contributing to the successful implementation were discussed previously. ${ }^{14}$ The present study aims to provide a comprehensive evaluation of the National Steps Challenge Season Three (NSC3). Specifically, our objectives are to evaluate the NSC3 uptake, engagement, and effectiveness in increasing physical activity.

## METHOD

Because of the sensitive nature of the data collected for this study, requests to access the data set from qualified researchers trained in human subject confidentiality protocols may be sent to the Health Promotion Board, Singapore at HPB_Mailbox@hpb.gov.sg.

## Study Design and Participants

The NSC3 was a longitudinal intervention embedded in the national health promotion system of Singapore. Details of the NSC3 are available online. ${ }^{15}$ Major NSC3 information channels included the Healthy365 App; 538 regular and 14 mega on-site roadshows conducted between September 21, 2017, and February 14, 2018, across Singapore; and mass-marketing campaigns through broadcasting, outdoor, and social media. The Healthy365 App is a mobile application developed by the HPB, with a supplementary kiosk version for non-smartphone users. It has been freely available on Google Play and the App Store in Singapore since 2015. Besides monitoring health behaviors, it serves as the main touchpoint for NSC and several other health promotion programs by the HPB. While providing weight and height is optional for using the Healthy365 App, users are required to report information on their birthday, sex, postal code, and the government-issued identification number, which can be used to differentiate Singapore citizens and noncitizens.

All Individuals in Singapore aged $\geq 17$ years were eligible to register for NSC3. The noncitizens comprised permanent residents and other long-term visa holders in Singapore. The participation was free, and the registration was through the Healthy365 App since September 26, 2017, self-administered remotely or facilitated by HPB staffs at the roadshows. Singapore citizens and permanent residents were additionally eligible to collect 1 HPB-issued fitness tracker free of charge at the roadshows or at the HPB headquarters, if they registered for the NSC3 and had not received any HPB-issued tracker during previous NSC seasons.

Participants provided informed consent during registration and were allowed to withdraw from the NSC3 without a penalty at any point in time. Ethical approval for this study was obtained from the Institutional Review Board of the National University of Singapore.

## Procedures

The entire NSC3 evaluation period lasted from August 1, 2017, to June 10, 2018, encompassing the major event period: the Sure-Win period between October 28, 2017, and March 31, 2018 (Figure 1). The term "Sure-Win" refers to guaranteed rewards for physical activity achievements. Public education on physical activity and various subchallenges were delivered throughout the entire NSC3 period to raise awareness of active lifestyles and to keep participants engaged. The main NSC3 intervention components were daily physical activity monitoring paired with predefined step count goals and financial rewards for achieving these goals.
The Healthy365 App allowed NSC3 participants to record daily physical activity throughout the entire NSC3 period, even before registration. Participants with the Healthy365 App on their smartphones first measured
daily steps via their preferred wearables: HPB-issued trackers, self-purchased commercial wearables, or smartphones with built-in accelerometers (Data S2). The measured daily step count data had to subsequently be transferred to the Healthy365 App wirelessly, at least once every 7 days to avoid data loss. The transferred data were automatically uploaded to the HPB database server when the Healthy365 App connected to the Internet. Participants without smartphones or without the Healthy365 App on their smartphones could only measure daily steps using HPB-issued trackers and transfer their step count data using the "Sync-for-Friends" function of the Healthy365 App on other individuals' smartphones. Alternatively, they could transfer the data via the HPB kiosks located at 34 outlets across Singapore. All participants were allowed to switch between supported wearables at any point in time.

Depending on participants' registration dates and physical activity recording behaviors, each participant could experience up to 3 NSC3 phases for different durations: the baseline monitoring phase, the main challenge phase, and the maintenance phase (Figure 1). Characterized by the different incentive opportunities,

A NSC3 implementation time frame (entire evaluation period)


B NSC3 evaluation phases and the eligible rewards, according to the participant's registration time


Figure 1. Program implementation time frame and evaluation phases.
A, NSC3 implementation time frame. B, Participant-specific NSC3 evaluation phases and the eligible rewards according to the participant's registration time. Participants varied in time windows of the 3 NSC3 phases because of their different program registration time. NSC3 indicates National Steps Challenge Season 3.
the 3 phases were defined by the research team for evaluation purposes. The baseline monitoring phase included the days before the Sure-Win period if a participant registered for the NSC3 before October 28,2017 , or the days before a participant's registration date if the participant registered after October 28, 2017. During this phase, participants were not eligible to receive financial rewards. We defined the main challenge phase as the days of the Sure-Win period after participants registered. Two types of financial rewards, Sure-Win reward tiers and lucky draw chances, were available every day during this phase for achieving the predefined activity goals. The maintenance phase represented the days after participants registered for the NSC3 and after the Sure-Win period. During this phase, participants won lucky draw chances for achieving the predefined goals.

The 3 increasing daily step count goals were 5000 to 7499,7500 to 9999 and $10000+$ steps. During the main challenge phase and the maintenance phase, participants earned 1, 2, and 3 lucky draw chance(s) each day they achieved the increasing step count goals, respectively. The lucky draw chances were for the NSC3 grand draw held on June 18, 2018, with prizes such as airline and cruise tickets. Each day during the main challenge phase, participants additionally earned 10, 25, and 40 Health-Points for achieving the increasing step count goals, respectively. Health-Points were accumulated for Sure-Win reward tiers. The first 750 accumulated Health-Points unlocked the first reward tier equivalent to $\mathbf{S} \$ 5$. Additional 1500 Health-Points unlocked the second reward tier of S\$10. Afterwards, participants reached the next tier, up to the sixth tier (each equivalent to $S \$ 5$ ), with each additional 750 Health-Points. The reward tiers could be redeemed with a wide range of e-vouchers for lifestyle retails, food and beverage outlets, and supermarkets.

## Outcomes and Statistical Analysis

We defined the program uptake as the individuals who registered for the NSC3. We summarized the daily and cumulative uptake over time and explored the uptake geographically by Singapore planning areas in absolute number and the percentage among the Singapore population (citizens and noncitizens) aged $\geq 17$ years (Data S3 and Figure S2 and S3).

We considered the characteristics of a participant to be valid for further analyses if the participant provided plausible demographic and anthropometric information: identifiable nationality, sex, age >17 years, weight between 30 and 300 kg , and height between 101 and 220 cm . Characteristics of NSC3 participants derived from this information were compared with that of the entire Singapore population aged $\geq 17$ years using chisquared tests (Data S2).

The program engagement was characterized by the number of days a participant recorded valid daily steps following the registration. Daily step counts above 0 were considered to be valid. To obtain the percentage of engagement, we divided the duration of engagement by the participant-specific number of available NSC3 days. The available NSC3 days lasted from a participant's registration date to the end of the evaluation period on June 10, 2018. For participants who provided valid daily step count data, we compared the duration and percentage of engagement by participant characteristics using Kruskal-Wallis tests. A participant was considered to remain in the NSC3 until the last day the participant recorded steps. On each calendar date, we computed the percentages of registered participants who were engaged and who remained in the program.

We compared participants' mean daily step count by their characteristics using 1 -way ANOVA. Activity difference by the day of the week and public holidays was explored through a linear mixed-effect model using mean daily step count on each calendar date as the dependent variable. NSC3 phase-specific random intercepts and independent correlation matrix were applied in the model (Data S4 and Table S2).

The effectiveness of the program was defined by changes in mean daily step count from the baseline monitoring phase to the main challenge phase and the maintenance phase. The changes were estimated via a main linear mixed-effect model with participantspecific random intercepts and unstructured withinparticipant correlation matrix. The dependent variable was the phase-specific mean daily step count, instead of the raw daily step count data. This was to reduce model imbalance because participants varied considerably in the number of days with step count data for each NSC3 phase. The model included only participants with at least 1 reliable phase-specific mean daily step count. The mean daily step count of an NSC3 phase was deemed to be reliable if the participant recorded steps for at least 4 days during the phase. The threshold of 4 days was based on a reliability analysis, reaching intraclass correlation coefficients of $\geq 80 \% .^{16}$ Sensitivity analyses with thresholds ranging from 1 to 30 days as well as the complete-case analyses can be found in Tables S5 and S6. The indicator of NSC3 phases served as the independent variable of interest, which was included as a predictor in the linear mixedeffect model applied to all participants. The model also included 8 participant characteristic variables as fixed factors: participant's nationality, sex, age, body mass index (BMI), registration for the previous NSC season, NSC3 registration time, wearable used, and numeric duration of engagement.

To investigate whether the program effectiveness differed by participant characteristics, subgroup analyses
were conducted. Participants were stratified into subgroups by each of the above-mentioned 8 characteristic variables, including the duration of engagement categorized according to quartiles. A separate linear mixed-effect model was fitted for each subgroup using the same list of fixed factors as the model applied to all participants, except that it excluded the variable used to generate the subgroup.

We performed all the analyses in R (version 3.6.1), and used package "nlme" (version 3.1-141) for the linear mixed-effect models.

## RESULTS

A total of 696907 participants registered for the NSC3, and 113 withdrew (Figure 2); 539296 (77.4\%) participants provided plausible demographic and anthropometric information; and 421388 (60.5\%) participants further recorded valid daily steps and were included in the evaluation of program engagement and effectiveness.

Uptake of the NSC3 started from September 26, 2017, and continued to increase until April 29, 2018, with major peaks coinciding with NSC3 mega roadshows. Thirty-three percent of the participants registered within the first month and $78 \%$ within the first 2 months (Figure 3). Geographically, participants were distributed across all residential areas in Singapore. A higher uptake in absolute numbers was observed in more densely populated areas, but we observed no clear geographical pattern in the percentage of uptake (Data S3 and Figure S2 and S3). Compared with the Singapore population, the NSC3 reached greater proportions of participants who were citizens, women, younger (aged 17-39 years), and nono-bese and nonunderweight (BMI 18.5 to $<27.5 \mathrm{~kg} / \mathrm{m}^{2}$ ), whereas participants who were noncitizens and men, older, and obese were underrepresented (Table 1).

As part of the NSC3, 40.1 million participant-days of step count data were recorded, 91.6\% of which occurred after participants registered for the NSC3. The median duration of engagement was 74 (IQR, 14-149) days, accounting for $36 \%$ (IQR, $7 \%-68 \%$ ) of the available NSC3 days (Table 2). Temporally, the percentage of registered participants who remained in the NSC3 on each date declined steadily over time. With intermittent drops on weekends and public holidays, the percentage of registered participants who were engaged on each date followed a U-shaped curve before the Sure-Win period and decreased steadily afterwards (Figure 4A).

Both duration of engagement and mean daily step count level were significantly higher in participants who were citizens, older ( $\geq 40$ years), non-obese (BMI, $<27.5 \mathrm{~kg} / \mathrm{m}^{2}$ ), and who joined previous NSC seasons,
registered for the NSC3 earlier, and did not solely use smartphone-based wearables (Table 2). Male participants had shorter engagement, but a higher mean daily step count level. Across the NSC3 phases, daily step counts were lower on Sundays by 616 steps and public holidays by 789 steps (Figure 4B).

After adjustment for potential confounders, mean daily step count was 1579 ( $95 \% \mathrm{Cl}, 1564-1594$ ) steps greater during the main challenge phase and 934 (95\% CI, 916-952) steps greater during the maintenance phase than the level during the baseline monitoring phase (Table 3). These increases were robust in sensitivity analyses (Tables S5 through S7). Subgroup analysis revealed greater increases among citizens and noncitizens, women, the older ( $\geq 40$ years), nonobese ( $\mathrm{BMI}<27.5 \mathrm{~kg} / \mathrm{m}^{2}$ ) participants, and those who were engaged longer and who did not solely use smartphone-based wearables.

## DISCUSSION

The NSC represents a sustained and scaled-up mHealth physical activity intervention embedded in the national health promotion system of Singapore. The large-scale program data, including objectively measured daily physical activity, provided a unique opportunity for in-depth evaluations. This evaluation of the NSC3 included all the 696907 NSC3 participants. Sixty percent of them actively participated and were engaged for a median of 74 days. Compared to baseline, the mean daily step count increased by about 1500 steps during the main challenge phase and remained about 900 steps higher during the maintenance phase. To our knowledge, this study is the largest evaluation of an mHealth physical activity intervention. 2,7-13

In 7 months, the NSC3 attracted more than 14\% of the adult population in Singapore, over threequarters of whom registered within the first 2 months. The participants presented diverse characteristics and were spatially distributed across the entire country. A substantial proportion of the participants belonged to subpopulations with elevated risks of physical inactivity, such as those aged >60 years or overweight. ${ }^{17}$ The considerable and rapid reach of the NSC3 is likely attributable to various factors, including the focus on simple stepping activities, attractive incentives (eg, free fitness trackers, and SureWin rewards), versatile activity recording modes, and widespread on-site roadshows and public education. ${ }^{14}$ According to our literature review, previous evaluations of mHealth physical activity interventions were substantially smaller and reached <70 000 participants. ${ }^{7-13,18}$ Meanwhile, several other large-scale mHealth studies have emerged, along with many commercial smartphone applications. ${ }^{19-21}$ However,


Figure 2. Participant flowchart.
NSC3 indicates National Steps Challenge Season 3.
these studies and applications usually pursued different objectives and did not implement or evaluate physical activity interventions. The Apple Heart Study, for instance, assessed the ability of a smartwatch application to identify atrial fibrillation using pulse rate data from $>400000$ participants. ${ }^{19}$ Another study illustrated worldwide physical activity inequality using smartphone-based physical activity data from $>700000$ people. ${ }^{20}$ Together, our evaluation of the NSC3 and these studies and programs support the potential and feasibility of using mHealth approaches for large-scale real-world investigations.

Our evaluation illustrates that >60\% of NSC3 participants were engaged, with a median of 74 days of the 223 program days. Engagement of other scaled-up mHealth physical activity interventions was quantified sporadically and heterogeneously, generally appearing lower than in the NSC3. ${ }^{7-13,18}$ For instance, the 10000 Steps Australia program found an average of 31 days of engagement during the 190 program days among the 17000 participants who recorded step counts between July 2013 and April 2014.18 Despite the comparatively long engagement observed in the NSC3, a substantial decline was observed over time, with less


Figure 3. Daily and cumulative NSC3 uptake over time from September 26, 2017, to April 29, 2018 ( $\mathrm{N}=696$ 907).
NSC3 indicates National Steps Challenge Season 3.
than a third of participants recording activity by the end of the Sure-Win period. However, this finding is consistent with most mHealth interventions. ${ }^{6}$ Some smaller mHealth randomized controlled trials, on the other hand, demonstrated greater engagement than the NSC3. ${ }^{22-24}$ An important example is the TRIPPA (Trial of Economic Incentives to Promote Physical Activity) trial, an mHealth study to increase physical activity in Singapore adults. ${ }^{22}$ About $70 \%$ of the 396 individuals, who received wearables and financial incentives, continued recording physical activity by the end of the 6 -month intervention period. However, the percentage dropped rapidly to only $10 \%$ by the end of the 6 -month follow-up. The higher financial incentives during the TRIPPA intervention, averaging around S\$470 (versus maximum S\$30 in NSC3), may partly explain the greater engagement. ${ }^{22}$

We identified several participant characteristics and patterns associated with greater engagement. Such knowledge has been scarce for mHealth approaches, especially for scaled-up programs. ${ }^{25}$ Before our evaluation, an analysis of 100000 participants from 8 studies between 2014 and 2019 was the largest investigation on indicators of higher mHealth engagement using individual-level data. ${ }^{25}$ The study found clinical referral, monetary benefit, older age, and disease condition as key drivers. Our evaluation revealed additional positive
correlates of engagement: female sex, non-obesity, previous program registration, early registration, and usage of separate wearables (versus smartphones) for activity recording. The NSC3 also identified lower engagement on weekends and public holidays. Most factors positively related to NSC3 engagement were also associated with higher activity levels, except for male sex, which was associated with greater step count levels despite lower engagement. While these findings have potential to inform future strategies to increase engagement, mHealth interventions such as the NSC may not need a full-time engagement to achieve the desired behavior change. ${ }^{22,26}$

A recent systematic review of randomized controlled mHealth trials found that wearables and financial incentives together increased the mean daily step count in adults by 607 steps during the incentive period and 513 steps during the postincentive period. ${ }^{27}$ The TRIPPA trial, which also targeted adults in Singapore, showed that wearables plus cash incentives improved daily step counts by 1000 and 500 steps at the end of the incentive and follow-up period, respectively. ${ }^{22}$ Another recent systematic review of interventions using step count monitors (with or without financial incentives) in community-dwelling adults reported increased physical activity by 1126 steps/day at $\leq 4$ months, 1050 steps/day at 6 months, and 464

Table 1. NSC3 Participant Characteristics ( $\mathrm{N}=539$ 296) Compared With the Singapore Population ( $\mathrm{N}=4845000$ as of June 2018)

| Characteristics | NSC3 participants, n (\%) | Singapore population aged $\geq 17 \mathrm{y}$, \% |
| :---: | :---: | :---: |
| Nationality |  |  |
| Singapore citizen | 349259 (64.8) | 59.1 |
| Noncitizen | 190037 (35.2) | 40.9 |
| Sex |  |  |
| Female | 313559 (58.1) | 47.5 |
| Male | 225737 (41.9) | 52.5 |
| Age, y |  |  |
| 17-39 | 270241 (50.1) | 39.4 |
| 40-59 | 207871 (38.5) | 38.7 |
| 60-79 | 58490 (10.8) | 19.4 |
| $\geq 80$ | 2694 (0.5) | 2.5 |
| Body mass index, kg/m² |  |  |
| <18.5 | 35298 (6.5) | 6.4 |
| 18.5 to <23 | 224905 (41.7) | 38.3 |
| 23 to <27.5 | 188251 (34.9) | 32.3 |
| $\geq 27.5$ | 90842 (16.8) | 23.0 |
| Registration for previous NSC season |  |  |
| No | 363423 (67.4) | $\ldots$ |
| Yes | 175873 (32.6) |  |
| NSC3 registration time |  |  |
| Before Sure-Win period | 196832 (36.5) | $\ldots$ |
| Within 30 d since Sure-Win period began | 215571 (40.0) |  |
| >30 d after Sure-Win period began | 126893 (23.5) |  |
| Wearables |  |  |
| HPB-issued | 159730 (29.6) | ... |
| Phone-based | 129402 (24.0) |  |
| Commercial | 26077 (4.8) |  |
| >1 wearable type | 106179 (19.7) |  |
| Not applicable* | 117908 (21.9) |  |

Comparisons of participant characteristics with the Singapore population using chi-squared tests: all $P<0.001$. HPB indicates Health Promotion Board Singapore; NSC, National Steps Challenge; and NSC3, NSC Season 3.
*No wearable information was available for participants who did not record any valid daily step.
steps/day at 1 year. ${ }^{28}$ Our evaluation suggests that the NSC3 yielded larger increases in daily step counts. The larger increase may, in part, be attributable to other behavior change techniques in this multicomponent intervention, such as incremental step count goals, activity feedback, gamification with Health-Point tokens, and physical activity education. ${ }^{6}$ It thereby indicates that the effectiveness of mHealth physical activity interventions can be retained in large real-world settings if they are carefully scaled-up. In the NSC3, greater increases in step counts were particularly apparent
among participants of older age, who used separate wearables (versus smartphones), and who had longer engagement. These findings are consistent with the above-mentioned systematic review of randomized controlled trials. ${ }^{27}$ The present evaluation further found that citizens and women increased their physical activity more substantially. In addition, subgroups with higher baseline activity levels generally observed greater increases, except for men, participants with previous program registration, and participants using self-purchased fitness trackers.

Longitudinal studies have repeatedly demonstrated that higher daily step counts are associated with reductions in all-cause mortality, cardiovascular diseases, and type 2 diabetes. ${ }^{29-33}$ For instance, in prospective cohort studies, every 1000 -steps-per-day increment was associated with 6\% lower mortality among Australians and $14 \%$ lower mortality among Britons. ${ }^{30}$ Similarly, randomized controlled trials illustrated that increases in daily step counts comparable to or less than those observed in the NSC3 resulted in significantly improved health outcomes. ${ }^{34-36}$ The increases in daily step counts observed in the NSC3 could therefore lead to substantial individual and population benefits.

Multiple factors and resources have contributed to the NSC3's large-scale implementation. First, the program adopted extensive multisectoral partnerships led by Singapore's governmental HPB, including collaborations with academic institutes, technology and manufacturing industries, retail establishments, and other governmental and community organizations. ${ }^{14}$ This is consistent with existing evidence that partnerships beyond the health sector and political support are key factors for successful scaling up of physical activity interventions. ${ }^{2}$ Embedded in the country's broad systematic health promotion framework, the NSC3 was able to synergize with various other programs and benefited from sharing major health promotion resources and infrastructures with them. ${ }^{14}$ In addition, the NSC3 tailored the design and implementation of its multibehavioral intervention components by integrating the local practice-based health promotion experience with scientific research evidence. ${ }^{14}$ While these features and the practice-based nature are integral for the scaled-up implementation of the NSC3, it is worth acknowledging that many of the implementation aspects were not research driven, which created challenges for the scientific evaluation. For instance, considering the complexity of this mHealth program, we are unable to determine specific effects of individual intervention components and their detailed interactions because no dedicated efforts were made to collect relevant data.

Despite the novelty and strengths of this evaluation, several important limitations should be acknowledged. First, the NSC3 was a population-wide health

Table 2. Duration and Percentage of Engagement and Mean Daily Step Counts During NSC3 ( $\mathrm{N}=421388$ )

| Characteristics | Duration of engagement in days, median (IQR) | Percentage of engagement, median (IQR) | Mean daily step counts, mean (SD) |
| :---: | :---: | :---: | :---: |
| Total | 74 (14-149) | 36 (7-68) | 8184 (4073) |
| Nationality |  |  |  |
| Singapore citizen | 81 (16-153) | 41 (8-70) | 8346 (4134) |
| Noncitizen | 60 (10-140) | 28 (5-62) | 7870 (3933) |
| Sex |  |  |  |
| Female | 79 (15-152) | 38 (8-69) | 7931 (3925) |
| Male | 67 (12-144) | 33 (6-66) | 8543 (4247) |
| Age, y |  |  |  |
| 17-39 | 54 (10-129) | 27 (5-59) | 7839 (3686) |
| 40-59 | 94 (19-165) | 46 (10-74) | 8403 (4238) |
| 60-79 | 108 (20-173) | 52 (10-79) | 8912 (4847) |
| $\geq 80$ | 108 (29-163) | 51 (15-73) | 9077 (4869) |
| Body mass index, $\mathrm{kg} / \mathrm{m}^{2}$ |  |  |  |
| <18.5 | 68 (12-141) | 33 (6-64) | 7870 (4017) |
| 18.5 to <23 | 79 (15-152) | 39 (8-68) | 8309 (4036) |
| 23 to <27.5 | 75 (14-151) | 37 (7-69) | 8291 (4131) |
| $\geq 27.5$ | 59 (11-139) | 29 (5-64) | 7762 (4028) |
| Registration for previous NSC season |  |  |  |
| No | 46 (7-127) | 23 (4-61) | 7602 (4098) |
| Yes | 120 (49-179) | 53 (23-77) | 9251 (3803) |
| NSC3 registration time |  |  |  |
| Before Sure-Win period | 127 (38-186) | 52 (16-76) | 8871 (4062) |
| Within 30 days since SureWin period began | 60 (11-133) | 28 (5-61) | 7940 (4023) |
| >30 days after Sure-Win period began | 24 (4-75) | 18 (3-52) | 7208 (3939) |
| Wearables |  |  |  |
| HPB-issued | $64(13,136)$ | $31(6,62)$ | 8698 (4589) |
| Phone-based | $43(2,135)$ | $23(1,65)$ | 6831 (3486) |
| Commercial | $96(29,165)$ | $46(15,74)$ | 9769 (3402) |
| >1 wearable type | 114 (41, 170) | $53(20,75)$ | 8673 (3609) |

Participant characteristics for the 421388 participants can be found in Table S8. Data of engagement and daily step counts by the NSC3 phases in mean (SD) can be found in Tables S3 and S4. Comparisons by participant characteristics using Kruskal-Wallis tests and ANOVA tests: all $P<0.001$. Percentage of engagement was relative to participants' available NSC3 days (median of available NSC3 days: 223 days; IQR, 205-240 days). HPB indicates Health Promotion Board Singapore; NSC, National Steps Challenge; and NSC3, NSC Season 3.
intervention program and was not conceptualized as a research study. As such, our evaluation relies on routinely collected data and does not have the same internal validity and quality of outcome measures as a purposefully designed randomized controlled trial. Besides, the availability of physical activity measurements depends on participants' program engagement. The estimates of effectiveness could therefore be subject to bias and confounding. We conducted multiple sensitivity and secondary analyses to address this concern and found that our observations were robust. Second, despite its large reach, certain subpopulations including the obese and elderly were underrepresented. Although the large sample
size enabled us to conduct subgroup analysis, it is conceivable that individuals in specific subgroups may fail to represent the corresponding population groups. This may partially explain the higher activity level and activity increase, for example, in older participants. Third, the duration and intensity of the NSC3 intervention varied among participants because of their different registration dates and involvement in the subchallenges. However, this reflects the real-life nature of the NSC3. Fourth, the maintenance phase in the current evaluation was relatively short, and the program's effectiveness may be affected by other confounders unavailable. Therefore, further investigations with longer follow-up and more


Figure 4. Percentage of daily step recording and the mean daily step counts over time ( $\mathrm{N}=421$ 388).
A, Percentage of registered participants on each calendar date who engaged in NSC3 as well as who remained in NSC3. Registered participants for a specific calendar date reflected all the participants who registered for NSC3 by that date. A registered participant remained in NSC3 until the last day the participant recorded daily step counts. B, Mean daily step counts on each calendar date, stratified according to the 3 specified NSC3 phases (baseline monitoring phase, main challenge phase, and maintenance phase). Black dots indicate weekend days; red dots indicate nonweekend public holidays. $N=421388$ reflects the total number of participants who contributed data to Figure 4, but the mean daily step counts on specific dates were computed on the basis of participants who provided step count data on the date. The number of participants in each NSC3 phase with step count data on each calendar date can be found in Table S9. NSC3 indicates National Steps Challenge Season 3.
comprehensive assessments of confounders are warranted. Finally, information on the cost effectiveness of health promotion programs is important in terms of program sustainability and potential implementation in other countries. At this stage, we are not able to include a cost-effectiveness analysis of the NSC3 because of the lack of relevant data. However, in Singapore, the NSC has benefited from multisectoral collaborations and effects of economies of scale. ${ }^{14}$ The program has continued since 2015 and its sixth yearly season started in October 2021. ${ }^{37}$ While future cost-effectiveness analyses of NSC and similar mHealth programs are essential for policy makers, the NSC's continuous implementation could be an indicator of the program's sustainability, at least in high-income settings.

## CONCLUSIONS

The NSC represents an mHealth physical activity intervention on a large scale. Our evaluation shows that the NSC3 reached a very large and diverse population from across the country within a few months. While NSC3 engagement was not ideal and declined steadily over time, it appears to compare favorably with other scaled-up mHealth programs. Moreover, substantial and clinically meaningful increases in daily step counts were achieved and maintained during the NSC3. This evaluation also extends current knowledge on factors associated with uptake, engagement, and effectiveness of mHealth interventions, and suggests directions for future program improvement. In sum, the evaluation presents an

Table 3. Mean Daily Step Count During the Baseline Monitoring Phase and Changes in Mean Daily Step Count From Baseline to the Main Challenge Phase and the Maintenance Phase ( $\mathrm{N}=384$ 691)

| Characteristics | Mean daily step count during the baseline monitoring phase, mean (SD) | Changes of mean daily step counts from baseline monitoring phase, model estimate ( $95 \% \mathrm{Cl}$ ) |  |
| :---: | :---: | :---: | :---: |
|  |  | Main challenge phase | Maintenance phase |
| Total | 7509 (3467) | 1579 (1564-1594) | 934 (916 952) |
| Nationality |  |  |  |
| Singapore citizen | 7591 (3612) | 1864 (1844-1883) | 1148 (1125-1171) |
| Noncitizen | 7410 (3284) | 1225 (1203-1247) | 722 (693-750) |
| Sex |  |  |  |
| Female | 7114 (3337) | 1707 (1688-1725) | 1055 (1033-1077) |
| Male | 8106 (3574) | 1488 (1463-1512) | 881 (852-911) |
| Age, y |  |  |  |
| 17-39 | 7267 (3063) | 1280 (1260-1300) | 827 (802-852) |
| 40-59 | 7638 (3650) | 1852 (1828-1875) | 1123 (1095-1151) |
| 60-79 | 8161 (4318) | 2303 (2252-2353) | 1377 (1319-1436) |
| $\geq 80$ | 8027 (4672) | 2767 (2511-3023) | 1633 (1336-1929) |
| Body mass index, $\mathrm{kg} / \mathrm{m}^{2}$ |  |  |  |
| <18.5 | 7042 (3467) | 1651 (1589-1712) | 989 (916-1063) |
| 18.5 to <23 | 7517 (3477) | 1673 (1651-1696) | 1027 (1000-1055) |
| 23 to <27.5 | 7664 (3480) | 1621 (1596-1645) | 984 (954-1014) |
| $\geq 27.5$ | 7325 (3389) | 1472 (1436-1508) | 892 (848-937) |
| Registration for previous NSC season |  |  |  |
| No | 6875 (3307) | 1635 (1614-1656) | 1184 (1158-1209) |
| Yes | 8223 (3505) | 1625 (1604-1645) | 756 (732-781) |
| NSC3 registration time |  |  |  |
| Before Sure-Win period | 7889 (3593) | 1781 (1761-1800) | 932 (908-957) |
| Within 30 d since Sure-Win period began | 6999 (3177) | 1375 (1347-1403) | 903 (870-937) |
| >30 d after Sure-Win period began | 6523 (2988) | 1307 (1267-1347) | 990 (945-1035) |
| Wearables |  |  |  |
| HPB-issued | 8519 (4397) | 1999 (1965-2034) | 1085 (1044-1126) |
| Phone-based | 7054 (2932) | 738 (720-756) | 322 (301-344) |
| Commercial | 9456 (3261) | 1028 (989-1067) | 592 (545-640) |
| >1 wearable | 6993 (3109) | 2353 (2326-2379) | 1749 (1715-1782) |
| Quartiles of engagement duration in days |  |  |  |
| <15 | 6301 (2995) | 166 (121-212) | 413 (310-517) |
| 15-74 | 6975 (3144) | 893 (864-922) | 735 (695-775) |
| 75-149 | 7480 (3394) | 2004 (1974-2034) | 1377 (1341-1413) |
| 150-258 | 8471 (3636) | 2052 (2029-2075) | 1229 (1202-1256) |

Results were based on step records that comprised the reliable phase-specific mean daily step count. A reliable phase-specific mean daily step count required at least 4 records of daily step counts during the corresponding NSC3 phase. Changes in mean daily step counts were estimated by linear mixedeffect models, adjusting for nationality, sex, age, body mass index, registration for previous NSC season, NSC3 registration time, wearable used, and numeric duration of engagement where applicable. For each participant subgroup, a separate model was fitted using data from the corresponding subgroup. All model estimates were $P<0.001$. Participant characteristics for the 384691 participants can be found in Table S8. HPB indicates Health Promotion Board Singapore; NSC, National Steps Challenge; and NSC3, NSC Season 3.
encouraging example for researchers, practitioners, and policy makers around the world to scale up effective physical activity interventions.

## ARTICLE INFORMATION

Received May 17, 2021; accepted February 7, 2022.

## Affiliations

Saw Swee Hock School of Public Health, National University of Singapore, Singapore (J.Y., A.M.M., R.M.v.D., C.C., C.S.T., F.M.-R.); Policy, Research and Surveillance Division, Health Promotion Board, Singapore (N.L., J.T.); and Berlin Institute of Health, Charite University Medical Centre, Berlin, Germany (F.M.-R.).

## Acknowledgments

We thank all the employees of Health Promotion Board Singapore who contribute to the National Steps Challenge program.

Author contributions: Drs Riemenschneider and Tan conceived the study and led all stages of the program evaluation. Drs Riemenschneider, Tan, Matthias Müller, and Chen, and N.Lim, J. Tan, and J. Yao coordinated the collaboration and data acquisition. N.Lim and J. Tan provided expertise on the program implementation. J. Yao drafted the analysis plan and performed the analysis under the guidance of Drs Riemenschneider, Tan, and Martinus van Dam. J. Yao and Dr Riemenschneider drafted the manuscript with critical inputs from Drs van Dam and Tan. All authors reviewed the final version of the manuscript and agreed on the submission.

## Sources of Funding

This research is supported by the Singapore Ministry of Health's National Medical Research Council under the Seed Funding Programme by Singapore Population Health Improvement Centre (NMRC/CG/C026/2017 NUHS).

## Disclosures

During the conduct of the study, Drs Müller-Riemenschneider and Tan received research funding from Ministry of Health Singapore, and Drs Müller-Riemenschneider, Tan, and Müller received research funding from the Health Promotion Board Singapore. The remaining authors have no disclosures to report.

## Supplemental Material

Data S1-S4
Tables S1-S9
Figures S1-S3
References38-44

## REFERENCES

1. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Heal. 2018;6:e1077-e1086. doi: 10.1016/S2214-109X(18)30357-7
2. Reis RS, Salvo D, Ogilvie D, Lambert EV, Goenka S, Brownson RC Physical L, Series A, Town C, Town C. Scaling up physical activity interventions across the globe: stepping up to larger and smarter approaches to get people moving physical activity series 2 executive committee. Lancet. 2016;388:1337-1348. doi: 10.1016/S0140 -6736(16)30728-0
3. Lobelo F, Rohm Young D, Sallis R, Garber MD, Billinger SA, Duperly J, Hutber A, Pate RR, Thomas RJ, Widlansky ME, et al. Routine assessment and promotion of physical activity in healthcare settings: a scientific statement from the American Heart Association. Circulation 2018;137:e495-e522. doi: 10.1161/CIR.0000000000000559
4. McConnell MV, Turakhia MP, Harrington RA, King AC, Ashley EA Mobile health advances in physical activity, fitness, and atrial fibrillation moving hearts. J Am Coll Cardiol. 2018;71:2691-2701. doi: 10.1016/j. jacc.2018.04.030
5. Department of Health \& Human Services. Physical activity guidelines advisory committee. Phys Act Guidel Advis Comm Sci Rep 2018;2018:779
6. Afshin A, Babalola D, Mclean M, Yu Z, Ma W, Chen CY, Arabi M, Mozaffarian D. Information technology and lifestyle: a systematic evaluation of internet and mobile interventions for improving diet. Physical activity, obesity, tobacco, and alcohol use. J Am Heart Assoc. 2016;5. doi: 10.1161/JAHA.115.003058
7. Rayward AT, Vandelanotte C, Corry K, Van Itallie A, Duncan MJ. Impact of a social media campaign on reach, uptake, and engagement with a free web- and app-based physical activity intervention: the 10,000 steps Australia program. Int J Environ Res Public Health. 2019;16:5076. doi: 10.3390/ijerph16245076
8. Mitchell M, White L, Lau E, Leahey T, Adams MA, Faulkner G. Evaluating the carrot rewards app, a population-level incentive-based intervention promoting step counts across two Canadian provinces: Quasiexperimental study. JMIR mHealth uHealth. 2018;6:1-13. doi: 10.2196/ mhealth. 9912
9. Ganesan AN, Louise J, Horsfall M, Bilsborough SA, Hendriks J, McGavigan AD, Selvanayagam JB, Chew DP. International mobile-health intervention on physical activity, sitting, and weight: the Stepathlon cardiovascular health study. J Am Coll Cardiol. 2016;67:2453-2463. doi: 10.1016/j.jacc.2016.03.472
10. Elliott M, Eck F, Khmelev E, Derlyatka A, Fomenko O. Physical activity behavior change driven by engagement with an incentive-based app: evaluating the impact of Sweatcoin. J Med Internet Res. 2019;21:1-15. doi: 10.2196/12445
11. Van Dongen JM, Van Poppel MN, Milder IE, Van Oers HA, Brug J. Exploring the reach and program use of hello world, an email-based health promotion program for pregnant women in the Netherlands. BMC Res Notes. 2012;5. doi: 10.1186/1756-0500-5-514
12. Buis LR, Hirzel L, Turske SA, Des Jardins TR, Yarandi H, Bondurant P. Use of a text message program to raise type 2 diabetes risk awareness and promote health behavior change (Part I): assessment of participant reach and adoption. J Med Internet Res. 2013;15:e281 doi: 10.2196/ jmir. 2928
13. Patel MS, Foschini L, Kurtzman GW, Zhu J, Wang W, Rareshide CAL, Zbikowski SM. Using wearable devices and smartphones to track physical activity: initial activation, sustained use, and step counts across sociodemographic characteristics in a national sample. Ann Intern Med. 2017;167:755-757. doi: 10.7326/M17-1495
14. Yao J, Tan CS, Chen C, Tan J, Lim N, Muller-Riemenschneider F. Bright spots, physical activity investments that work: national steps challenge, Singapore: a nationwide mHealth physical activity programme. Br J Sports Med. 2020;54:1047-1048. doi: 10.1136/bjsports-2019-101662
15. Health Promotion Board S. National Steps Challenge Season 3: Frequently Asked Questions. Available at https://www.healthhub.sg/ sites/assets/Assets/Programs/nsc-2017/National Steps Challenge Season 3_Main FAQs.pdf. Accessed January 1, 2020.
16. Yao J, Tan CS, Lim N, Tan J, Chen C, Müller-Riemenschneider F. Number of daily measurements needed to estimate habitual step count levels using wrist-worn trackers and smartphones in 212,048 adults. Sci Rep. 2021;11:9633. doi: 10.1038/s41598-021-89141-3
17. Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW, Alkandari JR, Andersen LB, Blair SN, Brownson RC, et al. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380:258-271. doi: 10.1016/S0140-6736(12)60735-1
18. Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement and nonusage attrition with a free physical activity promotion program: the case of 10,000 steps Australia. J Med Internet Res. 2015;17. doi: 10.2196/jmir. 4339
19. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, et al. Largescale assessment of a smartwatch to identify atrial fibrillation. N Engl $J$ Med. 2019;381:1909-1917. doi: 10.1056/NEJMoa1901183
20. Althoff T, Sosič R, Hicks JL, King AC, Delp SL, Leskovec J. Largescale physical activity data reveal worldwide activity inequality. Nature. 2017;547:336-339. doi: 10.1038/nature23018
21. Hicks JL, Althoff T, Sosic R, Kuhar P, Bostjancic B, King AC, Leskovec J, Delp SL. Best practices for analyzing large-scale health data from wearables and smartphone apps. NPJ Digit Med. 2019;2. doi: 10.1038/ s41746-019-0121-1
22. Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EEK, Evenson KR. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4:983-995. doi: 10.1016/ S2213-8587(16)30284-4
23. Patel MS, Asch DA, Rosin R, Small DS, Bellamy SL, Heuer J, Sproat S, Hyson C, Haff N, Lee SM, et al. Framing financial incentives to increase physical activity among overweight and obese adults a randomized, controlled trial. Ann Intern Med. 2016;164:385-394. doi: 10.7326/ M15-1635
24. Patel MS, Benjamin EJ, Volpp KG, Fox CS, Small DS, Massaro JM, Lee JJ, Hilbert V, Valentino M, Taylor DH, et al. Effect of a gamebased intervention designed to enhance social incentives to increase physical activity among families: the BE FIT randomized clinical trial. JAMA Intern Med. 2017;177:1586-1593. doi: 10.1001/jamaintern med.2017.3458
25. Pratap A, Neto EC, Snyder P, Stepnowsky C, Elhadad N, Grant D, Mohebbi MH, Mooney S, Suver C, Wilbanks J, et al. Indicators of retention in remote digital health studies: a cross-study evaluation of 100,000 participants. NPJ Digit Med. 2019;3:1-10. doi: 10.1038/s4174 6-020-0224-8
26. Yardley L, Spring BJ, Riper H, Morrison LG, Crane DH, Curtis K, Merchant GC, Naughton F, Blandford A. Understanding and promoting effective engagement with digital behavior change interventions. Am J Prev Med. 2016;51:833-842. doi: 10.1016/j.amepre.2016.06.015
27. Mitchell MS, Orstad SL, Biswas A, Oh PI, Jay M, Pakosh MT, Faulkner G. Financial incentives for physical activity in adults: systematic review and meta-analysis. Br J Sports Med. 2019;54:1-12. doi: 10.1136/bjspo rts-2019-100633
28. Chaudhry UAR, Wahlich C, Fortescue R, Cook DG, Knightly R, Harris T. The effects of step-count monitoring interventions on physical activity systematic review and meta-analysis of community-based randomised controlled trials in adults. Int J Behav Nutr Phys Act. 2020;17:129. doi 10.1186/s12966-020-01020-8
29. Kraus WE, Janz KF, Powell KE, Campbell WW, Jakicic JM, Troiano RP; Sprow K, Torres A, Piercy KL. Daily step counts for measuring physical activity exposure and its relation to health. Med Sci Sports Exerc. 2019;51:1206-1212. doi: 10.1249/MSS.0000000000001932
30. Lee IM, Shiroma EJ, Kamada M, Bassett DR, Matthews CE, Buring JE. Association of step volume and intensity with all-cause mortality in older women. JAMA Intern Med. 2019;179:1105-1112. doi: 10.1001/ jamainternmed.2019.0899
31. Yates T, Haffner SM, Schulte PJ, Thomas L, Huffman KM, Bales CW, Califf RM, Holman RR, McMurray JJV, Bethel MA, et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis Lancet. 2014;383:1059-1066. doi: 10.1016/S0140-6736(13)62061-9
32. Dwyer T, Ponsonby A-L, Ukoumunne OC, Pezic A, Venn A, Dunstan D, Barr E, Blair S, Cochrane J, Zimmet P, et al. Association of change in daily step count over five years with insulin sensitivity and adiposity: population based cohort study. BMJ. 2011;342:216. doi: 10.1136/bmj.c7249
33. Saint-Maurice PF, Troiano RP, Bassett DR, Graubard BI, Carlson SA, Shiroma EJ, Fulton JE, Matthews CE. Association of daily step count and step intensity with mortality among US adults. JAMA - J Am Med Assoc. 2020;323:1151-1160. doi: 10.1001/jama.2020.1382
34. Harris T, Kerry SM, Limb ES, Furness C, Wahlich C, Victor CR, lliffe S, Whincup PH, Ussher M, Ekelund U, et al. Physical activity levels in adults and older adults 3-4 years after pedometer-based walking interventions: long-term follow-up of participants from two randomised controlled trials in UK primary care. PLoS Med. 2018;15:1-16. doi: 10.1371/ journal.pmed. 1002526
35. Harris T, Limb ES, Hosking F, Carey I, DeWilde S, Furness C, Wahlich C, Ahmad S, Kerry S, Whincup P, et al. Effect of pedometer-based walking interventions on long-term health outcomes: prospective 4-year follow-up of two randomised controlled trials using routine primary care data. PLoS Med. 2019;16:1-20. doi: 10.1371/journ al.pmed. 1002836
36. Oja P, Kelly P, Murtagh EM, Murphy MH, Foster C, Titze S. Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: a systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. Br J Sports Med. 2018;52:769-775. doi: 10.1136/bjsports-2017-098558
37. National Steps Challenge ${ }^{\text {TM }}$ Season 6. Available at https://www.healt hhub.sg/programmes/37/nsc
38. United Nations Department of Economic and Social Affairs. World Population Prospects 2019. Online Edition. Accessed Sep 2020.
39. Strategy Group of Singapore Prime Minister's Office, Singapore Department of Statistics, Singapore Ministry of Home Affairs, Singapore Immigration and Checkpoints Authority, Singapore Ministry of Manpower. Population in Brief Singapore 2018. Singapore. 2018. Available at: https://www.strategygroup.gov.sg/images/Publicatio nlmages/population-in-brief-2018.pdf
40. Ministry of Health Singapore. National Health Survey 2010. Singapore. 2010. Available at https://www.moh.gov.sg/docs/librariesprovider5/ resources-statistics/reports/nhs2010---low-res.pdf?sfvrsn=e5492 6c6_0
41. Suzuki M, Murashima M, Hoerr SL. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Nutr Diet. 2007;64:159-164. doi: 10.1111/j.1747-0080.2007.00127.x
42. Urban Redevelopment Authority of Singapore. List of Postal Districts. Available at https://www.ura.gov.sg/realEstatellWeb/resources/misc/ list_of_postal_districts.htm
43. Singapore Urban Redevelopment Authority. Master Plan 2014 Planning Area Boundary (Web). Available at: https://data.gov.sg/dataset/maste r-plan-2014-planning-area-boundary-web
44. Singapore Department of Statistics. Singstat. Available at: https://www. singstat.gov.sg/

## SUPPLEMENTAL MATERIAL

This is the supplemental materials for the manuscript "Evaluation of a population-wide mobile health physical activity program in 696,907 adults in Singapore".

Data S1: Systematic search on scaled-up mobile health physical activity interventions.
Figure S1: PRISMA flow diagram for the systematic search for scaled-up mHealth physical activity intervention.

Table S1: Scaled-up mHealth physical activity interventions through the systematic search.
Data S2: Population Statistics and classification of participant characteristics and wearables.
Data S3: The uptake of National Steps Challenge Season Three in absolute number and the percentage of uptake by Singapore planning areas.

Figure S2: Singapore population aged 17+ years and NSC3 uptake by Singapore planning areas ( $\mathrm{N}=$ 619,134)
Figure S3: Scatter plots of Singapore population aged 17+ years vs. NSC3 uptake by planning areas ( $\mathrm{N}=619,134$ ).

Data S4: Comparison of daily step count by the day of the week and public holiday.
Table S2: Mean daily step count and difference by the day of the week or public holiday ( $\mathrm{N}=$ 421,388).

Table S3: Mean duration and percentage of engagement $(\mathrm{N}=421,388)$.
Table S4: Mean daily step count by participant characteristics and NSC3 phase ( $\mathrm{N}=421,388$ ).
Table S5: Changes in mean daily step count from the baseline monitoring phase to the main challenge phase and maintenance phase using complete-case analysis ( $\mathrm{N}=96,248$ ).

Table S6: Changes in mean daily step count from the baseline monitoring phase, using thresholds of $1-30$ days for phase-specific mean daily step count $(\mathrm{N}=421,388)$.
Table S7: Changes in mean daily step count from the baseline monitoring phase to the main challenge phase and maintenance phase, only including records of daily steps at least 1500 steps ( $\mathrm{N}=378,550$ ).
Table S8: NSC3 participant characteristics $(\mathrm{N}=539,296)$ stratified by data availability
Table S9: Number of participants who provided step count data on each day of the entire evaluation period according to NSC3 phases

## Data S1: Systematic search on scaled-up mobile health physical activity interventions

In the Lancet Series on physical activity in 2016, a systematic review of the peer-reviewed literature on the scaled-up physical activity interventions was conducted, including literature up to December $2015^{2}$. In this study, we extended the literature to 01 January 2020 while restricting the search to mobile health (mHealth) interventions.
Except for the additional search terms of mHealth, we used the same search process and criteria as that of the systematic review in the Lancet Series on physical activity in 2016 where the details can be found ${ }^{2}$. In brief, we searched PubMed and Scopus databases for publications between January 2016 to 01 January 2020 to identify scaled-up mHealth physical activity interventions. Three types of search terms were included: scalability, physical activity, and mHealth. We extracted the publications that contain a scalability search term in the title and a physical activity term and a mHealth search term in the title or abstract. The details of the search terms are as followed:
mHealth: telemedicine OR telehealth OR eHealth OR mhealth OR m-health OR "m health" OR "mobile health" OR "mobilehealth" OR "mobile-health" OR "mobile devic*" OR phone OR smartphone OR "handheld computer" OR cellphone OR telephone OR SMS OR "text messag*" OR "short messag*" OR "health messag*" OR "multimedia messag*" OR "multi-media messag*" OR "mobile technology" OR "mobile communication" OR "mobile app*" OR app OR "wearable*" OR "body worn sensor*" OR smartwatch* OR accelerometer* OR accelerometery OR pedometer* OR tracker* OR "mobile computing" OR "wireless technology" OR "wireless devic*" OR "bluetooth" OR "mobile operating system*" OR android OR ios OR "social media" OR "social network*" OR "remote monitoring" OR "remote consultat*" OR teleconsult* OR telehealthcare OR telemonitor* OR tele-education OR "remote diagnosis" OR telemanagement OR tele-management.
Scalability ${ }^{1}$ : scaled-up OR scale-up OR scaling-up OR scalability OR scalable OR reach OR expanding OR expandable OR expandability OR institutionalization OR institutionalisation OR rollout OR rolling-out OR dissemination OR disseminating.
Physical activity": "physical activity" OR "physically active" OR "physical inactivity" OR "physically inactive" OR fitness OR exercis* OR sport* OR walk OR walking OR sedentary OR sitting OR television OR TV OR "screen time" OR screen-time OR "active transport"" OR "active transit" OR "active travel" OR commut* OR "active commuting" OR bicycle OR bicycling OR bike OR biking OR "active living" OR active-living.

The search from PubMed and Scopus databases yielded 128 articles ( 93 unique articles) published between 2016 and 2019. Two additional studies published before 2016 were identified directly from 16 scaled-up physical activity interventions found in the systematic review in the Lancet Series on physical activity in $2016^{2}$, and four were identified through manual web search. In total, seven mHealth physical activity scaled-ups were found (Figure S1, Table S1).


Figure S1: PRISMA flow diagram for the systematic search for scaled-up mHealth physical activity intervention.

Table S1: Scaled-up mHealth physical activity interventions through the systematic search.

| Study | Reference |
| :--- | :--- |
| The 10,000 Steps <br> Australia programme | Rayward AT, Vandelanotte C, Corry K, Van Itallie A, Duncan MJ. Impact of a <br> social media campaign on reach, uptake, and engagement with a free web-and app- <br> based physical activity intervention: The 10,000 steps Australia program. Int J <br> Environ Res Public Health 2019; 16. DOI:10.3390/ijerph16245076. |
| Carrot Rewards | Mitchell M, White L, Lau E, Leahey T, Adams MA, Faulkner G. Evaluating the <br> carrot rewards app, a population-level incentive-based intervention promoting step <br> counts across two canadian provinces: Quasi-experimental study. JMIR mHealth <br> uHealth 2018; 6: 1-13. |
| Go365 | Patel MS, Foschini L, Kurtzman GW, et al. Using Wearable Devices and <br> Smartphones to Track Physical Activity: Initial Activation, Sustained Use, and <br> Step Counts Across Sociodemographic Characteristics in a National Sample. Ann <br> Intern Med 2017; 167: 755-7. |
| Sweatcoin | Elliott M, Eck F, Khmelev E, Derlyatka A, Fomenko O. Physical activity behavior <br> change driven by engagement with an incentive-based app: Evaluating the impact <br> of sweatcoin. J Med Internet Res 2019; 21: 1-15. |
| The Stepathlon Study | Ganesan AN, Louise J, Horsfall M, et al. International Mobile-Health Intervention <br> on Physical Activity, Sitting, and Weight: The Stepathlon Cardiovascular Health <br> Study. J Am Coll Cardiol 2016; 67: 2453-63. |
| Txt4health programme | Buis LR, Hirzel L, Turske SA, Des Jardins TR, Yarandi H, Bondurant P. Use of a <br> text message program to raise type 2 diabetes risk awareness and promote health <br> behavior change (Part I): Assessment of participant reach and adoption. J Med <br> Internet Res 2013; 15. DOI:10.2196/jmir.2928. |
| Hello <br> programme | Van Dongen JM, Van Poppel MN, Milder IE, Van Oers HA, Brug J. Exploring the <br> reach and program use of hello world, an email-based health promotion program <br> for pregnant women in the Netherlands. BMC Res Notes 2012; 5. <br> DOI:10.1186/1756-0500-5-514. |

## Data S2: Population Statistics and classification of participant characteristics and wearables

Singapore population statistics of demographics were sourced from the United Nations website (year 2018) and Department of Statistics Singapore (year 2018). The population statistics of body mass index were extracted from Singapore National Health Survey (year 2010) ${ }^{38-40}$.
We calculated the BMI for NSC3 participants by dividing the weight by the height squared, and categorised it into 4 groups according to cut-off points for Asian population ${ }^{40,41}$ : less than 18.5 (underweight), from 18.5 to less than 23 (normal weight), from 23 to less than 27.5 (overweight but not obese), and 27.5 and above (obese) $\mathrm{kg} / \mathrm{m}^{2}$. We derived participant age as the rounded years between the birth year to 2017-10-28, and classified it into 4 groups: 17-39, 40-59, 60-79, and 80+ years.

We classified the detail wearable models used by NSC3 participants into HPB-issued wearables, phone-based wearables or commercial wearables. The HPB-issued wearables include the following input wearable sources in the collected data: "HPB_Careeach", "HPB_Mova", "HPB_Skytech", "HPB_Tempo", "HPB_Xtep", "HPB_Aibi", "HPB_Stride", "HPB_Apex", and "HPB_unspecified". The phone-based wearables include the following input wearable sources in the data: "HealthKit", "SHealth", "CoreMotion", "GoogleFit", "Accelerometer", "NoWearable". "Accelerometer" and "NoWearable" were very rare (total $0.15 \%$ ) and were believed to result from minor smartphone models which may have compatibility issues for the system to register the model names properly. The commercial wearables include the following input wearable sources in the data: "FitBit" and "Actxa".

## Data S3: The uptake of National Steps Challenge Season Three (NSC3) in absolute number and the percentage of uptake by Singapore planning areas

In total, 619,134 out of the $696,794 \mathrm{NSC} 3$ participants provided valid first two digits of the postcodes. There are in total 55 planning areas in Singapore and a full postcode in Singapore contains six digits ${ }^{42,43}$. Among these 619,134 NSC3 participants, we displayed the NSC3 uptake by Singapore planning areas on the Singapore map ${ }^{43}$. The same was done for the percentage of NSC3 uptake specific to each planning area among the entire target population, as well as the entire target population (aged 17 years and above) in Singapore (Figure S2-S3).

Because the first two digits of the Singapore postcode are not enough to identify the corresponding planning area in Singapore, we first assigned each unique first two digits of postcodes to the planning areas using the following approximation. We mapped all the possible Singapore postcodes on the Singapore map, and calculate the location centroids for those with the same first two digits. The planning area where a location centroid sit was considered as the planning area for all the postcodes with the corresponding first two digits.
After determining the planning area for each participant, NSC3 uptake in absolute numbers by planning area was calculated by summing up the number of NSC3 participants that belong to each planning area.

To estimate the percentage of NSC3 uptake by planning areas, we first estimated the size of the entire NSC3 target population by planning areas - the entire Singapore population (citizens and noncitizens) aged 17 years and above. We used the population statistics of 2018 from both Department of Statistics, Singapore and the United Nations website for this step because, to our knowledge, no single source provided full information needed. Population size of citizens by planning area, age groups and by nationality came from Department of Statistics, Singapore ${ }^{44}$. Population size of the entire Singapore population by age groups came from the United Nations website ${ }^{38}$. We assumed the same geographical distributions by planning areas of citizens versus noncitizens and those aged 17+ years versus those below 17 years.

The percentage of NSC3 uptake of a planning area was calculated by dividing the total NSC3 participants in the planning area by the entire Singapore population aged 17 years and above in the corresponding planning area. The uptake percentage of non-residential planning area was set as zero.

The analyses were conducted using R (version 3.6.1).


Figure S2: Singapore population aged 17+ years and NSC3 uptake by Singapore planning areas ( $\mathrm{N}=\mathbf{6 1 9 , 1 3 4 \text { ) }}$
A) Total population aged 17+ years in Singapore; B) NSC3 uptakes in absolute number; C) Singapore uptake percentage in the target population. Areas with grid lines have population densities less than 500 person $/ \mathrm{km}^{2}$, mainly consisting of parks and nature reserves or industrial areas. NSC3: National Steps Challenge Season Three.


Figure S3: Scatter plots of Singapore population aged 17+ years vs. NSC3 uptake by planning areas $(\mathrm{N}=619,134)$.
NSC3: National Steps Challenge Season Three.

## Data S4: Comparison of daily step count by the day of the week and public holiday

Calendar dates during NSC3 were categorised by the day of the week. But if a calendar date belonged to a public holiday in Singapore, it was labelled as "public holiday" instead. We calculated the overall mean daily step count on each calendar, which was further summarised by the day of the week and public holiday (Table S2). We also calculated the mean daily step count on each calendar date by NSC3 phases. The mean daily step count on each calendar date by NSC3 phases were used to fit a linear mixed effect model to compare difference by the day of the week and public holidays. Phasespecific random intercepts and independent correlation matrix were specified in the linear mixed effect model (Table S2).

Table S2: Mean daily step count and difference by the day of the week or public holiday ( $\mathrm{N}=$ 421,388).

| Day of the week and <br> public holiday | Overall mean daily step count, <br> mean (SD) | Model effect estimate (95\% CI) | p-value |
| :--- | :--- | :--- | :--- |
| Monday | $8461(1367)$ | reference | . |
| Tuesday | $8573(1362)$ | $139(-76$ to 353$)$ | 0.205 |
| Wednesday | $8613(1374)$ | $123(-91$ to 338$)$ | 0.259 |
| Thursday | $8598(1363)$ | $124(-89$ to 338$)$ | 0.254 |
| Friday | $8894(1298)$ | $432(216$ to 649$)$ | $<0.001$ |
| Saturday | $8514(1363)$ | $40(-173$ to 254$)$ | 0.711 |
| Sunday | $7869(1441)$ | $-616(-829$ to -403$)$ | $<0.001$ |
| Public holiday | $7646(1495)$ | $-789(-1136$ to -442$)$ | $<0.001$ |

Table S3: Mean duration and percentage of engagement ( $\mathrm{N}=421,388$ ).

| Characteristics | Duration of engagement (days) | Percentage of engagement |
| :---: | :---: | :---: |
| Total | 87 (75) | 40 (32) |
| Nationality |  |  |
| Singapore citizen | 91 (75) | 42 (33) |
| Noncitizen | 80 (74) | 35 (31) |
| Sex |  |  |
| Female | 90 (76) | 40 (32) |
| Male | 84 (74) | 38 (32) |
| Age, y |  |  |
| 17-39 | 74 (69) | 34 (30) |
| 40-59 | 98 (78) | 44 (33) |
| 60-79 | 104 (80) | 47 (35) |
| 80+ | 104 (76) | 47 (32) |
| Body mass index, $\mathrm{kg} / \mathbf{m}^{2}$ |  |  |
| <18.5 | 83 (73) | 37 (32) |
| 18.5 to $<23$ | 90 (75) | 41 (32) |
| 23 to $<27.5$ | 88 (76) | 40 (33) |
| $>=27.5$ | 80 (74) | 36 (32) |
| Registration for previous NSC season |  |  |
| No | 71 (70) | 34 (32) |
| Yes | 117 (75) | 50 (31) |
| NSC3 registration time |  |  |
| Before "Sure-Win" period | 118 (80) | 48 (32) |
| Within 30 days since "Sure-Win" period began | 76 (67) | 35 (31) |
| Over 30 days after "Sure-Win" period began | 44 (47) | 29 (30) |
| Wearables |  |  |
| HPB-issued | 81 (71) | 36 (31) |
| Phone-based | 73 (77) | 34 (34) |
| Commercial | 102 (76) | 46 (32) |
| More than one wearable type | 110 (73) | 49 (31) |

Data in mean (SD). NSC: National Steps Challenge; NSC3: NSC Season Three; HPB: Health Promotion Board, Singapore.

Table S4: Mean daily step count by participant characteristics and NSC3 phase ( $\mathbf{N}=\mathbf{4 2 1 , 3 8 8}$ ).

| Characteristics | Baseline monitoring phase | Main challenge phase | Maintenance phase |
| :---: | :---: | :---: | :---: |
| Total | 6707 (4020) | 8580 (4181) | 8792 (4424) |
| Nationality |  |  |  |
| Singapore citizen | 6762 (4138) | 8647 (4273) | 8897 (4438) |
| Noncitizen | 6641 (3872) | 8436 (3974) | 8549 (4381) |
| Sex |  |  |  |
| Female | 6388 (3847) | 8349 (4033) | 8475 (4227) |
| Male | 7182 (4219) | 8908 (4362) | 9271 (4664) |
| Age, y |  |  |  |
| 17-39 | 6594 (3651) | 8149 (3797) | 8405 (4124) |
| 40-59 | 6797 (4180) | 8854 (4341) | 8949 (4538) |
| 60-79 | 6884 (4875) | 9435 (4877) | 9585 (4831) |
| 80+ | 6785 (5014) | 9552 (4941) | 9194 (5297) |
| Body mass index, $\mathbf{~ k g} / \mathbf{m}^{\mathbf{2}}$ |  |  |  |
| <18.5 | 6245 (3949) | 8285 (4137) | 8372 (4334) |
| 18.5 to $<23$ | 6754 (4030) | 8708 (4153) | 8831 (4420) |
| 23 to $<27.5$ | 6826 (4051) | 8685 (4231) | 8932 (4472) |
| $>=27.5$ | 6505 (3928) | 8139 (4127) | 8529 (4335) |
| Registration <br> NSC season for previous |  |  |  |
| No | 5899 (3951) | 7987 (4189) | 8657 (4503) |
| Yes | 7743 (3867) | 9580 (3972) | 8980 (4305) |
| NSC3 registration time |  |  |  |
| Before "Sure-Win" period | 7061 (4157) | 9530 (4082) | 9087 (4522) |
| Within 30 days since "SureWin" period began | 6228 (3730) | 8115 (4108) | 8675 (4464) |
| Over 30 days after "SureWin" period began | 5743 (3533) | 7474 (4117) | 8278 (4020) |
| Wearables |  |  |  |
| HPB-issued | 7121 (5016) | 9007 (4620) | 9229 (5125) |
| Phone-based | 6415 (3446) | 7262 (3570) | 7788 (3224) |
| Commercial | 9157 (3523) | 9969 (3482) | 10085 (3810) |

Data in mean (SD). Comparison of mean daily step count for each NSC3 phases by participant characteristics using one-way ANOVA: all p-values < 0.001 . NSC: National Steps Challenge; NSC3: NSC Season Three; HPB: Health Promotion Board, Singapore.

Table S5: Changes in mean daily step count from the baseline monitoring phase to the main challenge phase and maintenance phase using complete-case analysis ( $\mathrm{N}=\mathbf{9 6 , 2 4 8 \text { ). }}$

| Characteristics | Main challenge phase | Maintenance phase |
| :---: | :---: | :---: |
| Total | 1792 (1771 to 1813) | 1065 (1041 to 1090) |
| Nationality |  |  |
| Singapore citizen | 2054 (2026 to 2083) | 1184 (1152 to 1216) |
| Noncitizen | 1396 (1365 to 1427) | 886 (850 to 923) |
| Sex |  |  |
| Female | 1851 (1825 to 1877) | 1113 (1084 to 1143) |
| Male | 1697 (1661 to 1732) | 988 (946 to 1030) |
| Age, y |  |  |
| 17-39 | 1449 (1419 to 1478) | 939 (904 to 973) |
| 40-59 | 1977 (1944 to 2009) | 1146 (1109 to 1183) |
| 60-79 | 2305 (2237 to 2374) | 1200 (1124 to 1277) |
| 80+ | 2484 (2091 to 2877) | 1457 (1034 to 1880) |
| Body mass index, $\mathbf{~ k g} / \mathbf{m}^{\mathbf{2}}$ |  |  |
| < 18.5 | 1843 (1750 to 1936) | 1107 (1004 to 1209) |
| 18.5 to $<23$ | 1830 (1797 to 1862) | 1100 (1063 to 1137) |
| 23 to $<27.5$ | 1794 (1759 to 1829) | 1046 (1005 to 1086) |
| $>=27.5$ | 1661 (1610 to 1713) | 999 (938 to 1060) |
| Registration for previous NSC season |  |  |
| No | 2046 (2010 to 2081) | 1521 (1480 to 1562) |
| Yes | 1607 (1582 to 1633) | 734 (705 to 763) |
| NSC3 registration time |  |  |
| Before "Sure-Win" period | 1820 (1795 to 1844) | 972 (944 to 1001) |
| Within 30 days since "Sure-Win" period began | 1707 (1660 to 1753) | 1268 (1214 to 1322) |
| Over 30 days after "Sure-Win" period began | 1751 (1668 to 1834) | 1426 (1339 to 1514) |
| Wearables |  |  |
| HPB-issued | 2059 (2002 to 2116) | 801 (736 to 866) |
| Phone-based | 865 (841 to 888) | 385 (358 to 412) |
| Commercial | 1124 (1077 to 1171) | 606 (548 to 664) |
| More than one wearable | 2595 (2557 to 2633) | 1891 (1847 to 1936) |
| Quartiles of engagement duration (days) |  |  |
| <15 | 247 (-140 to 634) | 502 (-41 to 1045) |
| 15-74 | 864 (798 to 931) | 711 (634 to 787) |
| 75-149 | 1531 (1488 to 1575) | 1026 (975 to 1076) |
| 150-258 | 2003 (1977 to 2029) | 1124 (1095 to 1154) |

Data are model estimates of changes in mean daily step count ( $95 \%$ CI). Complete-case analysis only include participants with reliable mean daily step count for all NSC3 phases. A phase-specific reliable mean daily step count requires at least four days of daily step counts in the corresponding NSC3 phase. Linear mixed effect models with participant-specific intercepts and unstructured withinparticipant correlation matrix were used. The models adjusted for nationality, sex, age, BMI, registration for previous NSC season, NSC3 registration time, wearable used, and numeric duration of engagement where applicable. For each participant subgroup, a separate model was fitted using data from the corresponding subgroup to estimate the changes. All model estimates had p-value $<0.001$. NSC: National Steps Challenge; NSC3: NSC Season Three; HPB: Health Promotion Board, Singapore.

Table S6: Changes in mean daily step count from the baseline monitoring phase, using thresholds of 1-30 days for phase-specific mean daily step count ( $\mathbf{N}=\mathbf{4 2 1 , 3 8 8}$ ).

| Threshold (days) | Non-complete-case analysis |  | Complete-case analysis |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Main challenge phase | Maintenance phase | Main challenge phase | Maintenance phase |
| 1 | 1985 (1969 to 2002) | 1281 (1261 to 1300) | 2346 (2322 to 2369) | 1522 (1496 to 1548) |
| 2 | 1705 (1690 to 1720) | 1032 (1013 to 1050) | 1948 (1926 to 1969) | 1179 (1155 to 1203) |
| 3 | 1615 (1600 to 1630) | 960 (942 to 978) | 1841 (1820 to 1862) | 1099 (1075 to 1123) |
| 4 | 1579 (1564 to 1594) | 934 (916 to 952) | 1792 (1771 to 1813) | 1065 (1041 to 1090) |
| 5 | 1560 (1546 to 1575) | 923 (905 to 941) | 1761 (1740 to 1782) | 1044 (1019 to 1068) |
| 6 | 1550 (1536 to 1565) | 921 (903 to 939) | 1735 (1714 to 1756) | 1029 (1005 to 1054) |
| 7 | 1543 (1528 to 1558) | 923 (904 to 941) | 1715 (1694 to 1737) | 1021 (997 to 1046) |
| 8 | 1590 (1574 to 1606) | 970 (951 to 989) | 1689 (1666 to 1711) | 955 (929 to 982) |
| 9 | 1563 (1546 to 1579) | 944 (924 to 964) | 1650 (1627 to 1673) | 904 (877 to 931) |
| 10 | 1549 (1533 to 1566) | 935 (915 to 954) | 1630 (1606 to 1653) | 886 (859 to 913) |
| 11 | 1543 (1526 to 1559) | 933 (913 to 953) | 1617 (1593 to 1640) | 873 (846 to 901) |
| 12 | 1537 (1520 to 1554) | 930 (910 to 951) | 1610 (1586 to 1634) | 868 (840 to 896) |
| 13 | 1529 (1511 to 1546) | 923 (902 to 943) | 1596 (1572 to 1620) | 851 (823 to 880) |
| 14 | 1524 (1506 to 1541) | 922 (901 to 942) | 1586 (1561 to 1610) | 842 (814 to 870) |
| 15 | 1517 (1500 to 1535) | 919 (899 to 940) | 1578 (1553 to 1603) | 835 (806 to 863) |
| 16 | 1513 (1495 to 1531) | 919 (898 to 940) | 1576 (1550 to 1601) | 829 (799 to 858) |
| 17 | 1506 (1487 to 1524) | 912 (891 to 933) | 1566 (1541 to 1592) | 814 (784 to 843) |
| 18 | 1503 (1485 to 1522) | 913 (891 to 934) | 1562 (1536 to 1588) | 808 (778 to 838) |
| 19 | 1503 (1484 to 1522) | 914 (892 to 936) | 1562 (1536 to 1588) | 802 (772 to 832) |
| 20 | 1498 (1479 to 1517) | 912 (890 to 935) | 1556 (1530 to 1583) | 796 (765 to 827) |
| 21 | 1494 (1474 to 1513) | 914 (891 to 936) | 1549 (1522 to 1576) | 792 (761 to 824) |
| 22 | 1489 (1470 to 1509) | 913 (890 to 935) | 1547 (1520 to 1574) | 791 (759 to 822) |
| 23 | 1487 (1467 to 1507) | 913 (890 to 936) | 1543 (1515 to 1571) | 791 (758 to 823) |
| 24 | 1487 (1466 to 1507) | 917 (893 to 940) | 1540 (1512 to 1568) | 787 (754 to 820) |
| 25 | 1486 (1465 to 1506) | 919 (895 to 942) | 1541 (1513 to 1570) | 788 (755 to 821) |
| 26 | 1483 (1462 to 1504) | 920 (896 to 943) | 1537 (1508 to 1566) | 785 (751 to 818) |
| 27 | 1482 (1461 to 1503) | 922 (898 to 946) | 1537 (1508 to 1567) | 788 (754 to 822) |
| 28 | 1478 (1457 to 1499) | 915 (891 to 940) | 1534 (1504 to 1564) | 781 (747 to 816) |
| 29 | 1480 (1458 to 1501) | 914 (889 to 939) | 1530 (1500 to 1560) | 776 (742 to 811) |
| 30 | 1479 (1457 to 1500) | 911 (886 to 936) | 1530 (1500 to 1561) | 779 (743 to 814) |

Data are model estimates of changes in mean daily step count $(95 \% \mathrm{CI})$. For thresholds of four days or above, the phase-specific mean daily step count was reliable with intraclass correlation coefficient more than $80 \%$. Complete-case analysis only included participants with mean daily step count for all NSC3 phases. Linear mixed effect models with participant-specific intercepts and unstructured within-participant correlation matrix were used. The models adjusted for nationality, sex, age, BMI, registration for previous NSC season, NSC3 registration time, wearable used, and numeric duration of engagement. All model estimates had p-value $<0.001$. NSC: National Steps Challenge; NSC3: NSC Season Three.

Table S7: Changes in mean daily step count from the baseline monitoring phase to the main challenge phase and maintenance phase, only including records of daily steps at least 1500 steps ( $\mathrm{N}=\mathbf{3 7 8 , 5 5 0}$ ).

| Characteristics | Main challenge phase | Maintenance phase |
| :---: | :---: | :---: |
| Total | 1389 (1375 to 1403) | 827 (809 to 844) |
| Nationality |  |  |
| Singapore citizen | 1654 (1635 to 1673) | 1023 (1001 to 1046) |
| Noncitizen | 1060 (1039 to 1080) | 636 (608 to 663) |
| Sex |  |  |
| Female | 1460 (1442 to 1478) | 881 (860 to 903) |
| Male | 1278 (1254 to 1301) | 738 (709 to 767) |
| Age, y |  |  |
| 17-39 | 1128 (1109 to 1147) | 739 (714 to 763) |
| 40-59 | 1590 (1567 to 1613) | 933 (906 to 961) |
| 60-79 | 1841 (1793 to 1888) | 1004 (948 to 1060) |
| 80+ | 2014 (1778 to 2250) | 1010 (740 to 1281) |
| Body mass index, $\mathrm{kg} / \mathrm{m}^{2}$ |  |  |
| < 18.5 | 1430 (1408 to 1452) | 860 (834 to 887) |
| 18.5 to $<23$ | 1385 (1327 to 1444) | 801 (731 to 872) |
| 23 to $<27.5$ | 1393 (1369 to 1417) | 825 (795 to 854) |
| $>=27.5$ | 1270 (1236 to 1305) | 748 (704 to 791) |
| Registration for previous NSC season |  |  |
| No | 1427 (1407 to 1448) | 1016 (991 to 1041) |
| Yes | 1376 (1357 to 1395) | 624 (601 to 648) |
| NSC3 registration time |  |  |
| Before "Sure-Win" period | 1482 (1463 to 1500) | 752 (729 to 776) |
| Within 30 days since "Sure-Win" period began | 1251 (1224 to 1279) | 824 (791 to 856) |
| Over 30 days after "Sure-Win" period began | 1187 (1148 to 1226) | 857 (813 to 901) |
| Wearables |  |  |
| HPB-issued | 1507 (1473 to 1540) | 703 (662 to 743) |
| Phone-based | 668 (652 to 685) | 293 (273 to 314) |
| Commercial | 862 (826 to 899) | 536 (491 to 582) |
| More than one wearable | 2121 (2095 to 2147) | 1573 (1540 to 1606) |
| Quartiles of engagement duration (days) |  |  |
| <15 | 445 (404 to 485) | 547 (461 to 633) |
| 15-74 | 826 (798 to 853) | 625 (588 to 663) |
| 75-149 | 1662 (1633 to 1691) | 1139 (1105 to 1174) |
| 150-258 | 1816 (1794 to 1839) | 1097 (1071 to 1124) |

Data are model estimates of changes in mean daily step count $(95 \% \mathrm{CI})$. A phase-specific reliable mean daily step count requires at least four days of daily step counts in the corresponding NSC3 phase. Linear mixed effect models with participant-specific intercepts and unstructured withinparticipant correlation matrix were used. The models adjusted for nationality, sex, age, BMI, registration for previous NSC season, NSC3 registration time, wearable used, and numeric duration of engagement where applicable. For each participant subgroup, a separate model was fitted using data from the corresponding subgroup to estimate the changes. All model estimates had p-value $<0.001$. NSC: National Steps Challenge; NSC3: NSC Season Three; HPB: Health Promotion Board, Singapore.

Table S8: NSC3 participant characteristics $(\mathbf{N}=\mathbf{5 3 9 , 2 9 6})$ stratified by data availability.

| Characteristics |  | Total (\%) | With at least 1 valid daily step record (\%) | With at least 4 daily step records (\%) |
| :---: | :---: | :---: | :---: | :---: |
| Total |  | 539,296 (100.0) | 421,388 (100.0) | 384,691 (100.0) |
| Nationality | Singapore citizen | 349,259 (64.8) | 278200 (66.0) | 254390 (66.1) |
|  | Noncitizen | 190,037 (35.2) | 143188 (34.0) | 130301 (33.9) |
| Sex | Female | 313,559 (58.1) | 246875 (58.6) | 226696 (58.9) |
|  | Male | 225,737 (41.9) | 174513 (41.4) | 157995 (41.1) |
| Age (years) | 17-39 | 270,241 (50.1) | 207745 (49.3) | 189285 (49.2) |
|  | 40-59 | 207,871 (38.5) | 164800 (39.1) | 151395 (39.4) |
|  | 60-79 | 58,490 (10.8) | 46689 (11.1) | 42053 (10.9) |
|  | 80+ | 2,694 (0.5) | 2154 (0.5) | 1958 (0.5) |
| Body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ | <18.5 | 35,298 (6.5) | 27221 (6.5) | 24714 (6.4) |
|  | 18.5 to $<23$ | 224,905 (41.7) | 177221 (42.1) | 163014 (42.4) |
|  | 23 to $<27.5$ | 188,251 (34.9) | 147653 (35.0) | 134690 (35.0) |
|  | $>=27.5$ | 90,842 (16.8) | 69293 (16.4) | 62273 (16.2) |
| Registration for previous NSC season | No | 363,423 (67.4) | 272442 (64.7) | 240282 (62.5) |
|  | Yes | 175,873 (32.6) | 148946 (35.3) | 144409 (37.5) |
| NSC3 registration time | Before 'SureWin' period | 196,832 (36.5) | 174207 (41.3) | 164373 (42.7) |
|  | Within 30 days since 'Sure-Win' period began | 215,571 (40.0) | 166471 (39.5) | 150809 (39.2) |
|  | Over 30 days after 'SureWin' period began | 126,893 (23.5) | 80710 (19.2) | 69509 (18.1) |
| Wearables | HPB-issued | 159,730 (29.6, 37.9**) | 159730 (37.9) | 140450 (36.5) |
|  | Phone-based | 129,402 (24.0, 30.7**:) | 129402 (30.7) | 114855 (29.9) |
|  | Commercial | 26,077 (4.8, 6.2**) | 26077 (6.2) | 24930 (6.5) |
|  | More than one wearable type | 106,179 (19.7, 25.2**) | 106179 (25.2) | 104456 (27.2) |
|  | Not applicable* | 117,908 (21.9) | - | - |

Data are in $\mathrm{N}(\%) .{ }^{*}$ No wearable information was available for participants who did not record any valid daily step record. ${ }^{* *}$ adjusted $\%$ computed using 421,388 as the denominator (the number of participants who provided at least one valid daily step count record). NSC: National Steps Challenge; NSC3: NSC Season Three; HPB: Health Promotion Board, Singapore.

Table S9: Number of participants who provided step count data on each day of the entire evaluation period according to NSC3 phases.

| Calendar date (The entire evaluation period: from 1 Aug 2017 to 10 Jun 2018) | Number of participants provided daily step count data on each calendar day, according to the NSC3 phases the participants are in. |  |  | Total number of participants provided daily step count data on each calendar date |
| :---: | :---: | :---: | :---: | :---: |
|  | Baseline monitoring phase | Main challenge phase | Maintenance phase |  |
| 1/8/17 | 24125 | 0 | 0 | 24125 |
| 2/8/17 | 26140 | 0 | 0 | 26140 |
| 3/8/17 | 28041 | 0 | 0 | 28041 |
| 4/8/17 | 29944 | 0 | 0 | 29944 |
| 5/8/17 | 30461 | 0 | 0 | 30461 |
| 6/8/17 | 31054 | 0 | 0 | 31054 |
| 7/8/17 | 32807 | 0 | 0 | 32807 |
| 8/8/17 | 34427 | 0 | 0 | 34427 |
| 9/8/17 | 34002 | 0 | 0 | 34002 |
| 10/8/17 | 36100 | 0 | 0 | 36100 |
| 11/8/17 | 38058 | 0 | 0 | 38058 |
| 12/8/17 | 38164 | 0 | 0 | 38164 |
| 13/8/17 | 38804 | 0 | 0 | 38804 |
| 14/8/17 | 40476 | 0 | 0 | 40476 |
| 15/8/17 | 40770 | 0 | 0 | 40770 |
| 16/8/17 | 41257 | 0 | 0 | 41257 |
| 17/8/17 | 41171 | 0 | 0 | 41171 |
| 18/8/17 | 40984 | 0 | 0 | 40984 |
| 19/8/17 | 39637 | 0 | 0 | 39637 |
| 20/8/17 | 39218 | 0 | 0 | 39218 |
| 21/8/17 | 40218 | 0 | 0 | 40218 |
| 22/8/17 | 40271 | 0 | 0 | 40271 |
| 23/8/17 | 40185 | 0 | 0 | 40185 |
| 24/8/17 | 40028 | 0 | 0 | 40028 |
| 25/8/17 | 40011 | 0 | 0 | 40011 |
| 26/8/17 | 39121 | 0 | 0 | 39121 |
| 27/8/17 | 38760 | 0 | 0 | 38760 |
| 28/8/17 | 39571 | 0 | 0 | 39571 |
| 29/8/17 | 39214 | 0 | 0 | 39214 |
| 30/8/17 | 38766 | 0 | 0 | 38766 |
| 31/8/17 | 38321 | 0 | 0 | 38321 |
| 1/9/17 | 37472 | 0 | 0 | 37472 |
| 2/9/17 | 37794 | 0 | 0 | 37794 |
| 3/9/17 | 37940 | 0 | 0 | 37940 |
| 4/9/17 | 39020 | 0 | 0 | 39020 |
| 5/9/17 | 39260 | 0 | 0 | 39260 |
| 6/9/17 | 39370 | 0 | 0 | 39370 |
| 7/9/17 | 39368 | 0 | 0 | 39368 |


| 8/9/17 | 39354 | 0 | 0 | 39354 |
| :---: | :---: | :---: | :---: | :---: |
| 9/9/17 | 38864 | 0 | 0 | 38864 |
| 10/9/17 | 38765 | 0 | 0 | 38765 |
| 11/9/17 | 39681 | 0 | 0 | 39681 |
| 12/9/17 | 40009 | 0 | 0 | 40009 |
| 13/9/17 | 39896 | 0 | 0 | 39896 |
| 14/9/17 | 39804 | 0 | 0 | 39804 |
| 15/9/17 | 39819 | 0 | 0 | 39819 |
| 16/9/17 | 39345 | 0 | 0 | 39345 |
| 17/9/17 | 38987 | 0 | 0 | 38987 |
| 18/9/17 | 39736 | 0 | 0 | 39736 |
| 19/9/17 | 39712 | 0 | 0 | 39712 |
| 20/9/17 | 39587 | 0 | 0 | 39587 |
| 21/9/17 | 41247 | 0 | 0 | 41247 |
| 22/9/17 | 42960 | 0 | 0 | 42960 |
| 23/9/17 | 43385 | 0 | 0 | 43385 |
| 24/9/17 | 44149 | 0 | 0 | 44149 |
| 25/9/17 | 46461 | 0 | 0 | 46461 |
| 26/9/17 | 47228 | 0 | 0 | 47228 |
| 27/9/17 | 48046 | 0 | 0 | 48046 |
| 28/9/17 | 49349 | 0 | 0 | 49349 |
| 29/9/17 | 50349 | 0 | 0 | 50349 |
| 30/9/17 | 51280 | 0 | 0 | 51280 |
| 1/10/17 | 52827 | 0 | 0 | 52827 |
| 2/10/17 | 54060 | 0 | 0 | 54060 |
| 3/10/17 | 54061 | 0 | 0 | 54061 |
| 4/10/17 | 54476 | 0 | 0 | 54476 |
| 5/10/17 | 55474 | 0 | 0 | 55474 |
| 6/10/17 | 57560 | 0 | 0 | 57560 |
| 7/10/17 | 59607 | 0 | 0 | 59607 |
| 8/10/17 | 61561 | 0 | 0 | 61561 |
| 9/10/17 | 63076 | 0 | 0 | 63076 |
| 10/10/17 | 63774 | 0 | 0 | 63774 |
| 11/10/17 | 65259 | 0 | 0 | 65259 |
| 12/10/17 | 66153 | 0 | 0 | 66153 |
| 13/10/17 | 68131 | 0 | 0 | 68131 |
| 14/10/17 | 69176 | 0 | 0 | 69176 |
| 15/10/17 | 70504 | 0 | 0 | 70504 |
| 16/10/17 | 73641 | 0 | 0 | 73641 |
| 17/10/17 | 74996 | 0 | 0 | 74996 |
| 18/10/17 | 73843 | 0 | 0 | 73843 |
| 19/10/17 | 77752 | 0 | 0 | 77752 |
| 20/10/17 | 81600 | 0 | 0 | 81600 |
| 21/10/17 | 86432 | 0 | 0 | 86432 |
| 22/10/17 | 90833 | 0 | 0 | 90833 |


| 23/10/17 | 95888 | 0 | 0 | 95888 |
| :---: | :---: | :---: | :---: | :---: |
| 24/10/17 | 99298 | 0 | 0 | 99298 |
| 25/10/17 | 102124 | 0 | 0 | 102124 |
| 26/10/17 | 105285 | 0 | 0 | 105285 |
| 27/10/17 | 112165 | 0 | 0 | 112165 |
| 28/10/17 | 16252 | 111771 | 0 | 128023 |
| 29/10/17 | 15028 | 119949 | 0 | 134977 |
| 30/10/17 | 14504 | 129458 | 0 | 143962 |
| 31/10/17 | 13728 | 135414 | 0 | 149142 |
| 1/11/17 | 12926 | 139904 | 0 | 152830 |
| 2/11/17 | 12312 | 143799 | 0 | 156111 |
| 3/11/17 | 11533 | 149212 | 0 | 160745 |
| 4/11/17 | 10431 | 151450 | 0 | 161881 |
| 5/11/17 | 9642 | 154486 | 0 | 164128 |
| 6/11/17 | 9525 | 159445 | 0 | 168970 |
| 7/11/17 | 9285 | 162556 | 0 | 171841 |
| 8/11/17 | 9023 | 164592 | 0 | 173615 |
| 9/11/17 | 8790 | 165759 | 0 | 174549 |
| 10/11/17 | 8391 | 167257 | 0 | 175648 |
| 11/11/17 | 8092 | 165626 | 0 | 173718 |
| 12/11/17 | 7768 | 166516 | 0 | 174284 |
| 13/11/17 | 7394 | 174642 | 0 | 182036 |
| 14/11/17 | 6867 | 177557 | 0 | 184424 |
| 15/11/17 | 6554 | 180770 | 0 | 187324 |
| 16/11/17 | 6008 | 182441 | 0 | 188449 |
| 17/11/17 | 5476 | 182990 | 0 | 188466 |
| 18/11/17 | 5271 | 179402 | 0 | 184673 |
| 19/11/17 | 5175 | 178342 | 0 | 183517 |
| 20/11/17 | 5111 | 185196 | 0 | 190307 |
| 21/11/17 | 5082 | 188401 | 0 | 193483 |
| 22/11/17 | 4698 | 190968 | 0 | 195666 |
| 23/11/17 | 4374 | 192078 | 0 | 196452 |
| 24/11/17 | 4113 | 192117 | 0 | 196230 |
| 25/11/17 | 3927 | 188104 | 0 | 192031 |
| 26/11/17 | 3709 | 185848 | 0 | 189557 |
| 27/11/17 | 3398 | 190535 | 0 | 193933 |
| 28/11/17 | 2946 | 190729 | 0 | 193675 |
| 29/11/17 | 2686 | 188817 | 0 | 191503 |
| 30/11/17 | 2522 | 187245 | 0 | 189767 |
| 1/12/17 | 2368 | 184271 | 0 | 186639 |
| 2/12/17 | 2263 | 181932 | 0 | 184195 |
| 3/12/17 | 2167 | 180305 | 0 | 182472 |
| 4/12/17 | 2165 | 185001 | 0 | 187166 |
| 5/12/17 | 2093 | 185374 | 0 | 187467 |
| 6/12/17 | 2037 | 185334 | 0 | 187371 |


| 7/12/17 | 1972 | 185130 | 0 | 187102 |
| :---: | :---: | :---: | :---: | :---: |
| 8/12/17 | 1956 | 185569 | 0 | 187525 |
| 9/12/17 | 1919 | 183222 | 0 | 185141 |
| 10/12/17 | 1952 | 181839 | 0 | 183791 |
| 11/12/17 | 1915 | 187391 | 0 | 189306 |
| 12/12/17 | 1874 | 188496 | 0 | 190370 |
| 13/12/17 | 1891 | 190164 | 0 | 192055 |
| 14/12/17 | 1876 | 190866 | 0 | 192742 |
| 15/12/17 | 1855 | 190063 | 0 | 191918 |
| 16/12/17 | 1789 | 186030 | 0 | 187819 |
| 17/12/17 | 1708 | 183599 | 0 | 185307 |
| 18/12/17 | 1676 | 185940 | 0 | 187616 |
| 19/12/17 | 1668 | 185180 | 0 | 186848 |
| 20/12/17 | 1610 | 184922 | 0 | 186532 |
| 21/12/17 | 1576 | 183715 | 0 | 185291 |
| 22/12/17 | 1629 | 183448 | 0 | 185077 |
| 23/12/17 | 1641 | 181160 | 0 | 182801 |
| 24/12/17 | 1604 | 178594 | 0 | 180198 |
| 25/12/17 | 1587 | 177264 | 0 | 178851 |
| 26/12/17 | 1620 | 184365 | 0 | 185985 |
| 27/12/17 | 1694 | 186646 | 0 | 188340 |
| 28/12/17 | 1809 | 187605 | 0 | 189414 |
| 29/12/17 | 1881 | 187997 | 0 | 189878 |
| 30/12/17 | 1863 | 184792 | 0 | 186655 |
| 31/12/17 | 1893 | 181322 | 0 | 183215 |
| 1/1/18 | 1998 | 181978 | 0 | 183976 |
| 2/1/18 | 2142 | 190391 | 0 | 192533 |
| 3/1/18 | 2077 | 191797 | 0 | 193874 |
| 4/1/18 | 2025 | 193688 | 0 | 195713 |
| 5/1/18 | 1935 | 194899 | 0 | 196834 |
| 6/1/18 | 1892 | 190416 | 0 | 192308 |
| 7/1/18 | 1876 | 187027 | 0 | 188903 |
| 8/1/18 | 1895 | 194105 | 0 | 196000 |
| 9/1/18 | 1793 | 197739 | 0 | 199532 |
| 10/1/18 | 1679 | 198443 | 0 | 200122 |
| 11/1/18 | 1626 | 197706 | 0 | 199332 |
| 12/1/18 | 1573 | 196597 | 0 | 198170 |
| 13/1/18 | 1559 | 191646 | 0 | 193205 |
| 14/1/18 | 1584 | 190554 | 0 | 192138 |
| 15/1/18 | 1535 | 201515 | 0 | 203050 |
| 16/1/18 | 1517 | 203015 | 0 | 204532 |
| 17/1/18 | 1559 | 202742 | 0 | 204301 |
| 18/1/18 | 1518 | 204579 | 0 | 206097 |
| 19/1/18 | 1468 | 204124 | 0 | 205592 |
| 20/1/18 | 1429 | 199126 | 0 | 200555 |


| 21/1/18 | 1379 | 196682 | 0 | 198061 |
| :---: | :---: | :---: | :---: | :---: |
| 22/1/18 | 1363 | 204091 | 0 | 205454 |
| 23/1/18 | 1324 | 204499 | 0 | 205823 |
| 24/1/18 | 1262 | 204494 | 0 | 205756 |
| 25/1/18 | 1284 | 203645 | 0 | 204929 |
| 26/1/18 | 1267 | 201592 | 0 | 202859 |
| 27/1/18 | 1258 | 197201 | 0 | 198459 |
| 28/1/18 | 1250 | 195119 | 0 | 196369 |
| 29/1/18 | 1200 | 202208 | 0 | 203408 |
| 30/1/18 | 1201 | 202281 | 0 | 203482 |
| 31/1/18 | 1163 | 201929 | 0 | 203092 |
| 1/2/18 | 1147 | 201522 | 0 | 202669 |
| 2/2/18 | 1138 | 199661 | 0 | 200799 |
| 3/2/18 | 1109 | 194821 | 0 | 195930 |
| 4/2/18 | 1059 | 192066 | 0 | 193125 |
| 5/2/18 | 1097 | 196707 | 0 | 197804 |
| 6/2/18 | 1047 | 197390 | 0 | 198437 |
| 7/2/18 | 1017 | 195464 | 0 | 196481 |
| 8/2/18 | 951 | 193583 | 0 | 194534 |
| 9/2/18 | 904 | 190201 | 0 | 191105 |
| 10/2/18 | 870 | 184138 | 0 | 185008 |
| 11/2/18 | 813 | 180077 | 0 | 180890 |
| 12/2/18 | 800 | 183470 | 0 | 184270 |
| 13/2/18 | 825 | 181326 | 0 | 182151 |
| 14/2/18 | 866 | 181802 | 0 | 182668 |
| 15/2/18 | 913 | 178498 | 0 | 179411 |
| 16/2/18 | 879 | 169745 | 0 | 170624 |
| 17/2/18 | 918 | 171466 | 0 | 172384 |
| 18/2/18 | 957 | 174501 | 0 | 175458 |
| 19/2/18 | 969 | 183189 | 0 | 184158 |
| 20/2/18 | 954 | 187831 | 0 | 188785 |
| 21/2/18 | 954 | 188464 | 0 | 189418 |
| 22/2/18 | 918 | 187052 | 0 | 187970 |
| 23/2/18 | 903 | 186522 | 0 | 187425 |
| 24/2/18 | 863 | 182418 | 0 | 183281 |
| 25/2/18 | 834 | 180046 | 0 | 180880 |
| 26/2/18 | 799 | 186979 | 0 | 187778 |
| 27/2/18 | 715 | 186349 | 0 | 187064 |
| 28/2/18 | 644 | 188303 | 0 | 188947 |
| 1/3/18 | 635 | 187920 | 0 | 188555 |
| 2/3/18 | 620 | 186514 | 0 | 187134 |
| 3/3/18 | 614 | 180919 | 0 | 181533 |
| 4/3/18 | 609 | 178403 | 0 | 179012 |
| 5/3/18 | 606 | 184999 | 0 | 185605 |
| 6/3/18 | 599 | 184346 | 0 | 184945 |


| 7/3/18 | 611 | 183257 | 0 | 183868 |
| :---: | :---: | :---: | :---: | :---: |
| 8/3/18 | 581 | 180211 | 0 | 180792 |
| 9/3/18 | 568 | 178415 | 0 | 178983 |
| 10/3/18 | 554 | 172842 | 0 | 173396 |
| 11/3/18 | 533 | 169857 | 0 | 170390 |
| 12/3/18 | 545 | 173396 | 0 | 173941 |
| 13/3/18 | 499 | 172849 | 0 | 173348 |
| 14/3/18 | 495 | 171324 | 0 | 171819 |
| 15/3/18 | 513 | 169927 | 0 | 170440 |
| 16/3/18 | 522 | 169329 | 0 | 169851 |
| 17/3/18 | 523 | 165701 | 0 | 166224 |
| 18/3/18 | 527 | 163887 | 0 | 164414 |
| 19/3/18 | 520 | 169455 | 0 | 169975 |
| 20/3/18 | 513 | 169093 | 0 | 169606 |
| 21/3/18 | 505 | 169413 | 0 | 169918 |
| 22/3/18 | 460 | 168405 | 0 | 168865 |
| 23/3/18 | 437 | 167136 | 0 | 167573 |
| 24/3/18 | 429 | 162182 | 0 | 162611 |
| 25/3/18 | 401 | 158622 | 0 | 159023 |
| 26/3/18 | 382 | 163570 | 0 | 163952 |
| 27/3/18 | 364 | 162843 | 0 | 163207 |
| 28/3/18 | 349 | 161925 | 0 | 162274 |
| 29/3/18 | 340 | 159570 | 0 | 159910 |
| 30/3/18 | 326 | 153148 | 0 | 153474 |
| 31/3/18 | 313 | 151738 | 0 | 152051 |
| 1/4/18 | 317 | 0 | 148164 | 148481 |
| 2/4/18 | 324 | 0 | 152854 | 153178 |
| 3/4/18 | 318 | 0 | 152304 | 152622 |
| 4/4/18 | 306 | 0 | 151298 | 151604 |
| 5/4/18 | 297 | 0 | 148986 | 149283 |
| 6/4/18 | 289 | 0 | 146696 | 146985 |
| 7/4/18 | 287 | 0 | 140486 | 140773 |
| 8/4/18 | 262 | 0 | 137576 | 137838 |
| 9/4/18 | 248 | 0 | 140898 | 141146 |
| 10/4/18 | 234 | 0 | 141441 | 141675 |
| 11/4/18 | 209 | 0 | 139556 | 139765 |
| 12/4/18 | 188 | 0 | 136691 | 136879 |
| 13/4/18 | 179 | 0 | 134113 | 134292 |
| 14/4/18 | 140 | 0 | 127506 | 127646 |
| 15/4/18 | 115 | 0 | 122523 | 122638 |
| 16/4/18 | 107 | 0 | 124712 | 124819 |
| 17/4/18 | 90 | 0 | 120622 | 120712 |
| 18/4/18 | 81 | 0 | 114857 | 114938 |
| 19/4/18 | 100 | 0 | 114453 | 114553 |
| 20/4/18 | 104 | 0 | 114432 | 114536 |


| 21/4/18 | 122 | 0 | 111759 | 111881 |
| :---: | :---: | :---: | :---: | :---: |
| 22/4/18 | 134 | 0 | 111647 | 111781 |
| 23/4/18 | 123 | 0 | 121161 | 121284 |
| 24/4/18 | 112 | 0 | 125428 | 125540 |
| 25/4/18 | 101 | 0 | 126022 | 126123 |
| 26/4/18 | 73 | 0 | 125417 | 125490 |
| 27/4/18 | 60 | 0 | 124326 | 124386 |
| 28/4/18 | 22 | 0 | 120626 | 120648 |
| 29/4/18 | 0 | 0 | 118392 | 118392 |
| 30/4/18 | 0 | 0 | 120270 | 120270 |
| 1/5/18 | 0 | 0 | 105177 | 105177 |
| 2/5/18 | 0 | 0 | 103335 | 103335 |
| 3/5/18 | 0 | 0 | 100438 | 100438 |
| 4/5/18 | 0 | 0 | 98841 | 98841 |
| 5/5/18 | 0 | 0 | 94668 | 94668 |
| 6/5/18 | 0 | 0 | 91787 | 91787 |
| 7/5/18 | 0 | 0 | 94239 | 94239 |
| 8/5/18 | 0 | 0 | 94215 | 94215 |
| 9/5/18 | 0 | 0 | 93238 | 93238 |
| 10/5/18 | 0 | 0 | 92186 | 92186 |
| 11/5/18 | 0 | 0 | 91129 | 91129 |
| 12/5/18 | 0 | 0 | 87282 | 87282 |
| 13/5/18 | 0 | 0 | 85283 | 85283 |
| 14/5/18 | 0 | 0 | 88640 | 88640 |
| 15/5/18 | 0 | 0 | 87809 | 87809 |
| 16/5/18 | 0 | 0 | 85660 | 85660 |
| 17/5/18 | 0 | 0 | 85585 | 85585 |
| 18/5/18 | 0 | 0 | 84866 | 84866 |
| 19/5/18 | 0 | 0 | 81945 | 81945 |
| 20/5/18 | 0 | 0 | 79941 | 79941 |
| 21/5/18 | 0 | 0 | 82230 | 82230 |
| 22/5/18 | 0 | 0 | 82039 | 82039 |
| 23/5/18 | 0 | 0 | 82410 | 82410 |
| 24/5/18 | 0 | 0 | 82602 | 82602 |
| 25/5/18 | 0 | 0 | 82456 | 82456 |
| 26/5/18 | 0 | 0 | 83646 | 83646 |
| 27/5/18 | 0 | 0 | 84682 | 84682 |
| 28/5/18 | 0 | 0 | 88115 | 88115 |
| 29/5/18 | 0 | 0 | 85417 | 85417 |
| 30/5/18 | 0 | 0 | 87521 | 87521 |
| 31/5/18 | 0 | 0 | 85580 | 85580 |
| 1/6/18 | 0 | 0 | 83105 | 83105 |
| 2/6/18 | 0 | 0 | 76574 | 76574 |
| 3/6/18 | 0 | 0 | 70950 | 70950 |
| 4/6/18 | 0 | 0 | 68418 | 68418 |


| $5 / 6 / 18$ | 0 | 0 | 62439 | 62439 |
| :--- | :--- | :--- | :--- | :--- |
| $6 / 6 / 18$ | 0 | 0 | 56907 | 56907 |
| $7 / 6 / 18$ | 0 | 0 | 50913 | 50913 |
| $8 / 6 / 18$ | 0 | 0 | 42901 | 42901 |
| $9 / 6 / 18$ | 0 | 0 | 29773 | 29773 |
| $10 / 6 / 18$ | 0 | 0 | 8074 | 8074 |


[^0]:    Correspondence to: Falk Müller-Riemenschneider, MBBS, MSc, MD, Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building (Block MD1), 12 Science Drive 2, \#09-01v, Singapore 117549. Email: ephmf@nus.edu.sg
    *C. S. Tan and F. Müller-Riemenschneider are co-last authors.
    Supplemental Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.121.022508
    For Sources of Funding and Disclosures, see page 12.
    © 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

    JAHA is available at: www.ahajournals.org/journal/jaha

