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A B S T R A C T   

Background: Liver hepatocellular carcinoma (LIHC) is a solid primary malignancy with poor 
prognosis. This study discovered key prognostic genes based on T cell exhaustion and used them 
to develop a prognostic prediction model for LIHC. 
Methods: SingleR’s annotations combined with Seurat was used to automatically annotate the 
single-cell clustering results of the LIHC dataset GSE166635 downloaded from the Gene 
Expression Omnibus (GEO) database and to identify clusters related to exhausted T cells. Patients 
were classified using ConsensusClusterPlus package. Next, weighted gene co-expression network 
analysis (WGCNA) package was employed to distinguish key gene module, based on which least 
absolute shrinkage and selection operator (Lasso) and multi/univariate cox analysis were per-
formed to construct a RiskScore system. Kaplan-Meier (KM) analysis and receiver operating 
characteristic curve (ROC) were employed to evaluate the efficacy of the model. To further 
optimize the risk model, a nomogram capable of predicting immune infiltration and immuno-
therapy sensitivity in different risk groups was developed. Expressions of genes were measured by 
quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence and Cell 
Counting Kit-8 (CCK-8) were performed for analyzing cell functions. 
Results: We obtained 18,413 cells and clustered them into 7 immune and non-immune cell sub-
populations. Based on highly variable genes among T cell exhaustion clusters, 3 molecular sub-
types (C1, C2 and C3) of LIHC were defined, with C3 subtype showing the highest score of 
exhausted T cells and a poor prognosis. The Lasso and multivariate cox analysis selected 7 risk 
genes from the green module, which were closely associated with the C3 subtype. All the patients 
were divided into low- and high-risk groups based on the medium value of RiskScore, and we 
found that high-risk patients had higher immune infiltration and immune escape and poorer 
prognosis. The nomogram exhibited a strong performance for predicting long-term LIHC prog-
nosis. In vitro experiments revealed that the 7 risk genes all had a higher expression in HCC cells, 
and that both liver HCC cell numbers and cell viability were reduced by knocking down MMP-9. 
Conclusion: We developed a RiskScore model for predicting LIHC prognosis based on the scRNA- 
seq and RNA-seq data. The RiskScore as an independent prognostic factor could improve the 
clinical treatment for LIHC patients.  
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1. Introduction 

LIHC is a solid primary malignancy with high morbidity and aggressiveness [1] and accounts for 75–85% of all liver cancer cases 
[2]. According to the reports of World Health Organization (WHO), the morbidity and mortality of LIHC rank the sixth and third 
highest among all cancers worldwide, respectively [3,4]. There were 41,210 new cases and 29,380 deaths in 2023 [5] and 42,810 new 
cases and 30,160 deaths in 2020 [6], showing an increasing trend of morbidity and mortality. LIHC usually has an insidious onset and 
rapid progression [7,8], but the invasive and metastatic nature of the cancer is the primary cause of death to LIHC patients [9]. Even for 
patients who have received surgery resection at early stage, more than half of LIHC patients will recur within 2 years after diagnosis 
[10], with 5-year overall survival lower than 20% [5,11]. Viral hepatitis, liver cirrhosis, alcohol addiction, fatty liver and metabolic 
syndrome all contribute to the development of LIHC [12]. Current treatment options for LIHC patients include liver transplantation, 
radioembolization, hepatectomy and targeted therapy [13,14]. Drugs that contain immune checkpoint inhibitors and tyrosine kinase 
inhibitors [15] are proven to be effective in treating LIHC [15]. Thus, identifying novel biomarkers and developing a reliable prog-
nostic model are crucial to further improve the current LIHC treatment. 

The main components of tumor, stromal and immune cells in tumor microenvironment (TME) [16] interact with immune cells to 
inhibit tumor progression and serve as effective therapeutic targets [17]. It has been believed that the malignant potential of tumors is 
dominated by the aberrant expression of oncogenes and tumor suppressor genes [18]. However, the dynamic crosstalk between cancer 
cells and immune cells in TME [16] means that cancer progression is also associated with T cell exhaustion [19], which is a hypo-
functional state of naïve CD8+T cells to gradually lose effector function and self-renewal capacity [19]. Major histocompatibility 
complex (MHC) class II (MHC II) persistently stimulates T cell receptor (TCR) in the chronic exposure of tumor antigen and then 
activates intracellular transcription factor NFAT [20] to upregulate exhaustion markers or co-inhibitory receptors including TIGIT, 
PD-1, LAG3, CD39, and CTLA4 [21], thereby inhibiting the production of inflammatory cytokines such as IFNγ, TNF, CTL, and IL-2 
[22] as well as the effector function of T cells [19]. Additionally, the quantity of exhausted T cells is also dependent on other fac-
tors such as immune contexture, antigenic load and tissue oxygen concentration. Tumor-reactive CD8 + T cells undergo 
precursor-exhausted T cells to exhaust T cells (TEX), which will ultimately die after overstimulation [23]. T cell exhaustion is related 
with poor prognosis in certain types of cancers, such as head and neck cell carcinoma [24], angioimmunoblastic cancer [25] and 
advanced LIHC [26]. Moreover, T cell exhaustion is also regarded as one of the major indicators of immune dysfunction. Studies have 
found that blocking the expression of surface co-inhibitory receptors of exhausted CD8+ T cells such as PD-1 or CTLA4 can promote the 
activation of T cells [22]. T cell exhaustion is commonly regarded as a sign of immunotherapies resistance [27]. Therefore, T cell 
exhaustion can serve as an immunophenotype to help assess immunotherapy effect and patients’ prognosis. 

With the advance of next-generation sequencing (NGS) technologies, publicly available multi-omics datasets have emerged to 
facilitate the study of tumor heterogeneity, immunophenotype signature and tumor-TME interactions at molecular level. Bulk RNA- 
sequencing represents the average expression pattern of a great number of cells [28], while single-cell RNA sequencing (scRNA--
seq) can provide subtle feature information of a single tumor or immune cell [29–31]. In this study, the scRNA-seq and bulk RNA-seq 
data of LIHC samples were integrated to develop a T cell exhaustion-related molecular signature and a reliable prognostic risk model 
for LIHC. ScRNA-seq data were filtrated, normalized and clustered to identify exhausted T cell clusters. Then highly variable genes 
from these cells were used for consistent clustering, genes with higher exhausted T cells score were further used to identify key gene 
modules. Univariate, Lasso and multivariate cox analysis were performed to distinguish key prognostic genes for constructing a 
RiskScore model. ROC analysis confirmed an accurate classification and long-term predictive performance of the RiskScore. 

2. Material and methods 

2.1. Data acquisition 

The RNA sequencing data of LIHC samples and relevant clinical follow-up information were collected from the Cancer Genome 
Atlas Database (TCGA-LIHC) [32]. The datasets ICGC-LIRI-JP and GSE14520 were downloaded from the Hepatocellular Carcinoma 
Cell DataBase (HCCDB, http://lifeome.net/database/hccdb/home.html) [33] and GEO database [34], respectively. 

2.2. Data preprocessing 

Patients without survival status or time in the TCGA-LIHC and ICGC-LIRI-JP datasets were excluded. Ensembl_id was transformed 
into Genesymbol, and TPM data in the expression matrix of TCGA-LIHC were converted to log2 format. A total of 365 and 203 LIHC 
samples from the TCGA-LIHC and ICGC-LIRI-JP datasets were obtained, respectively. In addition, we downloaded the annotation 
information of GSE14520 and matched the probe label to gene symbol [35]. When one gene matched to multiple gene IDs, its 
expression value was shown by the mean value. 

2.3. Single-cell RNA-seq profile of LIHC 

The single-cell RNA-seq dataset GSE166635 containing 2 LIHC samples was downloaded from the GEO database [26]. The filtering 
settings were as follows: 1) Each gene was expressed in at least three cells, with each cell expressing a minimum of 200 genes; 2) The 
cells with mitochondrial content< 15% and expressed 200 to 8000 genes were kept [26]. Subsequently, the expression data of 18,413 
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cells were normalized to select hyper-variable genes via the FindVariableFeatures function in the Seurat R package [36], and the 
ScaleData function was used to scale gene expression matrix [36]. Principal Component Analysis (PCA) was conducted to detect the 
anchor point (setting dim = 20), and batch effect was removed by the harmony R package [37]. Then, the RunUMAP function was used 
for dimensionality reduction (dims = 1:20), followed by cell clustering (resolution = 0.01) using the FindNeighbors and FindClusters 
functions [36]. The SingleR package was applied to cluster immune cellclusters [38], from which exhausted T cells were identified by 
FindClusters function (resolution = 0.4). Finally, the FindAllMarkers function was used to screen specifically high-expressed genes 
from exhausted T cells (setting logfc.threshold = 0.5 and min.pct = 0.25). 

2.4. Consistent clustering and immune-infiltration analysis 

The key prognostic genes from high-expressed genes in exhausted T cells were selected by performing univariate cox regression 
analysis [39]. ConsensusClusterPlus R package was used to develop consistency matrix and classify samples in TCGA-LIHC cohort 
based on these key prognostic genes [40] under clusterAlg = “km”, stance = “euclidean”, and sampling was repeated for 500 times 
with each time running 80% of all the samples. The GSVA package was used to calculate the exhausted T cell score, and differences in 
immune infiltration among the molecular subtypes were analyzed using the ESTIAMTE and MCP-Counter [41]. Pathway activation 
was analyzed using the h.all.v7.5.1.entrez.gmt gene set by the GSEA in the GSEA R package [39]. 

2.5. WGCNA analysis 

WGCNA was performed to determine gene modules related to the molecular subtypes [42]. Gene modules containing at least 50 
genes (minModuleSize = 50) were selected by performing hierarchical clustering. Next, we analyzed the relationship between the 
modules and subtypes and determined the gene module related to T cell exhaustion. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) analysis were performed using the clusterProfiler R package to investigate gene function in each 
relevant module [43]. 

2.6. Development of a risk model related to T cell exhaustion and validation analysis 

The survival R package was used to perform univariate cox proportional hazard regression on T cell exhaustion-related genes 
(filtered under the threshold of p < 0.05). Then Lasso and multivariate stepwise cox regression analysis was used to reduce the number 
of candidate signature genes and calculate the regression coefficient [42]. The risk formula was as follow: RiskScore =
Σ(regression coefficient) ∗ (expression of gene) [32]. We calculated the RiskScore of patients and classified the patients based on the 
median value, and then prognostic classification was examined by ROC analysis [44]. Tumor Immune Dysfunction and Exclusion 
(TIDE) score is an indicator of blocking therapy using immune checkpoints (anti-PD-1/anti-CTLA-4) [42]. In addition, the Immune cell 
Proportion Score (IPS) was applied to evaluate the patients’ potential benefit from taking immunotherapy [45]. According to patients’ 
responses to the anti-PD-L1 receptor blockers, the IMvigor210 dataset was included to explore immunotherapy benefit in terms of 
complete response (CR), stable disease (SD), partial response (PR), and progressive disease (PD) [46]. 

2.7. Cell culture and transfection 

Human hepatocytes (THLE-2) purchased from Cellcook Biotech Company (Guangzhou, China) were cultured in BEGM (Gibco, 
USA) supplemented with fetal bovine serum (Gibco, USA) and penicillin/streptomycin. HCC cells (HepaRG and SK-HEP-1) purchased 
from Typical Culture Reserve Center of China (Shanghai, China) were cultured in cultured in DMEM (Gibco, USA) containing 10% fetal 
bovine serum. Cell culture was performed under the conditions of 5% CO2 at 37 ◦C. Following the instructions of the manufacturer, 
MMP9 siRNA was transfected applying the Lipofectamine 2000 (Invitrogen, USA). The images of negative control siRNA-treated cells 
(si-NC) collected under a fluorescence microscope and qRT-PCR were used to verify the efficiency of transfection. The sequences of 
siRNA for MMP9 were as follows: si MMP9#1: 5′-ACCACAACATCACCTATTGGATC-3′, si MMP9#2: 5′-CACCTATTGGATCCAAAAC-
TACT-3’. 

Table 1 
The primers information of genes.  

Gene Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′) 

IL7R GAAGCAGGGACATAGAGCAAC TTCTAGCCAGGCATCTTAGGG 
PIP4K2A AAGAAGAAGCACTTCGTAGCG ATGGCTCAGTTCATTGATCGAG 
P2RY6 GTGAGGATTTCAAGCGACTGC TCCCCTCTGGCGTAGTTATAGA 
GZMH CAGCAGAGCCACTGAGATTT TACCTTGGGCTACGTCCTTA 
WARS AGCACCTACCAGTAATCATGGC TCCAAACCGAACAATGAGCTT 
CCR7 ATTTGTTTCGTGGGCCTACTG TCATGGTCTTGAGCCTCTTGA 
MMP9 GTGTGAGTACCCGGAACGAG TGTATCCGGCAAACTGGTCC 
GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA  
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2.8. QRT-PCR 

Total RNA from HepaRG, SK-HEP-1 and THLE-2 cell lines was extracted utilizing TRIzol (Thermo Fisher, USA) reagent. Applying 
the HiScript II SuperMix (Vazyme, China), cDNA was synthesized from the RNA (5000 ng). The PCR was conducted under the 
amplification conditions of 45 cycles at 95 ◦C for 30 s (s), 95 ◦C for 10 s, and at 60 ◦C for 30 s. GAPDH was an internal reference. The 
sequences of primer pairs for the genes were displayed in Table 1. 

2.9. Cell viability 

Cell Counting Kit-8 assay (Beyotime, China) was carried out for detecting cell viability. Briefly, cells with different treatments were 
cultured in 96-well plates (1 × 103 cells per well) and added withCCK-8 solution at specific time points. The O.D 450 value was 

Fig. 1. Landscape of single cell RNA-sequencing of HILC. (A) UMAP plot of single cells clustering for 6 subsets. (B) Single cells clustering for 
immune cells and non-immune cells shown in UMAP plot. (C) Single cells clustering for non-immune cells shown in UMAP plot. (D) The violin plot 
of the marker genes expression in 3 non-immune cells. (E) Single cells clustering for 3 non-immune cells shown in UMAP plot. 
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determined after 2-h incubation at 37 ◦C utilizing a microplate reader (Thermo Fisher, USA). 

2.10. Live/dead staining 

The Live/Dead assay kit (L10119, Invitrogen, USA) was used to perform live/dead cell staining experiment. HepaRG and SK-HEP-1 
(6 × 104 cells/well) treated with si-MMP9 were inoculated into 24-well plates. Staining solution prepared with Calcein-AM (2 μM) and 
ethidium homodimer-1 (4 μM) was added to the well for 30-min cell culture in an incubator with CO2. Dead cells (red, Ex: 530 nm, Em: 
645 nm) and live cells (green, Ex: 480 nm, Em: 530 nm) were photographed under an inverted fluorescence microscope (Olympus IMT- 
2/). 

2.11. Transwell assay 

The HCC cells, namely HepaRG and SK-HEP-1, were resuspended at a concentration of 2 × 104 cells/ml. Then, the cell suspension 
(200 μl) was added to the upper chamber of the Matrigel-coated serum-free transwell. As for the lower chamber, it contained 500 μl of 
complete medium that included 10% FBS. The Transwell system was incubated under the condition of 5% CO2 for a duration of 24 h at 
37 ◦C. Subsequently, the cells in the lower chamber were stained with a solution comprising 0.1% crystal violet for 15 min, and they 
were counted using an optical microscope. 

Fig. 2. Identifying and definition of exhausted T cells. (A) UMAP plot of single cells clustering for immune cells. (B) UMAP plot of single cells clustering 
for the annotated immune cells. (C) Bubble plot of the expression of marker genes in 7 immune cells. (D) The violin plot of the marker genes 
expression in 7 immune cells. 
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2.12. Statistical analysis 

The R software (version 3.6.3) was used for statistical analysis and data visualization. SangerBox (http://sangerbox.com/home. 
html) provided online analyses. Significant difference between two sets of continuous variables was evaluated by the Wilcoxon 
rank-sum test [47]. The KM curves with log-rank test was used to display prognostic difference, and the Pearson method was used for 
the correlation analysis. P-value <0.05 was defined as a statistical significance. 

3. Results 

3.1. Landscape of single-cell RNA-seq of LIHC 

After data processing, a total of 18,413 cells from the GSE166635 dataset were clustered into 7 subsets (Fig. 1A) and then classified 
into immune cell (macrophage, B cells, T cells and mast cells) and non-immune cell (hepatocytes, fibroblasts and endothelial cells) 
clusters using the singleR package (Fig. 1B). FindClusters function (resolution = 0.4) was used to further cluster non-immune cell 
clusters into 11 cell clusters (Fig. 1C). Based on the expression of marker genes (Fig. 1D), these cell clusters were annotated and defined 
as 3 cell types (Fig. 1E), namely, endothelia cells, Fibroblast cells and hepatocytes. 

3.2. Identification and definition of exhausted T cells 

Immune cell clusters were separated into 16 subsets by unsupervised clustering at resolution = 0.4 (Fig. 2A), but based on the 

Fig. 3. Consistent clustering of TCGA-LIHC patients. (A) KM survival analysis of 3 clusters in TCGA-LIHC cohort that clustered by 14 exhausted T 
cells-related genes. (B) Heatmap of the 14 genes expression in 3 clusters. (C) The distribution of pathological feature of AJCC stage in 3 cluster. (D) 
The distribution of pathological feature of Grade in 3 cluster. (C1=Cluster1, C2=Cluster2 and C3=Cluster3). 
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expression of marker genes, these cell clusters were classified as 7 cell types (Fig. 2B), including B cells, two cycling cells, exhausted T 
cells, macrophage, mast cells and T cells. CTLA4 [48] and TIGIT [49] are classic exhaustive marker genes significantly expressed in 
exhausted T cells (Fig. 2C and D), indicating that the immune killing function of the two cells was impaired or suppressed in TME. 
Then, we used the FindAllMarkers function to select high-expressed genes in exhausted T cells and obtained 102 genes for further 
analysis. Univariate cox regression analysis revealed that 14 genes (defined as key genes) from the 102 high-expressed genes were 
closely related to LIHC prognosis. 

3.3. Consistent clustering of TCGA-LIHC patients based on the key prognostic genes 

Based on the 14 key prognostic genes, we performed consistent clustering of 365 LIHC patients in the TCGA-LIHC cohort. The Delta 
area curve of cumulative distribution function (CDF) indicated that the optimal number of clusters was 3 (K = 3), therefore patients 

Fig. 4. Immunity and pathway characteristics of 3 clusters. (A) The distribution exhausted T cells score in 3 clusters. (B) ESTIMATE immune- 
infiltration analysis in 3 clusters. (C) MCP-Counter immune-infiltration analysis in 3 clusters. (D) The difference of GSEA score in 3 clusters. 
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were divided into 3 molecular subtypes (C1, C2 and C3). The KM survival analysis showed that the patients in C1 subtype had better 
prognosis, while the C3 patients exhibited the worst prognosis (Fig. 3A), moreover, most of these exhausted T cells-related genes were 
overexpressed in the C3 subtype (Fig. 3B). Cancer staging using American Joint Committee on Cancer (AJCC) and Grade also showed 
that the C3 subtype also had higher proportion of patients in advanced stages (Fig. 3C and D), suggesting that genes related to 
exhausted T cells could be an effective indicator to distinguish patients with LIHC. 

Fig. 5. WGCNA for the key exhausted T cells-related gene module. (A) The correlation between 3 clusters and the gene modules shown in heatmap. 
(B) Correlation of green module genes with the C3 cluster. (C) KEGG analysis of C3 cluster-related green module genes. (D) Biological process of GO 
analysis of C3 cluster-related green module genes. (E) Cell component of GO analysis of C3 cluster-related green module genes. (F) Molecular 
function of GO analysis of C3 cluster-related green module genes. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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3.4. Differences in immune-infiltration and pathway activation among the subtypes 

We calculated the exhausted T cell score for TCGA-LIHC patients using the GSVA package based on the expression of 102 high- 
expressed genes, and found that the C3 subtype had the highest score (Fig. 4A). The immune-infiltration analysis also revealed 
higher immune cell infiltration of the C3 subtype (Fig. 4B and C) and the worst outcome (Fig. 3A), indicating that long-term chronic 
inflammation suppressed the immune function of most immune cells and T cell exhaustion facilitated tumor progression. The results of 

Fig. 6. Construction and validation the T cell exhaustion-related RiskScore model. (A) The trajectory of variables and lambda confidence interval 
analysis. (B) Multivariate cox regression determined 7 key prognostic genes. (C) ROC analysis of 1-, 3- and 5-year survival of RiskScore. (D) KM 
analysis of overall survival (OS) of low-risk and high-risk patients in the TCGA-LIHC cohort. (E) KM analysis of progression-free interval (PFI) of low- 
risk and high-risk patients in the TCGA-LIHC cohort. (F) Proportion of dead and alive in low-risk and high-risk patients. (G) ROC analysis of 1-, 3- 
and 5-year survival of RiskScore in ICGC cohort. (H) KM analysis of low-risk and high-risk patients in ICGC cohort. (I) Proportion of dead and alive 
in low-risk and high-risk patients in ICGC cohort. (J) ROC analysis of 1-, 3- and 5-year survival of RiskScore in GSE14520 cohort. (K) KM analysis of 
low-risk and high-risk patients in GSE14520 cohort. (L) Proportion of dead and alive in low-risk and high-risk patients in GSE14520 cohort. (M) The 
expression of 7 model genes in TCGA-LIHC cohort. (N) The expression of 7 model genes in ICGC cohort. (O) The expression of 7 model genes in 
GSE14520 cohort. 

Fig. 7. Developing of independent factor and nomogram model. (A) The distribution of RiskScore in varying clinical classification. (B) Univariate 
analysis of RiskScore and other clinical features. (C) Multivariate analysis of RiskScore and AJCC stage. (D) A developing of nomogram model. (E) 
Calibration curve of nomogram. (F) Decision curve of nomogram and clinical features. 
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GSEA demonstrated that most oncogenic signaling pathways, such as the PI3K-AKT signaling, WNT/β-catenin signaling, Notch 
signaling, angiogenesis and IL6-JAK-STAT3 signaling pathway (Fig. 4D), were activated in the C2 and C3 subtypes, indicating that 
immune inflammation were inhibited and cancer-promoting inflammation was widely activated. 

Fig. 8. Immune-infiltration and immunotherapy response of varying risk patients. (A) ESTIMATE immune-infiltration analysis of high- and low-risk 
patients. (B) MCPcounter immune-infiltration analysis of high- and low-risk patients. (C) ssGSEA score of high- and low-risk patients. (D) TIDE 
score of high- and low-risk patients. (E) The actually immune responder of high- and low-risk patients to immunotherapy. (F) IPS score analysis of 
varying risk patients in multiple sampling experiments. (G) KM analysis of high- and low-risk patients in IMvigor210 cohort. (H) The immuno-
therapy response ability of high- and low-risk patients in IMvigor210 cohort to the anti-PD-L1 receptor blockers. (I) The distribution of RiskScore in 
4 immunotherapy response. 
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3.5. WGCNA for the key exhausted T cells-related gene module 

The WGCNA was used to identify gene modules closely associated with different molecular subtype features. The top 50% genes 
with the greatest variation in the TCGA-LIHC cohort were selected and subjected to clustering analysis to determine co-expression 
module. The soft threshold β was 22 to ensure a scale-free nature of the network. Finally, 5 co-expression modules (the grey mod-
ule was invalid) were obtained. The correlation analysis revealed that the green module exhibited significant correlation with C3 
subtype (R = 0.61, Fig. 5A), and that the genes of green module also showed obvious correlation with C3 subtype (Fig. 5B). KEGG 
analysis indicated that these genes were mainly enriched in immune cell activation pathways, such as cytokine and receptor inter-
action, Th1 and Th2 cell differentiation (Fig. 5C). In biological process of GO, these genes were closely associated with the regulation of 
leukocyte activation, T cell activation and other lymphocytes activation (Fig. 5D). In cell component of GO, these genes were related to 
most of immune protein and complex (Fig. 5E). The molecular function of GO also revealed that these genes were involved in the 
activation of immune cell, such as MHC protein and peptide antigen binding, cytokine binding and receptor activity (Fig. 5F). The 
above results demonstrated that T cell exhaustion impaired immune response ability of T cells. 

3.6. Construction and validation of a T cell exhaustion-related signature model for prognosis prediction 

According to the trajectory of variables and lambda confidence interval analysis (Fig. 6A) and the multivariate cox regression 
(Fig. 6B), a total of 7 key prognostic genes were selected to establish a risk model: Riskscore = (− 0.234 ∗ IL7R) + 0.339 ∗ PIP4K2A +

0.233 ∗ P2RY6 + (− 0.395 ∗ GZMH) + 0.413 ∗ WARS + (− 0.335 ∗ CCR7) + 0.136 ∗ MMP9. Based on the RiskScore of patients, patients 
in the TCGA-LIHC cohort were divided into high- and low-risk groups by the median value. The ROC analysis revealed that the 
RiskScore had excellent classification effectiveness, with an area under curve (AUC) [50] of 0.82, 0.75 and 0.72 for of 1-, 3- and 5-year 
survival, respectively (Fig. 6C). As shown in KM survival analysis, high-risk patients tended to have shorter overall survival (OS) and 
poor outcome (Fig. 6D). Patients with progression-free interval (PFI) in the high-risk group also exhibited poor outcome (Fig. 6E), and 
there were significantly more dead samples in the high-risk group (Fig. 6F). The same method was applied in the validation set (ICGC), 
the AUC for 1-, 3- and 5-year survival was 0.61, 0.64 and 0.73, respectively (Fig. 6G). High-risk patients had poor prognostic outcomes 
(Fig. 6H) and higher death rate (Fig. 6I). The GSE14520 dataset showed similar results to the ROC analysis (Fig. 6J), KM analysis 
(Fig. 6K) and proportion of dead samples (Fig. 6L). These results confirmed that our RiskScore was an accurate classifier and performed 
well in the survival evaluation for LIHC patients. It was also observed that the risk genes (PIP4K2A, P2RY6, WARS and MMP9) were 
high-expressed in the high-risk groups, while the rest protective genes were high-expressed in the low-risk groups (Fig. 6M–O). Here, 
the results were consistent with those from multivariate cox analysis (Fig. 6B). 

3.7. Development of a nomogram model 

Analysis on the distribution of RiskScore showed that patients with advanced stage had higher RiskScore (Fig. 7A). Univariate and 
multivariate cox regression analyses revealed that the AJCC stage and RiskScore were significant key prognostic factor (p < 0.05, 
Fig. 7B) and independent prognostic factor (Fig. 7C), respectively. In addition, to further improve the prediction accuracy, we 
established a nomogram model integrating the above two factors, and found that the RiskScore had the greatest influence on survival 
prediction (Fig. 7D). The calibration curve of the nomogram indicated that the 1-, 3- and 5-year curves were close to the standard ones 
(Fig. 7E), suggesting a high prediction accuracy of the nomogram. The decision curve analysis (DCA) showed that the net benefit of 
RiskScore and nomogram were higher than the extreme curves (Fig. 7F), indicating that the nomogram was reliable. 

3.8. Immune-infiltration and immunotherapy sensitivity among the risk groups 

The immune infiltration of different risk patients in the TCGA-LIHC cohort was measured to explore the TME feature. As shown by 
the results of the ESTIMATE analysis, the low-risk patients had higher stromal score, immune score and ESTIMATE score (Fig. 8A). The 
MCPcounter analysis demonstrated that CD8 T cells, cytotoxic lymphocytes and NK cells accounted for a higher proportion in the low- 
risk group (Fig. 8B). The ssGSEA results also showed that the low-risk patients had more effector memory CD8 T cells, activated B cells 
and CD4 T cells, immature B cells, eosinophils and natural killer cells (Fig. 8C), suggesting that the low-risk patients had more active 
immune response to tumor cells in their TME. Comparison on the TIDE score of different risk groups showed a higher TIDE score of 
high-risk patients (Fig. 8D), which indicated that those patients had greater possibility of immune escape and lower immunotherapy 
response. In clinical practice, the high-risk patients also exhibited less active immune response to immunotherapy (Fig. 8E). In multiple 
sampling analysis, higher IPS score was related to greater proportion of low-risk samples (Fig. 8F), which indicated a higher immu-
notherapy sensitivity of the low-risk group. We also incorporated an immunotherapy cohort (IMvigor210) of advanced urothelial 
carcinoma. The KM curve showed shorter time of patients with higher RiskScore (Fig. 8G) than those with higher PD proportion 
(Fig. 8H), while low-risk patients had better prognosis and higher CR proportion (Fig. 8G and H). Higher RiskScore also represented 
poorer response to immunotherapy (Fig. 8I). 

3.9. Experimental validation of predictive models 

The seven indicators (IL7R, PIP4K2A, P2RY6, GZMH, WARS, CCR7, and MMP9) were high-expressed in liver cancer cell lines than 
those in human liver cells, among them MMP9 with the highest differential expression was selected for further study (Fig. 9A–G). The 
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Fig. 9. Experimental validation of predictive models. (A–G) PCR was performed to detect the expression of IL7R, PIP4K2A, P2RY6, GZMH, WARS, 
CCR7, and MMP9 in THLE-2, HepaRG, and SK-HEP-1 cells. (H–K) The inhibitory efficiency of siRNA-MMP9 was verified in HepaRG, and SK-HEP-1 
cell lines. (L–M) The CCK8 results of siRNA-MMP9 was verified in HepaRG, and SK-HEP-1 cell lines. n = 3, p*≤0.05, p **≤0.01，p ***≤0.001，p 
****≤0.0001. The results are presented as mean ± SEM. 
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expression of MMP9 in HCC cell lines was inhibited using siRNA. The effect of inhibition of MMP9 on the viability of HCC cell lines was 
evaluated using live/dead cell staining. Inhibiting MMP9 promoted the death of HCC cells (Fig. 9H–K). The results of CCK8 further 
confirmed that inhibition of MMP9 could reduce cell viability (Fig. 9L and M). In addition, we evaluated the effect of MMP9 on HCC 
cells migration and invasion based on the transwell assay. The results showed that silencing MMP9 expression reduced the ability of 
HCC cells to migrate and invade (Fig. S1). 

4. Discussion 

LIHC is a frequent primary cancer that seriously threatens the life and health of patients [1,51]. Target therapy and immunotherapy 
have improved the survival outcome of LIHC patients. Tumor heterogeneity, postoperative recurrence, long-term chronic inflam-
mation and immune tolerance feature of the liver as well as immune inhibition state and T cell exhaustion in TME of LIHC patients are 
all critical factors that decide the efficacy of immunotherapy [52]. Currently, we face a lack of effective biomarkers and prognostic 
models for guiding LIHC treatment [53]. To bridge such a gap, this study developed a RiskScore prognostic model based on genes 
related to T cell exhaustion and validated its predictive efficiency and reliability using varying cohorts. We found that our RiskScore 
model was accurate in predicting both short-term and long-term prognosis of LIHC and could be applied in clinical LIHC treatment. 

T cell exhaustion is defined as a dysfunctional state of CD8+ T cells under constant exposure to antigens or inflammatory signals 
[54]. In this state, T cells lose the ability to kill tumor cells and eliminate infection [55] and overexpresses suppressive receptor on 
cellular surface. However, blocking these receptors such as using anti-PD1 and anti-CTLA4 antibodies in immunotherapy can reactivate 
the immune-killing function of T cells and inhibit tumor progression [56,57], showing a great potential of exhausted T cells in immune 
checkpoint blockade therapies. Yang et al. examined surgical resection samples from patients with primary hepatocellular carcinoma 
for infiltration of exhausted T cells in the tumor and adjacent tissues and identified 10 clusters of cells with different distributions and 
characteristics by single-cell analysis. They found that the conversion from effector CD8+ T cells to depleted CD8+ T cells expressed 
both upregulated effector molecules and inhibitory receptors, suggesting altered expression of genes associated with the stress 
response and the cell cycle in the early stages of depletion [58]. Based on the expression of 14 key highly variable genes in exhausted T 
cells, patients with LIHC were divided into 3 clusters (C1, C2, and C3). Here, we found that the C3 cluster had poor prognosis, higher 
immune score, and many activated cancer-related pathways, indicating that a larger number of immune cells gathered in TME but 
most T cells were exhausted. This finding was consistent with previous discoveries that tumor-infiltrating T cells are often exhausted in 
different immune microenvironments, such as melanoma, lung and liver cancer, and that the exhaustion degree is closely correlated 
with prognosis [59,60]. A majority of T cell exhaustion-related module genes were involved in the activation of immune cells, indi-
cating that the immune response sensitivity of T cell in immune microenvironments was impaired or inhibited, but this may be 
mediated by other complex mechanisms. Mounting clinical trials have shown that a large number of advanced LIHC patients could 
benefit from the anti-CTLA-4 and anti-PD-1 immune-based therapies [61]. The current findings demonstrated a higher immunotherapy 
sensitivity of low-risk patients, meaning that these therapies could be used to treat low-risk patients. 

In addition, several key genes or transcription factors (such as NR4A and Tox) are involved in the epigenetics of T cell exhaustion 
[20], for example, overexpression of transcriptional repressor BLIMP1 in hypoxic microenvironment could promote T cell exhaustion 
phenotype [62]. Previous studies have provided potential molecular targets for gene editing or immunotherapy to suppress the 
expression of inhibitory receptors and reverse the exhausted state of T cells [63]. The current RiskScore model exhibited excellent 
prognostic performance, and the risk genes could be considered in the development of therapeutic LIHC targets. In our model, 
multivariate cox regression analysis defined IL7R, GZMH and CCR7 as protective factors and PIP4K2A, P2RY6, WARS and MMP9 as 
risk factors. Interleukin 7 (IL-7) is normally released by stromal cells under a stable state [64] and binds to interleukin 7 receptor (IL7R) 
to promote IL-7 response. This also means that a dynamic expression of IL7R is critical for the maturation and survival of T cells [65]. 
Granzyme H (GZMH) is regarded as an orphan granzyme that is constitutively expressed in NK cells at a high level to induce rapid 
apoptosis of tumor cells [66]. In addition, chemokines receptor CCR7 also acts as a tumor suppressor and is involved in initiating and 
orchestrating immune response via activating CCR7 axis [67]. Therapeutic strategies involving CCR7 axis can combat the metastasis 
and expansion of cancer [68]. PIP4K2A is a stress-regulated lipid kinase localized in cytoplasm and plasma membrane [69] that 
degrades p85 protein to negatively regulate the phosphorylation of 3-kinase (PI3K)-AKT signaling so as to inhibit tumor proliferation 
[70]. However, PIP4K2A could also act as a tumor promoter in tumor progression, and knockdown of PIP4K2A alone significantly 
increases the proliferation of cancer cells [71]. P2Y purinoceptor 6 (P2RY6) is high-expressed in many cancer tissues, which is 
associated with poor prognosis [72]. A high level of P2RY6 promotes the formation of a tumor-promoting microenvironment through 
enhancing resistance to apoptosis [73], while blocking Wnt/β-catenin and Hippo/YAP signaling pathways in P2RY6-deficient mice 
could inhibit skin tumorigenesis [74]. These findings indicate that P2RY6 is a positive regulator of cancers. Tryptophanyl-tRNA 
synthetase (WARS) is an enzyme that responds to tryptophan production [75] and is a cytokine involved in cancer proliferation 
and metastasis [76,77]. Several studies have revealed significantly higher level of WARS in tumor metastatic tissues than at primary 
sites [77,78], and that a high level of WARS is predictive of a poor survival [79]. Oncogenic matrix metalloproteinase-9 (MMP9) is an 
extracellular matrix (ECM) remodeling protein that acts as an indicator of a shorter survival in breast cancer [80]. Meanwhile, using 
targeted MMP9 hemopexin domain (PEX) could fully block neoplastic process (cancer cell migration and invasiveness) [81]. 

To conclude, we developed a reliable and effective RiskScore model based on T cell exhaustion to help evaluate the prognosis and 
immune infiltration and immunotherapy response of LIHC patients and provided theoretical foundation for precise and individual 
treatment. However, there were some limitations in this study. The sample size was relatively small and therefore we need more 
samples to further validate the present results. In addition, the robustness of current models and the specific functions of the model 
genes in LIHC should be verified by performing in vivo experiments. 
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5. Conclusion 

This study integrated single-cell RNA-seq and bulk RNA-seq to analyze single-cell profiles and explore prognostic features together 
with T cell exhaustion. The RiskScore can achieve an accurate stratification of LIHC patients and effectively predict the prognosis, 
contributing to individualized treatment for LIHC patients. 
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LIHC Liver hepatocellular carcinoma 
GEO Gene Expression Omnibus 
TCGA the cancer genome atlas 
HCCDB Hepatocellular Carcinoma Cell DataBase 
WGCNA Weighted Gene Co-Expression Network Analysis operating characteristic curve (ROC) 
LASSO least absolute shrinkage and selection operator 
KM Kaplan-Meier 
scRNA-seq single-cell RNA sequencing 
GSEA Gene Set Enrichment Analysis 
WHO World Health Organization 
KEGG Kyoto Encyclopedia of Genes and Genomes 
GO Gene Ontology 
FDA Food and Drug Administration 
TIDE Tumor Immune Dysfunction and Exclusion 
IPS Immune cell Proportion Score 
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CR complete response 
PR partial response 
SD stable disease 
PD progressive disease 
TME tumor microenvironment 
MHC major histocompatibility complex 
TCR T cell receptor 
TNF tumor necrosis factor 
TEX exhausted T cells 
NGS next-generation sequencing 
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