
able at ScienceDirect

Animal Nutrition 8 (2022) 169e184
Contents lists avail
Animal Nutrition

journal homepage: ht tp: / /www.keaipubl ishing.com/en/ journals /aninu/
Review Article
Intestinal microbiota and its interaction to intestinal health in nursery
pigs

Marcos Elias Duarte, Sung Woo Kim*

Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
a r t i c l e i n f o

Article history:
Received 2 March 2021
Received in revised form
20 April 2021
Accepted 7 May 2021
Available online 12 June 2021

Keywords:
Intestinal health
Mucosa-associated microbiota
Nursery pig
* Corresponding author.
E-mail address: sungwoo_kim@ncsu.edu (S.W. Kim
Peer review under responsibility of Chinese Assoc

Veterinary Medicine.

Production and Hosting by Else

https://doi.org/10.1016/j.aninu.2021.05.001
2405-6545/© 2021 Chinese Association of Animal Scie
open access article under the CC BY license (http://cr
a b s t r a c t

The intestinal microbiota has gained increased attention from researchers within the swine industry due
to its role in promoting intestinal maturation, immune system modulation, and consequently the
enhancement of the health and growth performance of the host. This review aimed to provide updated
scientific information on the interaction among intestinal microbiota, dietary components, and intestinal
health of pigs. The small intestine is a key site to evaluate the interaction of the microbiota, diet, and host
because it is the main site for digestion and absorption of nutrients and plays an important role within
the immune system. The diet and its associated components such as feed additives are the main factors
affecting the microbial composition and is central in stimulating a beneficial population of microbiota.
The microbiotaehost interaction modulates the immune system, and, concurrently, the immune system
helps to modulate the microbiota composition. The direct interaction between the microbiota and the
host is an indication that the mucosa-associated microbiota can be more effective in evaluating its effect
on health parameters. It was demonstrated that the mucosa-associated microbiota should be evaluated
when analyzing the interaction among diets, microbiota, and health. In addition, supplementation of
feed additives aimed to promote the intestinal health of pigs should consider their roles in the modu-
lation of mucosa-associated microbiota as biomarkers to predict the response of growth performance to
dietary interventions.

© 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The interaction between intestinal health and microbiota on the
growth of pigs has received increased attention by the swine in-
dustry and academia (Kim and Duarte, 2021). Modulation of in-
testinal microbiota can lead to immediate and long-term effects on
the intestinal health of pigs (Jang et al., 2020a; Schokker et al.,
2015). The establishment of robust microbiota in the early life of
pigs is extremely important for growth of pigs as it is related to the
development of intestinal functions and immune system (Chen
).
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et al., 2018c; Kabat et al., 2014; Li et al., 2018a). Feeds and their
associated nutritional components are the major factor affecting
the microbiota profile in the intestine of pigs (Wang et al., 2019a).
Consequently, the modulation of the intestinal microbiota can be
key to the development of strategies to promote enhanced re-
sponses to nutritional interventions.

The intestine of pigs is colonized by a dense, dynamic, and
highly complex community of microorganisms composedmainly of
bacteria (Isaacson and Kim, 2012). Along the intestine and from the
mucosa to the lumen, themicrobiota patternmarkedly changes due
to the physicochemical differences in the microenvironment
(Adhikari et al., 2019; Crespo-Piazuelo et al., 2018; Gresse et al.,
2019). The mucosa-associated microbiota directly interacts with
intestinal immune cells increasing their capacity to modulate the
immune system (Arpaia et al., 2013; Belkaid and Hand, 2014;
Mulder et al., 2011). In addition, the majority of cells from the im-
mune system are located in the intestine (Mowat and Agace, 2014).

Mucosa-associated microbiota act as the frontline defenders
against pathogens by competitive exclusion and immune status
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modulation (Belkaid and Hand, 2014; Brandtzaeg, 2007; Ma et al.,
2018). Production of immunoglobulin A (IgA) induced by micro-
biota modulates bacterial colonization, preventing the trans-
location of bacteria through the epithelial layer (Gutzeit et al.,
2014). Moreover, microbiota could metabolizes certain toxins
from feeds and can synthesize certain vitamins that can be used by
intestinal epithelium of the host (Yang et al., 2016). Furthermore,
the intestinal microbiota are shown to support the maturation of
the intestinal epithelial cells and their barrier functions, promoting
homeostasis of the intestinal immune system (Kabat et al., 2014; Li
et al., 2018a; de Vries and Smidt, 2020).

Therefore, this review is focused on the role of mucosa-
associated microbiota in the intestinal health of pigs and the
interaction among the diets, microbiota, and immune system in the
intestine of pigs.

2. Establishment and development of intestinal microbiota

Early establishment of the intestinal microbiota is extremely
important for the maturation of the intestinal immune system,
barrier function, and consequently the health and growth of pigs
(Kabat et al., 2014; Li et al., 2018a; de Vries and Smidt, 2020). In
addition, intestinal microbiota have also been related to promoting
growth in neonates by increasing the sensitivity to growth hor-
mone (Shanahan et al., 2017). Development of intestinal microbiota
is related to factors including host genome, breed age, sex, and diets
(Adhikari et al., 2019; Bergamaschi et al., 2020; Crespo-Piazuelo
et al., 2019; Verschuren et al., 2018). Furthermore, early in-
terventions on the establishment and development of the intestinal
microbiota has been shown to induce long-lasting effects (Everaert
et al., 2017; Schokker et al., 2018).

2.1. Early establishment of intestinal microbiota

Whether the intestine is first exposed tomicrobials in the uterus
or during birth is still controversial (Ardissone et al., 2014; de
Goffau et al., 2021; Rackaityte et al., 2021; Stinson et al., 2019).
The possible intrauterine microbiota colonization or fetal exposure
to microbiota metabolites from the maternal gut microbiota would
have a significant effect on the development of intestinal functions
and the immune system altering postpartum colonization
(Nowland et al., 2019). Wang et al. (2019a) evaluated the devel-
opment of intestinal microbiota in pigs and reported that micro-
biota in meconium samples differed from microbiota collected
from fecal samples during lactation. Although the meconium
samples were collected within 6 h after birth, the authors sug-
gested that the meconium microbiota could have been transmitted
from the sow in-utero. However, the most accepted concept is that
the neonates have the microbiota initially established during
parturition.

2.2. Postnatal establishment and development of intestinal
microbiota

At birth, piglets face with a substantial load of microorganisms
from the birth canal and the sow's feces (Nowland et al., 2019). In
commercial conditions, suckling piglets are housed in the same
crate with the mother and have contact with feces, mucosal sur-
faces, skin, and fluids until weaning (Nowland et al., 2019). More-
over, it has been demonstrated that the vaginal microbiota plays an
important role in the early colonization of the intestinal microbiota
of the offspring (Pena Cortes et al., 2018) with the vaginal
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microbiota also being influenced by the feces of the sow (Chen
et al., 2018c). Consequently, the sow fecal microbiota greatly
contribute to the development of the offspring microbiota in the
following days after birth (Morissette et al., 2018).

Immediately after birth, piglets start intestinal nutrition by
suckling the sow to obtain colostrum and milk. Maternal milk
provides energy and nutrients including lactose, milk oligosac-
charides, amino acids, and fat (Kim, 2013) that activate digestive
functions and in turn alter the environment for intestinal micro-
biota colonization (Everaert et al., 2017; Liu et al., 2019). According
to Wylensek et al. (2020), heavier piglets have been shown to have
a greater abundance of Bacteroidetes, Bacteroides, and Rumino-
coccaceae and lower proportions of Actinobacillus porcinus and
Lactobacillus amylovorus comparedwith lighter piglets. The authors
suggested that the quantity of milk ingested during lactation may
potentially affect the health and performance of the host through
modulation of the intestinal microbiota. The nutritional compo-
nents of maternal milk include oligosaccharides that contribute
greatly to the development of the intestinal microbiota (Salcedo
et al., 2016). In addition, Schokker et al. (2018) reported that oral
fructooligosaccharide administration to suckling pigs increased the
relative abundance of Lactobacillaceae and Bifidobacteriaceae in
colonic digesta and enhanced barrier function whereas reducing
the expression of cytokine signaling in jejunal mucosa.

Besides the nutrients in colostrum and milk, the bioactive
compounds including immunoglobulins, antimicrobial, anti-
inflammatory factors, and microbiota also contribute to the intes-
tinal microbiota establishment and development especially in
neonatal pigs with an immature immune system (Chen et al.,
2018a). Whereas, the composition of colostrum is markedly
different from milk (Kim, 2013). The IgA concentration reduces
from 21.2 to 6.7 mg/mL 18 h following farrowing (Klobasa et al.,
1987). The reduction on the IgA concentration can be related to
the variation on the intestinal microbiota during lactation. Immu-
noglobulin A, the most abundant immunoglobulin in sow colos-
trum and milk, binds to pathogens impairing their replication
(Moor et al., 2017) and helps to prevent bacterial adhesion to in-
testinal epithelial cells (Dunne-Castagna et al., 2020). According to
Wang et al. (2019a), the microbial diversity of pigs reduced dras-
tically on d 11 of lactation and increased on d 20 before weaning.
Rogier et al. (2014) reported that the intestinal microbiota of mice
that received maternal milk IgA was different at weaning when
compared to those that did not receive IgA. This difference was
even greater in adult mice, indicating that the milk IgA promotes a
long-lasting effect on the intestinal microbiota.

According to Starke et al. (2013) and Pablack et al. (2015), the
nutritional manipulation of the sow intestinal microbiota can affect
the luminal microbiota in the intestine of the offspring. Moreover,
Baker et al. (2013) reported that the offspring of sows fed a sup-
plemented diet with Bacillus subtilis resulted in increased Lacto-
bacillus spp. and reduced Clostridium perfringens in the ileum. Ma
et al. (2020) reported that nursing piglets from sows fed a diet
supplemented with a synbiotic had significant changes in the
luminal microbiota in colon and further reduced the systemic im-
mune and oxidative stress status. Conversely, considering the sow
diet is different from piglets, the shape of the intestinal microbiota
alteration in sows differs from their offspring (Leblois et al., 2017).
Furthermore, Choudhury et al. (2021) reported that suckling pigs
receiving a creep-feed modulated the population of Ruminococcus,
Lachnospira, Lachnospiraceae, Roseburia, Papillibacter, Eubacterium,
and Prevotella in colonic digesta which was associated with their
intestinal development at weaning. These results indicate that the
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microbiota can be manipulated in early life inducing long-lasting
effects. The modulation of the piglet microbiota greatly depends
on the environment and can start during gestation and lactation by
modulating the sow's intestinal microbiota and milk composition.

2.3. Development of microbiota after weaning

At weaning, pigs face nutritional, environmental, physiological,
and psychological challenges causing weaning stress (Campbell
et al., 2013; Montagne et al., 2007). Weaning stress may lead to a
disruption or dysbiosis in the intestinal microbiota, the major factor
contributing to post-weaning infections (Gresse et al., 2017;
Konstantinov et al., 2006). Li et al. (2018b) reported that weaning
increased mainly Lachnospiraceae, Negativicutes, Selenomona-
dales, Campylobacterales, whereas decreased Campylobacter, Por-
phyromonadaceae, Alloprevotella, Barnesiella, and Oscillibacter.
Moreover, after weaning the relative abundance of Prevotella in-
creases in weaned piglets with introduction of a plant-based diet
(Guevarra et al., 2018). The diet being fed and ingested is the major
factor in modulation of the intestinal microbiota (Bian et al., 2016;
Frese et al., 2015; Niu et al., 2015; Tilocca et al., 2017; Wang et al.,
2019a). The shift in the intestinal microbiota profile is attributed
mainly to the abrupt transition from liquid milk to a solid plant-
based diet that affects the physicochemical conditions and the
substrate availability in the intestine (Bian et al., 2016), in addition
to the reduction in the immunoglobulin supply from milk (Dunne-
Castagna et al., 2020). The alteration of the intestinal microbiota
due to weaning stress also changes the bioactive compounds (Li
et al., 2018a) and the expression of genes related to nutrient
metabolism (Meng et al., 2020). Therefore, psychological stress
caused by weaning may play a role in the intestinal microbiota.
Galley et al. (2015) reported the stressors caused changes in both
the luminal and mucosa-associated microbiota in the colon of
murine. In light of this, nutritional strategies have been imple-
mented in an attempt to stimulate beneficial microbiota prolifer-
ation while providing an environment that is detrimental to
pathogens. Lo Verso et al. (2020) evaluated a blend of additives
composed of bovine colostrum, cranberry extract, carvacrol, yeast-
derived mannans, and b-glucans and reported an increase in the
abundance of beneficial bacteria such as Lactobacillus reuteri and
Faecalibacterium prausnitzii and reduced the abundance of Heli-
cobacter in ileal mucosa enhancing the systemic health status and
growth performance of nursery pigs. The authors correlated these
results due to the complementary functional properties of the ad-
ditives within the blend.

Wang et al. (2019a) evaluated the dissimilarity in intestinal
microbiota of pigs at different growth stages. The authors
concluded that the microbiota of piglets from lactation is distinct
from pigs at the nursery phase with R ¼ 0.98. Whereas the
microbiota from the nursery, growing, and finishing pigs were
more similar to each other with R ranging from 0.43 to 0.55. These
results showed that after recovery from weaning stress the
microbiota shifts toward maturation. The smaller differences
among plant-based diet phases could be because of the similarity of
the basal diets after weaning. Indeed, after colonization, some
microbes persist in the intestine from lactation to the finishing
phases (Wang et al., 2019a). The stability of the intestinal micro-
biota indicates gut microbiome maturity. According to Ke et al.
(2019), maturation of the intestinal microbiota normally occurs
around 80 d of age in pigs, whereas Zhao et al. (2015) indicated that
the intestinal microbiota are relatively stable at 6 months of age. It
is ambiguous to determine when intestinal microbiota mature
because intestinal microbiota is dynamically affected by several
factors including diets and the host immune system maturation.
Therefore, it can be suggested that the maturation of intestinal
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microbiota occur during early life from weaning when pigs receive
plant-basal diets to finishing phase which is also related with the
maturation of immune system (Honda and Littman, 2016).

3. Composition of intestinal microbiota

The physicochemical conditions and substrate availability
constantly change along the gastrointestinal tract modulating the
microbiota toward a different pattern (Adhikari et al., 2019; Crespo-
Piazuelo et al., 2018; Gresse et al., 2019; Zhao et al., 2015). Ac-
cording to Zhao et al. (2015), the similarity of the microbiota in the
feces is 0.75 and 0.38 compared with the luminal microbiota of the
large intestine and small intestine, respectively.

The large intestine is the major place for microbial fermentation
in pigs with greater microbial diversity compared with the small
intestine (Adhikari et al., 2019; Kelly et al., 2017). In addition, the
microbiota in the lumen of large intestine play an important role in
degrading fiber and in energetic metabolism (Den Besten et al.,
2013; Niu et al., 2015). However, the jejunum is a major site for
digestion and absorption of nutrients and a significant amount of
fiber fermentation still occurs in the small intestine (Chen et al.,
2020; Passos et al., 2015). Crespo-Piazuelo et al. (2018) reported
that the greater nutritional function of the microbiota in the
jejunum is more related to the energetic metabolism and fiber
degradation. In addition to digestive functions, the intestinal
microbiota produce bioactive compounds that can affect the jejunal
immune system, barrier function, and cell proliferation (Jin et al.,
2020). According to Zhao et al. (2015), the microbiota of the small
intestine contained more immune functions related to disease,
cancer, and infectious disease compared with that from the large
intestine. Additionally, Wiarda et al. (2020) reported that T cell
populations are more abundant in the small intestine than in the
large intestine in pigs at 8 wk of age, whereas it was similar in pigs
at 4 wk of age. Petry et al. (2021) reported that the interaction
among diet, microbiota, and immune system responses is more
effective in the small intestine. Furthermore, Gresse et al. (2019)
suggested that the characterization of fecal microbiota could
prove inadequate in investigating post-weaning infections etiology
due to intestinal infections or multiplication sites being located in
the jejunum, ileum, or the colon segments. Therefore, considering
the majority of the dietary compound are digested, absorbed, and
metabolized in the small intestine, exposing the mucosa to various
exogenous antigens and microbial components from the diet, the
jejunum seems to be a key site to analyze the interaction among
diets, intestinal microbiota, and intestinal health.

3.1. Significance of mucosa-associated microbiota

Themajority of the studies focused on evaluating themicrobiota
in animal models have utilized luminal or fecal samples. However,
the microbiota interaction with the host in combination with the
physicochemical properties of luminal content leads to a distinct
microbiota profile along both the radial and longitudinal axis of the
mammalian intestine (Albenberg et al., 2014; Friedman et al., 2018).
An increasing number of studies have been done to investigate the
interaction of the jejunal mucosa-associated microbiota and diet in
pigs (Duarte et al., 2020; Jang et al., 2020a; Kim et al., 2019; Li et al.,
2017). Moreover, post-weaning dietary intervention has been
shown to have a long-lasting effect on mucosa-associated micro-
biota but not on digestion in the small intestine (Levesque et al.,
2012; Adhikari et al., 2019).

It has been demonstrated that the mucosa-associated micro-
biota are markedly different from those of the luminal content in
pigs (Adhikari et al., 2019; Burrough et al., 2017; Mu et al., 2017; De
Rodas et al., 2018). Luminal microbiota interact more with the



Fig. 1. The distinct microbiota profile in the intestinal lumen and mucosa and its interaction with the immune system (Adhikari et al., 2019; Burrough et al., 2017; Mu et al., 2017; De
Rodas et al., 2018), drawn by Marcos E. Duarte. (A) The luminal microbiota interacts with digesta, affecting nutrient digestion in addition to secretion of metabolites that would
further affect the immune response. (B) Mucosa-associated microbiota directly crosstalk with intestinal immune cells (Arpaia et al., 2013; Belkaid and Hand, 2014; Mulder et al.,
2011). Epithelial cells, M cells, and dendritic cells directly sense mucosa-associated microbiota and metabolites inducing the production of Toll-like receptors (TLR), and nucleotide-
binding oligomerization domain-like receptors to recruit both T and B cells to aid in the production of cytokines and immunoglobulins (Gutzeit et al., 2014). Toll-like receptors
recognize the lipopolysaccharides (LPS) in the cell wall of Gram-negative bacteria inducing the production of nuclear factor kappa b (NF-kb), tumor necrosis factor-alpha (TNF-a),
and interleukin 8 (IL-8) (Stephens and von der Weid, 2020). Goblet cells proliferation are upregulated directly by the mucosa-associated microbiota or by the short-chain fatty acids
(SCFA) increasing the production of mucin 2 (MUC2) (Zhang et al., 2017). Dendritic cells recognize metabolites, including SCFA and directly activate G protein-coupled receptors
(GPR) recruiting immune cells (Sina et al., 2009) inducing the intestinal immunoglobulin A (IgA) production and reducing the expression of C-X-C motif chemokine ligand 8 (CXCL8)
or (IL-8), CeC motif chemokine ligand 20 (CCL20), TNF-a, and interferon gamma (IFN-g) (Diao et al., 2019; Wen et al., 2012; Zhong et al., 2019). The production of IgA prevents the
translocation of bacteria through the epithelial layer and contribute to the modulation of the mucosa-associated microbiota.
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digesta thus affecting nutrient digestion in addition to secretion of
metabolites, whereas the mucosa-associated microbiota are shown
to directly crosstalk with intestinal immune cells (Arpaia et al.,
2013; Belkaid and Hand, 2014; Mulder et al., 2011) and are more
susceptible to dietary influence in the small intestine (Levesque
et al., 2012, 2014). Mu et al. (2017) reported that mucosa-
associated microbiota may have a greater capability on immuno-
logical regulation. Mucosa-associated microbiota have the ability to
attach to mucin glycans in the intestinal epithelial cells to further
172
proliferate and interact with the host (Etienne-Mesmin et al., 2019).
Moreover, Liu et al. (2019) concluded that evaluating only the fecal
microbiota is insufficient to understand the mechanisms of devel-
opment of the intestinal microbiota and immune system. The
interaction between the mucosa and microbiota can effectively
modulate the immune system, providing a line of defense for the
host by preventing pathogenic colonization (Belkaid and Hand,
2014; Brandtzaeg, 2007; Buffie and Pamer, 2013; Ma et al., 2018;
Matsubara et al., 2017; Shi et al., 2017; Stokes, 2017). Furthermore,
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Yang et al. (2020) concluded that themucosa-associatedmicrobiota
were correlated with diarrhea-predominant irritable bowel syn-
drome in humans whereas the luminal microbiota did not differ
from healthy individuals.

Therefore, changes in mucosa-associated microbiota may have
marked effects on the growth and development of the host
(Adhikari et al., 2019; Niu et al., 2015; Shi et al., 2017). It is worth
mentioning that the different intestinal segments and their niches
(mucosa and lumen) are not completely independent. The
microbiota can co-inhabit both luminal and mucosa environments
(Zhang et al., 2018a). Furthermore, the intestinal microbiota can be
affected to different degrees in luminal and mucosal by the same
factor (Galley et al., 2015). According to Petry et al. (2021), pigs fed
high fiber diet had increased Erysipelotrichaceae, Olsenella, and
Turibacter in the ileal lumen, whereas it increased Turibacter,
Helicobacter, and Lachnospiraceae in the ileal mucosa. The authors
also reported that pigs fed high fiber diet supplemented with
xylanase had increased Lachnospiraceae, Actinobacillus, Bifido-
bacterium, and Lactobacillus and reduced Streptococcus and Turi-
cibacter in the ileal lumen, whereas it increased Bifidobacterium,
Megasphaera, and Chlamydia; and reduced Clostridium and
Escherichia, and Shigella in the ileal mucosa. When pigs were fed a
high fiber diet, supplemented with arabinoxylan-oligosaccharides
(AXOS), the ileal lumen had increased Lachnospiraceae and
reduced Actinobacillus, whereas the ileal mucosa showed
increased Megasphaera and Streptococcus, and reduced Candidatus
arthromitus and Helicobacter. These different observations of
microbiota responses can be attributed to physicochemical char-
acteristics in the lumen andmucosa including oxygen and nutrient
availability (Van den Abbeele et al., 2011; Albenberg et al., 2014;
Friedman et al., 2018).

4. Mucosa-associated microbiota and intestinal health

The mucosa-associated microbiota can directly affect the in-
testinal health of pigs utilizing different mechanisms of interaction
with enterocytes of host animals. A proposed interaction between
intestinal microbiota and the intestinal health is illustrated in Fig. 1.

4.1. Interaction between microbiota and epithelial cell receptors

Most of the genes that have been shown to influence the
mucosa-associated microbiota are related to the immune system,
suggesting that the immune system exerts selective pressure on
the intestinal microbiota to promote favorable communities
(Honda and Littman, 2016). Whereas, the mucosa-associated
microbiota greatly contribute to modulation of the intestinal im-
mune function (Leshem et al., 2020; Paone and Cani, 2020). The
intestinal mucosa is composed of epithelial cells, gut-associated
lymphoid tissue (GALT), and the mucus layer. The mucosa-
associated microbiota, intestinal epithelial cells, and intestinal
immune cells engage in complex crosstalk (Garrett et al., 2010; Ma
et al., 2018) forming a dynamic and delicate interaction that is
critically important for the nutritional and immune function of the
intestinal tract. Epithelial cells, M cells, and dendritic cells can
directly sense intestinal antigens, inducing the production of Toll-
like receptors (TLR), and nucleotide-binding oligomerization
domain-like receptors to recruit both T and B cells to aid in the
immune response (Gutzeit et al., 2014) (Fig. 1). Cytokines, che-
mokines, along with host and microbial metabolites are key mo-
lecular mediators of intestinal homeostasis that influences the
response of both the host and microbiota (Ma et al., 2018). In
addition, Sinkora et al. (2002) reported that the occurrence of both
T and B cells markedly depends on the interaction of the immune
system with the microbiota.
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4.2. Microbiota metabolites

The cell wall compounds and the ability of the microbiota to
adhere to the intestinal epithelial cells interacts with receptors in
the epithelial cells affecting the intestinal immune response
(Donaldson et al., 2015; Stephens and von der Weid, 2020). Me-
tabolites produced from microbial fermentation and proliferation
also play an important role for intestinal microbiota affecting the
intestinal immune system (Arpaia et al., 2013; Fan et al., 2015; Feng
et al., 2018a; Levy et al., 2016; Rooj et al., 2010). These functions can
modulate the immune system toward health or disease, depending
on the balance of the intestinal microbiota (Jacobs and Braun, 2015;
Perez-Lopez et al., 2016).

Short-chain fatty acids (SCFA) are the major microbial metabo-
lites produced from carbohydrates and the carbon chain of amino
acids (AA) (Macfarlane et al., 1992; Nakatani et al., 2018). Bacteria
from the phylum Bacteroidetes are well known for their ability to
produce acetate and propionate and bacteria in the Firmicutes are
efficient butyrate producers (Høverstad and Midtvedt, 1986;
Macfarlane and Macfarlane, 2003). However, SCFA production de-
pends on the substrate availability and microbiota composition
(Holmes et al., 2020). Some bacteria also produce lactate and suc-
cinate, which can be absorbed by the intestinal cells or further
converted to propionate by the microbiota (Kajihara et al., 2017).

Besides the contribution to energetic metabolism, SCFA can
exert beneficial effects on the intestinal immune system (Venegas
et al., 2019). The SCFA can directly activate G protein-coupled re-
ceptor 43 and 109A (GPR43 and GPR109A) in neutrophils, macro-
phages, and dendritic cells (Yang et al., 2018). G protein-coupled
receptor 43 is essential for the recruitment of immune cells dur-
ing intestinal inflammation (Sina et al., 2009). Wu et al. (2017) re-
ported that acetate induced intestinal IgA production mediated by
GPR43. Whereas, Iraporda et al. (2015) evaluating the flagellin
stimulation on Caucasian colon adenocarcinoma (Caco-2) cells,
reported that butyrate and propionate reduced the expression of C-
X-C motif chemokine ligand 8 (CXCL8; interleukin 8 [IL-8]) and CeC
motif chemokine ligand 20 (CCL20). Furthermore, butyric acid has
been shown to reduce the concentration of tumor necrosis factor-
alpha (TNF-a) and interferon-gamma (IFN-g) in the intestine of
nursery pigs (Diao et al., 2019; Wen et al., 2012; Zhong et al., 2019).
The SCFA are also important in cell proliferation (Cucchi et al.,
2020), epithelial barrier function (Diao et al., 2019), and produc-
tion of important factors for host defense (Fig. 1).

Before digestion and absorption, the protein in the lumen can be
fermented along the intestine producing a range of metabolites
that can affect the immune system. The products of AA fermenta-
tion include SCFA and branched-chain fatty acids (BCFA), ammonia,
amines, hydrogen sulfide, phenols, and indoles (Macfarlane et al.,
1992; Pieper et al., 2016). These compounds have been related to
being either deleterious or beneficial to intestinal health (Fan et al.,
2015). The salicylic acid and a-ketoglutaric acid produced by
F. prausnitzii possess anti-inflammatory effects that can block nu-
clear factor-kb (NF-kb) activation and IL-8 production (Miquel et al.,
2015; Sokol et al., 2008).

4.3. Microbiota cell wall components

Receptors located on intestinal cells can identify the cell wall
structures of mucosa-associated and activate the immune response
(Huntley et al., 2018; Royet et al., 2011; Wolf and Underhill, 2018).
Lipopolysaccharides (LPS), found in the outer membrane of Gram-
negative bacteria are well known for their immunogenicity prop-
erties (Roh et al., 2015; Ruemmele et al., 2002) and deleterious
effect on tight junction proteins (Nighot et al., 2017). Toll-like re-
ceptor 4 (TLR4) and cluster of differentiation 14 (CD14) are
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receptors present in epithelial cells that recognize the LPS, inducing
the NF-kb, TNF-a, and IL-8 (Stephens and von der Weid, 2020).
Another cell wall substance found in the microbial cell wall is
peptidoglycan (PG), a potential immunopotentiator that can reduce
the inflammatory response and increase humoral immunity (Sasaki
et al., 1987; Wolf and Underhill, 2018). The peptidoglycan recog-
nition proteins (PGLYRP1ePGLYRP4) bind to peptidoglycans in
microbial cell walls resulting in antibacterial activity (Royet et al.,
2011). Peptidoglycans are also important to the proper develop-
ment of the immune system (Wolf and Underhill, 2018). Ha et al.
(2006) reported that PG induces the production of IgA by
pattern-recognition receptors (PRR) on the innate intestinal
epithelium in mice. The IgA is secreted into the lumen, limiting
bacterial colonization and preventing penetration of bacteria
through the epithelial layer (Benveniste et al., 1971; Brandtzaeg,
2007; Macpherson et al., 2005; Rios et al., 2016) as shown in Fig. 1.

Some bacteria possess cell membrane adhesins that have been
shown to directly promote the immune response of the host (Van
Den Broeck et al., 2000; Devriendt et al., 2010; Wang et al.,
2019b). Before colonization or infection, the microorganisms
adhere to the epithelial cells facilitated by fimbrial or no-fimbrial
adhesins. The most common adhesin mechanism in the swine in-
dustry are the fimbria F4 and F18 expressed in enterotoxigenic
Escherichia coli (ETEC) (Dubreuil et al., 2016; Li et al., 2020b; Luise
et al., 2019b; Rhouma et al., 2017) as shown in Fig. 1. These struc-
tures are related to the virulence factors of ETEC (Fr€mmel et al.,
2013; Kaper et al., 2004; Karch et al., 1985).

5. Interaction among diets, microbiota, and immune system

The composition and the abundance of both luminal and
mucosa-associated microbiota are largely affected by dietary fac-
tors. Intestinal immune system would be influenced by dietary
factor directly or indirectly related to the composition and the
abundance of intestinal microbiota. Influence of major nutrients
and feed additives to intestinal microbiota and immune systems is
reviewed in this section.

5.1. Interaction among dietary protein, intestinal microbiota, and
immune system

Diet is the most important factor affecting the intestinal
microbiota of pigs from lactation through the finishing phase. Most
of the dietary proteins are digested and absorbed in the small in-
testine, whereas the undigested protein reaches the large intestine
and is fermented by the microbiota. It is important to note that
microbiota in the small intestine also have the ability to ferment
proteins however, to a lower extent (Davila et al., 2013). The level of
crude protein in the diet can affect the intestinal microbiota by
increasing the nitrogen availability as well as the pH of the digesta,
favoring the proliferation of proteolytic bacteria and potential
pathogens (Kim et al., 2018). The major bacteria fermenting protein
in the small intestine include Klebsitella spp., E. coli, Streptococcus
spp., Succinivibrio dextrinosolvens, Mitsuokella spp., and Anaerovi-
brio lipolytica (Dai et al., 2010). However, in the large intestine of
monogastric animals, the proteolytic activity has been mainly
attributed to the genera of Bacteroides, Propionibacterium, Strepto-
coccus, Fusobacterium, Clostridium, and Lactobacillus (Davila et al.,
2013). Interestingly, according to Chen et al. (2018b), reducing the
dietary crude protein from 18% to 15% decreased the abundance of
harmful bacteria including Streptococcus and increased those
considered beneficial, Lactobacillus and Bifidobacterium, in ileal
digesta of growing pigs. Besides the modulation of the microbiota,
the CP level can affect the profile of metabolites produced during
fermentation (Fan et al., 2015; Chen et al., 2018b). Protein
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fermentation in the intestine produces AA, SCFA, BCFA, and poly-
amines that are known to affect intestinal health. In addition,
increasing protein fermentation in the small intestine may affect
their availability for absorption by the host, thereby reducing the
digestibility of AA.

The use of highly digestible protein supplements may reduce
the availability of protein for microbial fermentation which can
modulate the intestinal microbiota. Iakhno et al. (2020) reported
that the use of yeast, replacing 40% of crude protein in the diet,
reshaped the microbiota in the ileal and colonic digesta of nursery
pigs. Ortman et al. (2020) reported that different protein supple-
ments modulated the microbiota in ileal digesta of weaned pigs,
which can be related to the antinutritional factors in the in-
gredients. Additionally, Wen et al. (2018) reported that the micro-
bial metabolites in the large intestine were affected by different
protein sources, whereas it was correlated with the crude protein
level within the diet.

The availability of AA can also affect microbiota fermentation.
Tryptophan can be metabolized by the intestinal microbiota pro-
ducing indole-3-acetic acid (IAA) which are ligands for the aryl
hydrocarbon receptor (AHR). Aryl hydrocarbon receptor induces
the expression of interleukin 22 (IL-22) by the intestinal immune
cells (Lamas et al., 2016), further inhibiting intestinal inflammation
and enhancing barrier function (Parks et al., 2016).

5.2. Interaction among dietary fiber, intestinal microbiota, and
immune system

Dietary fiber is one of the dietary compounds most related to
intestinal microbiota. After weaning the fiber content in the diet is
one important antinutritional factor (ANF) affecting the health of
pigs. The ANF effect of fiber is greater in nursery pigs due to the
immature intestine being unable to handle the fiber properly. Pigs
do not endogenously produce enzymes capable of degrading non-
starch polysaccharide (NSP), however, the intestinal microbiota
have a broad range of various enzymes related to NSP hydrolysis
(Wang et al., 2019c). The soluble portion of the NSP can increase the
viscosity of digesta, decreasing the digestibility and altering the
environment in the intestinal lumen (Duarte et al., 2019). This
change can affect the passage rate, nutrient availability, and oxygen
diffusion creating a propitious environment for potential patho-
gens (Jha et al., 2019). Moreover, Nguyen et al. (2020) proposed that
the size of the NSP polymer affects the microbiota as Bifidobacte-
rium longum, Prevotella copri, Bacteroides plebeius, and Bacteroides
sp. primarily utilize soluble arabinoxylan producing oligosaccha-
rides and SCFA, and lactate. Whereas Subdoligranulum sp., and
Blautia obeum mostly utilize oligosaccharides.

Fiber can be utilized by the intestinal microbiota in cross-
feeding or a cell-dependent action. This may indicate that supple-
mentation of a single enzymemay affect those bacteria utilizing the
target subtract and the oligosaccharides released (Feng et al.,
2018b). Moreover, the AXOS release by enzymes would affect
both luminal and mucosa-associated microbiota differently from
those directly supplemented (Petry et al., 2021). Therefore, feed
formulation is an important tool in manipulating the intestinal
microbiota to promote the health and performance of pigs.

5.3. Interaction among feed additives, intestinal microbiota, and
immune system

Selected feed additives directly or indirectly influence the
composition and the abundance of both luminal and mucosa-
associated microbiota, which in turn influence intestinal immune
system. The effects of dietary intervention on the modulation of
intestinal microbiota and health of pigs are summarized in Table 1.



Table 1
Dietary intervention on modulation of intestinal microbiota and health in pigs.

Initial
BW, kg

Days
fed

Feed intervention Site of sampling Microbiota change Health and growth performance Reference

7.7 21 Bacillus subtilis Cecal lumen YEnterobacteraceae Increased immunocompetence, and AA
metabolism

Luise et al.
(2019a)

6.3 27 B. subtilis (ETEC challenged) Fecal YBacteriodetes, Proteobacteria, and
Firmicutes:Bacteroidetes ratio

Reduced Escherichia coli shedding and
enhanced intestinal integrity

Brooks (2017)

6.3 42 B. subtills and Bacillus
licheniformis

Jejunal mucosa YCyanobacteria Increased growth performance,
reduced fecal score, and enhanced
intestinal integrity

Brooks (2017)
Jejunal digesta No effect

7.1 15 B. subtills and B. licheniformis
(ETEC challenged)

Colonic mucosa [Clostridium, Lactobacillus, and
Turicibacter

Increased expression of Atoh1 and ileal
goblet cells

Zhang et al.
(2017)

7.6 28 B. subtills and Bacillus pumilus
(ETEC challenged)

Jejunal lumen YLachnospiraceae, Ruminococcaceae,
Atopobiaceae, Bifidobacteriaceae,
Desulfovibrionaceae, Pasteurellaceae

Enhanced growth performance,
increased expression of MUC2 and
reduced PTGS2 and IL-1b. Reduced the
percentage of lymphocytes and
increased the percentage of neutrophil
in blood
Reduced fecal score

He et al.
(2020a)

Ileal lumen YErysipelotrichaceae, Lachnospiraceae,
Lachnospiraceae, Atopobiaceae,
Bifidobacteriaceae

Colonic lumen YAtopobiaceae
4.9 NA B. licheniformis and

Saccharomyces cerevisiae (ETEC
challenged)

Cecal lumen [Lactobacillus, YE. coli Increased growth performance and IgA
in jejunal and ileal mucosa; reduced
intestinal permeability

Pan et al. (2017)

7.7 16 Bifidobacterium longum and
Bifidobacterium animalis
(Salmonella challenged)

Fecal YSalmonella typhimurium Reduced fecal score, increased acetic
acid production, villus height and crypt
depth in ileum.

Barba-Vidal
et al. (2017)

8.2 21 Lactobacillus plantarum Colonic lumen [Prevotellaceae, Bifidobacteriaceae;
YCampylobacteraceae, Spirochaetae

Reduced fecal score; enhanced jejunal
histomorphology, and the humoral
immunity preventing inflammation

Wang et al.
(2019d)

NA 28 L. plantarum Fecal [Diversity and richness. [Lactic acid
bacteria. YPrevotellaceae;
[Erysipelotrichaceae,
Sphaerochaetaceae, Spirochaetaceae
and Christensenellaceae

Increased serum IgG, down-regulated
genes related to immune system and
enhanced integrity epithelial layers in
ileum

Shin et al.
(2019)

6.0 10 S. cerevisiae Fecal [Enterococcus, Dorea, Bacteroides,
Holdemania, Roseburia,
Faecalibacterium, and Mitsukella

Increased growth performance and
reduced diarrhea incidence.

Xu et al. (2018)

6.5 21 MOS (ETEC challenged) Cecal digesta [Lactobacillus, Bifidobacterium, and
Bacillus, YE. coli

Increase IgA, IgG and reduced TNF-a, IL-
1b, and IL-6 in serum. Enhanced the
small intestine integrity.

Yu et al. (2020)

7.4 28 Xylo-oligosaccharide Colonic digesta YLactobacillus, [Streptococcus and
Turicibacter

Enhanced intestinal permeability.
Reduced the concentration of IFN-g in
serum

Yin et al. (2019)

6.0 48 Cell wall of S. cerevisiae
(mycotoxin challenged)

Jejunal mucosa [Prevotella spp., Turicibacter sanguinis,
Clostridium sp.; YLactobacillus
equicursoris

Reduced TNF-a, IgA, IgG, and protein
carbonyl in jejunal mucosa.

Kim et al.
(2019)

NA 35 Cell wall of S. cerevisiae
(mannan-rich fraction)

Cecal lumen [Paraprevotella; YPrevotella, Suterella,
Campilobacter, and Akkermansia at 7 d
postweaning;
[Clostridium and Mitsukella,
YCoprococcus and Roseburia at 21 d
postweaning

Increased villus height and gene
expression related to cellular
development and homeostasis,
immune-modulation, and protein
synthesis.

Fouhse et al.
(2019)

7.0 35 b-mannanase Ileal and cecal
digesta

YE. coli in cecal digesta Increased fat digestibility and enhanced
intestinal integrity.

Jang et al.
(2020b)

25.4 46 Low fiber (LF), high fiber (HF),
HF þ xylanase,
HF þ AXOS

Ileal mucosa Xylanase: [Bifidobacterium,
Megasphaera, and Chlamydia.
YClostridium, and Escherichia shigella.
AXOS: [Megasphaera, Streptococcus.
YCandidatus arthromitus, Helicobacter

Increased gene expression of enzymes
associated with fiber degradation,
pentose metabolism, and SCFA
production. Reduced oxidative stress
and enhanced intestinal barrier
integrity.

(Petry et al.,
2020, 2021)

Ileal lumen Xylanase: [Lachnospiraceae
Actinobacillus, Bifidobacterium,
Lactobacillus. YStreptococcus,
Turicibacter. AXOS: [Lachnospiraceae.
YActinobacillus, Pasteurelaceae.

7.9 20 Xylanase and Bacillus sp. (ETEC
challenged)

Jejunal mucosa YDiversity and Campylobacter
hyointestinalis

Reduced fecal score, oxidative stress,
enhanced growth performance,
immune status, and intestinal integrity.

Duarte et al.
(2020)

6.4 21 Cocktail1 Ileal mucosa YHelicobacter, [Lactobacillus, Decreased TNF-a, homocysteine and
increased growth performance

Lo Verso et al.
(2020)Ileal lumen [Lactobacillus

Colonic mucosa [Lactobacillus, [Faecalibacterium
Colonic lumen [Faecalibacterium

7.7 25 Fermented rice bran extracts Jejunal mucosa [Streptococcus Increased IgG in serum and enhanced
growth performance

Zheng (2018)

7.0 35 Lysophospholipids2 Jejunal mucosa [Firmicutes:Bacteroidetes ratio Increased litter weigh, the
concentration of IL-8 and the

Jang et al.
(2020a)

(continued on next page)
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Table 1 (continued )

Initial
BW, kg

Days
fed

Feed intervention Site of sampling Microbiota change Health and growth performance Reference

enterocyte proliferation in jejunal
mucosa

6.2 48 Whey permeate Jejunal mucosa YFirmicutes:Bacteroidetes ratio;
[Bifidobacteriaceae and
Lactobacilaceae, YEnterobacteriaceae
and Streptococcaceae

Increased IL-8 and enterocyte
proliferation.
Enhanced growth performance.

Jang et al.
(2021)

AA ¼ amino acid; Atoh1 ¼ atonal BHLH transcription factor 1; ETEC ¼ enterotoxigenic Escherichia coli; MOS ¼ mannan-oligosaccharides; AXOS ¼ arabinoxylan-oligosac-
charides; MUC2 ¼ mucin 2; PTGS2 ¼ prostaglandin-endoperoxide synthase 2; NA ¼ not available; TNF-a ¼ tumor necrose factor alpha; IFN-g ¼ interferon gamma;
SCFA ¼ short chain fatty acid; IL-1b ¼ interleukin 1 beta; IgA ¼ immunoglobulin A; IgG ¼ immunoglobulin G; IL-6 ¼ interleukin 6; IL-8 ¼ interleukin 8.

1 Cocktail (a blend containing bovine colostrum, cranberry extract, carvacrol, yeast-derived mannans, and b-glucans).
2 Sows were fed diets with 0.05% lysophospholipids during lactation and the microbiota was analyzed on the offspring.
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5.3.1. Probiotics
Probiotics has been largely used in the swine industry to pro-

mote the healthy growth of pigs. The roles of probiotics are intrinsic
and related to the host microbiota including competition for nu-
trients, adhesion sites on the intestinal mucosa, production of lactic
acid, SCFA, and anti-microbial compounds (Abriouel et al., 2011;
Barba-Vidal et al., 2019; Valeriano et al., 2017). As consequence,
these factors, enhance the intestinal barrier function and modulate
the immune system (Duarte et al., 2020; Markowiak and �Slizewska,
2018). Lactic acid and SCFA produced by the probiotics change the
microenvironment in the intestinal lumen, favoring the prolifera-
tion of beneficial bacteria normally related to lower pH (Dowarah
et al., 2018). Conversely, the lower pH and the growth of benefi-
cial bacteria lead to an unfavorable environment for the growth of
pathogens (Luise et al., 2019a). Antimicrobials produced by some
probiotics also help to reduce the proliferation of pathogens (Barba-
Vidal et al., 2017). Moreover, bacteria that utilize the metabolites
produced by probiotics can also be affected (Wang et al., 2019c).
Additionally, probiotics can affect the immune system which then
in turn alters the intestinal microbiota composition (Roselli et al.,
2017).

Commensal microbes that show some benefit to the host can be
potentially considered probiotics. Bacillus spp., Lactobacillus, Bifi-
dobacterium, and Enterococcus are lactic acid-producing bacteria
commonly used in probiotic mixtures due to their characteristics
(He et al., 2020b; Pringsulaka et al., 2015; Yang et al., 2015). Shin
et al. (2019) reported that Lactobacillus plantarum probiotic sup-
plemented to pigs from lactation to 4 wk after weaning increased
the microbiota diversity and richness, the growth of lactic acid
bacteria and relative abundance of Erysipelotrichaceae, Sphaer-
ochaetaceae, Spirochaetaceae and Christensenellaceae, whereas it
reduced the abundance of Prevotellaceae in fecal samples.
Although a greater abundance of Prevotellaceae has been associ-
ated with a healthy microbiota, the authors also reported that
L. plantarum supplementation increased the concentration of
serum immunoglobulin G (IgG), downregulated the expression of
genes related to immune system and enhanced the epithelial layers
in the ileum (Table 1). Zhang et al. (2017) reported that pigs
receiving Bacillus probiotics increased the abundance of mucosa-
associated Clostridium, Lactobacillus, and Turicibacter increasing
the expression of atonal BHLH transcription factor 1 (Atoh1)
upregulating the goblet cells proliferation in the ileum. The greater
number of goblet cells increased mucin 2 (MUC2) production pre-
serving the intestinal barrier function. These results indicate that
the balance of the intestinal microbiota should be considered when
evaluating the probiotic effects on the health of the host. In addi-
tion, the changes on the fecal microbiota may not be correlated
with the immune modulation on the small intestine (Liu et al.,
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2019). Yeast has also been successfully used as a probiotic modu-
lating the intestinal microbiota and enhancing the small intestinal
health of nursery pigs (Elghandour et al., 2020; Xu et al., 2018;
Zhaxi et al., 2020) as shown in Table 1.

The use of probiotics should account for the intestinal micro-
biota status before supplementation (Barba-Vidal et al., 2018). Ac-
cording to Suez et al. (2018) probiotic supplementation in humans
can disturb rather than support the intestinal microbiota recovery
back to baseline following antibiotic treatment. There is evidence
that the host gene expression and the baseline microbiota can
affect the probiotic colonization in the intestinal mucosa in humans
(Zmora et al., 2018). These findings may indicate that the role of
probiotics in the modulation of the intestinal microbiota is more
effective in preventing disease-associated dysbiosis by promoting a
healthier microbiota, rather than recovery of the microbiota
following disruption. Therefore, the approach in dietary probiotic
supplementation should consider both the host characteristics and
the baseline intestinal microbiota.

5.3.2. Prebiotics
Increasing evidence has shown that oligosaccharides can shift

the intestinal microbiota toward species that play an important role
in the immune system. This shift in the intestinal microbiota can
affect the profile of metabolites produced along the intestine (Singh
et al., 2015). Microbial metabolites produced from oligosaccharide
supplementation can affect intestinal cell proliferation (Tian et al.,
2018), expression of tight junction proteins (Hansen et al., 2019),
mucus layer, and modulate the immune response (Guan et al.,
2019). Moreover, oligosaccharides can directly affect the immune
system by binding specific carbohydrate receptors on intestinal
cells resulting in the alteration of the barrier function and immune
response (Hansen et al., 2019).

Mannan-oligosaccharides (MOS) are non-digestive carbohy-
drates comprised of a mannose chain. Most feed additives con-
taining MOS are derived from Saccharomyces cerevisiae (Halas and
Nochta, 2012). A proposed mechanism of MOS in its role for pro-
moting intestinal health is specificmicrobes binding theMOS in the
intestine and then being transported out on the feces without
binding the host cells and therefore, indirectly affecting the im-
mune system. In addition, MOS can directly affect the immune
system by stimulating gene expression related to immune response
(Che et al., 2011; Halas and Nochta, 2012). Fouhse et al. (2019) re-
ported that a dietary yeast-derived mannan-rich fraction increased
the relative abundance of Mitsuokella and decreased the relative
abundance of Coprococcus and Roseburia in the cecal digesta of
piglets. Additionally, the authors reported an enhancement in in-
testinal histomorphology and integrity as well as an increase in the
jejunal gene expression patterns toward immune modulation.
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Browne et al. (2019) demonstrated that the mannan rich fraction
from yeast reduced the gene expression of TNF-a and TLR4 in in-
testinal cells (in vitro) by reducing the adherence of E. coli.Mannan-
oligosaccharides stimulate both systemic and mucosal immunity
and modulate the intestinal microbiota in weaned pigs (Valpoti�c
et al., 2016, 2018). According to Upadrasta et al. (2013), the
changes in the fecal microbiota of pigs were induced by MOS in the
outer layer of cyder yeast. The change to a more beneficial micro-
biota can reduce the risk of intestinal infection causing diarrhea.
According to Yu et al. (2020), supplemental MOS in the diet of
weaned pigs enhanced the intestinal integrity by modulating the
microbiota in cecal digesta and reducing the inflammatory
response caused by E. coli K88þ (Table 1).

Xylo-oligosaccharide (XOS), a functional carbohydrate derived
from the hydrolysis of xylan, has been demonstrated to modulate
the intestinal microbiota and the immune system of the host. Xylo-
oligosaccharide has been shown to selectively stimulate the pro-
liferation of bacteria generally associated to promote health bene-
fits to the host (Okazaki et al., 1990). M€akel€ainen et al. (2010)
reported that XOS promotes both Bifidobacterium and Lactoba-
cillus proliferation in vitro. According to Okazaki et al. (1990), the
ability to utilize XOS of Bifidobacterium and Lactobacillus at species
level depends on the degree of polymerization of the XOS. More-
over, the authors reported that XOS was not utilized as an energy
source by Staphylococcus, E. coli, and most Clostridium species. The
microbial ability to ferment XOS varies with the source of XOS
(Madhukumar and Muralikrishna, 2012). Pan et al. (2019) reported
that the XOS dietary supplementation in grow-finishing pigs
increased the abundance of Lactobacillus, Ruminococcus, Cop-
rococcus, and Roseburia as well as increased the concentration of
SCFA whereas reduced the abundance of E. coli and Corynebacte-
rium and the concentration of 1,7-heptanediamine in colonic
digesta. The 1,7-heptanediamine is a bioamine related to the AA
decarboxylation, therefore this result may suggest that the XOS
supplementation could inhibit decarboxylation of amino acids,
probably by reducing proteolytic bacteria. Yin et al. (2019) inves-
tigated the effects of dietary XOS on intestinal functions and per-
formance of weaned pigs and concluded that dietary XOS increased
the microbial a-diversity and increased the abundance of Strepto-
coccus and Turicibacter, increased the ZO-1 expression, and reduced
the concentration of serum IFN-g in colonic digesta (Table 1).
Additionally, the authors state that the abundance of Lactobacillus
was reduced without affecting growth performance. The authors
also reported that XOS supplementation reduced pentadecanal and
increased SCFA, coenzyme Q6, and zizyphine A in the distal intes-
tinal digesta. These compounds are probably produced by the in-
testinal microbiota and further investigation is needed to evaluate
their interaction with the host.

In addition to the effect of dietary XOS on the anti-inflammatory
response mediated by the intestinal microbiota, XOS can directly
affect the immune system (Singh et al., 2015). Nabarlatz et al.
(2007) reported that almond shell XOS showed direct immuno-
modulatory activity. Moreover, Hansen et al. (2019) suggested that
the XOS can improve the intestinal barrier function regardless of
the microbiota in rats. However, whether the immune response is
related to the modulation of the microbiota or by binding cell re-
ceptors directly is not clear.

5.3.3. Postbiotics
As discussed above, most of the health benefits associated with

prebiotic, probiotic, and synbiotic supplementation is related to the
interaction of the microbial metabolites with intestinal microbiota
and host cells. Fermentate is a term used in the food industry to
describe the product derived from fermentation process containing
microorganisms, non-viable cells of fermenting microorganisms,
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culture medium, fermented substrates, and metabolites (Mathur
et al., 2020). Fermentates and microbial extracts including non-
viable cells, bioamines, SCFA, cell wall structures, and compounds
produced through fermentation by probiotics that promote health
effects are known as postbiotics (Wegh et al., 2019), a relatively new
term in the animal feed industry. Yeast culture (Mathewet al., 1998;
Shen et al., 2009), yeast cell wall extracts (Holanda et al., 2020; Kim
et al., 2019), and lactic acid bacteria fermentates (Casey et al., 2007;
Mathur et al., 2020) are the traditional postbiotics used in pig
production. One mechanism of postbiotic action in the host im-
mune system was proposed in an in vitro study by Wang et al.
(2013). The authors reported that heat-treated Lactobacillus casei
increased the transcription of TLR. The production of TLR drives
both T and B cells response leading to IgA production (Gutzeit et al.,
2014; Pabst and Slack, 2020). A Bifidobacterium-based postbiotic
has been shown to further reduce inflammation in intestinal cells
by reducing the secretion of IL-8 in an in vitro study (Imaoka et al.,
2008). The peptidoglycan present in the cell wall of both Gram-
positive and Gram-negative bacteria also play important roles in
the interaction between the immune system and mucosa-
associated microbiota (Wolf and Underhill, 2018).

According to Xiong et al. (2015), a postbiotic from S. cerevisiae
fermentate and hydrolyzed cell wall from S. cerevisiae increased IgA
level in the duodenal and ileal mucosa of weaned pigs. Shen et al.
(2009) reported that the use of yeast culture reduced the E. coli
counts in cecal digesta and reduced the IFN-g level in the jejunum
of nursery pigs. Conversely, Kim et al. (2019) reported that post-
biotic yeast cell wall-based reduced IgA and the abundance of
pathogenic bacteria in jejunal mucosa of nursery pigs (Table 1). The
aforementioned studies show conflicting results on the effects of
yeast-based postbiotics on the immune response of pigs and thus
further investigation considering the interaction among postbiotic,
mucosa-associated microbiota, and immune system is required.

5.3.4. Enzymes
The effect of enzymes on the intestinal microbiota is related to

the changes in the physicochemical properties of the substrate in
the intestinal lumen and the release of prebiotics, and bioactive
compounds (Duarte et al., 2020; Petry et al., 2021). The oligosac-
charides released by NSP degrading enzymes (NSPase) can increase
the fermentability of the dietary fiber by the intestinal microbiota
thereby increasing SCFA production in the intestine (Den Besten
et al., 2013; Nakatani et al., 2018). Xylanase, b-glucanase, and b-
mannanase are examples of NSPase largely incorporated in animal
feed (Kiarie et al., 2013). The use of xylanase hydrolyzing xylan has
been reported to reduce the digesta viscosity (Chen et al., 2020;
Duarte et al., 2019) which can alter the physicochemical charac-
teristics of the luminal content and increase the nutrient avail-
ability for host utilization (Zhang et al., 2018b). The environmental
change in the intestinal lumen and the released oligosaccharides
can selectively increase the abundance of fiber-degrading bacteria
rather than proteolytic bacteria (Akkerman et al., 2020; Munyaka
et al., 2016; Zhang et al., 2018b). Petry et al. (2021) reported that
dietary xylanase supplementation modulated the mucosa-
associated microbiota in pigs fed corn-based arabinoxylans
(Table 1). The authors also reported that xylanase supplementation
increased the expression of genes related to enzymes-degrading
arabinoxylan and AXOS, ferulic acid esterase, and production of
butyric acid in the ileal mucosa. Commercially available xylanase
may also contain feruloyl esterase produced by the
microorganisms-producing xylanase (Petry and Patience, 2020)
that release phenolic compounds cross-linked to xylan (Mafa et al.,
2021; Mathew and Abraham, 2004; Mkabayi et al., 2020). Ferulic
acid, the major phenolic compound in the plant cell wall is a potent
antioxidant that can directly affect the host antioxidant status
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(Wang et al., 2020). Studies have shown that ferulic acid possesses
antibiotic properties (Borges et al., 2013) that can modulate the
intestinal microbiota by reducing ETEC K88 and F18þ growth in
porcine feces (Arzola-Alvarez et al., 2020). Beta-Mannanase also
plays a role in the intestine of pigs by reducing the immune
response and modulating the intestinal microbiota (Kiarie et al.,
2016). According to Jang et al. (2020), b-mannanase supplementa-
tion reduced the count of E. coli in cecal digesta and enhanced the
jejunal histomorphology of weaning pigs.

The role of phytase on the intestinal microbiota may be related
to buffering property the availability of Ca and P for microbial
fermentation (Bovee-Oudenhoven et al., 1997). Studies have been
reported that P and Ca levels can modulate the gastrointestinal
microbiota, increasing the abundance of beneficial bacteria and
reducing potential pathogens counts (Metzler-Zebeli et al., 2013).
Mann et al. (2014) reported that the greater levels of available Ca
and P in the diet of nursery pigs modulated the mucosa-associated
microbiota by increasing the abundance of Lactobacillus in stomach
mucosa, Citrobacter freundii in ileal mucosa, and P. copri in colonic
mucosa. Phytic acid reduces the P and Ca availability for the host as
well as microbiota metabolism (Heyer et al., 2019). Microbiota
compete with the host for the available P although most intestinal
microbiota can express phytase when the available P level is criti-
cally low (Dersjant-Li et al., 2015). Therefore, adding phytase to the
diet would provide P and Ca for the host and microbiota meta-
bolism. According to Klinsoda et al. (2020), dietary phytase can shift
the microbiota along the digesta mucosa-lymph node axis in the
ileum of nursery pigs. Moreover, Metzler-Zebeli et al. (2020) re-
ported that dietary supplementation with phytase increased the
abundance of Clostridiaceae and Ruminococcaceae in the feces of
growing to finish pigs.

Supplementation of multi-enzymes may show a synergetic ef-
fect due to the complexity of plant cell wall components and
therefore the variety of oligosaccharide and bio-compounds
released. Li et al. (2020a) reported that a multi-carbohydrase
complex containing xylanase, b-glucanase, and pectinase recov-
ered the intestinal microbiota homeostasis disrupted by ETEC
challenge in ileal and colonic digesta of newly weaned pigs. Kim
et al. (2018) reported that the inclusion of multi-enzymes con-
taining xylanase, amylase, b-mannanase, protease, and phytase
increased the count of Lactobacillus spp. and decreased of E. coli and
Clostridium spp. in digesta of ileum and cecum.

5.3.5. Phytobiotics
A broad range of plant extracts including essential oils, phenolic

compounds, and resins have been used in the animal industry as
probiotics (Mohammadi Gheisar and Kim, 2018). Phytobiotics, also
known as phytogenic feed additives (PFA), have been used in feed
to promote growth performance by enhancing intestinal health and
modulating the intestinal microbiota (Blavi et al., 2016; Clouard and
Val-Laillet, 2014; Kroismayr et al., 2008; Liu et al., 2013; Modina
et al., 2019; Windisch et al., 2008).

Essential oils (EO) are extracts derived from plants that have
been used as phytobiotics to promote the health and growth per-
formance of livestock due to their properties including antimicro-
bial capacity (Omonijo et al., 2018). The proposed antimicrobial
mechanism of EO is related to the alteration of the cell wall and
cytoplasmic membrane, increasing the cell permeability and
reducing the virulence function (Nazzaro et al., 2013). Man et al.
(2019) analyzed (in vitro) the inhibitory and bactericidal activity
of various EO against Staphylococcus aureus, Enterococcus faecalis, E.
coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The au-
thors concluded that the most active EO were oregano, thyme, and
lemon oil because of the great concentration of terpenes and ter-
penoids in these oils. Cheng et al. (2018) reported that oregano
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essential oil (OEO) reduced E. coli counts in the ileal digesta and
improved intestinal morphology, the antioxidative capacity, and
growth performance of growing-finishing pigs. Furthermore, the
offspring of sows fed diets containing OEO during late gestation and
lactation had improved growth performance and health due to the
modulation of the fecal microbiota (Hall et al., 2021). Piglets from
sows fed diets with OEO increased the abundance of Spi-
rochaetaceae, Peptostreptococcaceae, Ruminococcaceae, Erysipe-
lotrichacea, and Lachnospiraceae in feces (Table 1).

Cardol and anacardic acid from cashew nutshell have shown
antimicrobial activity against both Gram-positive and Gram-
negative bacteria (Hollands et al., 2016). Cardol and anacardic
acid are potential protonophores and ionophores (Toyomizu et al.,
2003) that can cause damage to the cell membrane of bacteria
(Abbas et al., 2012). Moreover, anacardic acid can induce neutrophil
extracellular trap production by neutrophils that can facilitate the
entrapment and killing of bacteria (Hollands et al., 2016). Therefore,
cashew nutshell products can modulate the intestinal microbiota
by directly killing bacteria or by modulating the host immune
system that will further interact with the microbiota. Moita et al.
(2021) showed that increasing supplementation of cashew
nutshell products improved the intestinal health and the compo-
sition of mucosa-associated microbiota in the jejunum of nursery
pigs by reducing the relative abundance of Helicobacteraceae,
whereas increasing Lactobacillus kitasatonis.

Collectively, the effect of the numerous feed additives promot-
ing health and growth response in pigs can be associated with the
changes in the intestinal microbiota. Considering the microbiota
modulation, the properties of the feed additives can be character-
ized by antimicrobial activity and by feeding selected microbiota.
Therefore, the use of feed additives to modulate the microbiota at a
specific level should consider the existing microbial community
before nutritional interventions are put in place in order to promote
a more precise response.

6. Conclusion

Modulation of intestinal microbiota toward a more beneficial
microbial community can be a key factor in enhancing intestinal
health and therefore increasing the growth performance of nursery
pigs. The intestinal microbiota in the lumen and mucosa play an
important role along the entire length of the intestine. The role of
the microbiota in the lumen is more related to the digestive func-
tion, producing metabolites that further can interact with the host.
Whereas, the mucosa-associated microbiota directly interacts with
the epithelial cells in the intestine by using the adherence system
and by producing metabolites directly secreted on the intestinal
cells. The mucosa-associated microbiota also regulates the mucus
production, a physical barrier against pathogenic adherence. Pre-
votella, Lactobacillus, and Bifidobacterium have great abundance in
the mucosa and are associated with health benefits. Whereas,
Campylobacter, Clostridium, Veillonella, and Helicobacter are poten-
tially harmful or associated with intestinal dysbiosis. These bacteria
could be used as a biomarker to predict responsiveness to dietary
interventions andmore specific nutritional intervention depending
on genetics, on-farm management, and current nutritional man-
agement. Therefore, understanding the roles of intestinal micro-
biota and their interaction with the host is essential in feed
formulation and dietary supplementation in the swine industry.
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