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Measuring dimensionality and purity of
high-dimensional entangled states
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High-dimensional entangled states are promising candidates for increasing the security and

encoding capacity of quantum systems. While it is possible to witness and set bounds for the

entanglement, precisely quantifying the dimensionality and purity in a fast and accurate

manner remains an open challenge. Here, we report an approach that simultaneously returns

the dimensionality and purity of high-dimensional entangled states by simple projective

measurements. We show that the outcome of a conditional measurement returns a visibility

that scales monotonically with state dimensionality and purity, allowing for quantitative

measurements for general photonic quantum systems. We illustrate our method using two

separate bases, the orbital angular momentum and pixels bases, and quantify the state

dimensionality by a variety of definitions over a wide range of noise levels, highlighting its

usefulness in practical situations. Importantly, the number of measurements needed in our

approach scale linearly with dimensions, reducing data acquisition time significantly. Our

technique provides a simple, fast and direct measurement approach.
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H igh-dimensional entangled states are widely used
throughout quantum science to increase secure informa-
tion bandwidth and security bounds for quantum

communication1. Through the precise control of high-
dimensional photonic states2, i.e., time–energy, transverse
momentum, spatial degrees of freedom or all of them
simultaneously3, the potential benefits of high-dimensional state
encoding are taking centre stage. Recent developments in this
direction have displayed the feasibility of quantum information
processing that is robustness against optimal quantum cloning
machines4,5, environmental noise6 and improved information
rates7, demonstrating a significant advantage in comparison to
traditional qubit encoding.

Despite the advantages of high-dimensional quantum states, cer-
tifying and quantifying the dimensionality of such systems still
remains challenging, particularly in the presence of noise. The
intuitive approach of simply measuring the width of the modal
spectrum is a necessary, but not sufficient condition to determine
dimensionality as it fails to account for non-local correlations. Con-
sequently, many techniques have been developed to witness, bound
and attempt to quantify high-dimensional quantum states. These
include approximating the density matrix via quantum state tomo-
graphy (QST) with multiple qubit state projections8, using mutually
unbiased bases9,10 to probe the states or incorporating self-guided
approaches11,12, and testing non-local bi-photon correlations by
generalised Bell tests in higher dimensions13–15. However, the spec-
trummeasurements do not confirm entanglement, the QST approach
scales unfavourably with dimension, only bounds or witnesses are
possible with the mutually unbiased bases method and the dimension
to be probed must be known a priori (e.g. valid for prime or prime
power dimensions) and, finally, the high-dimensional Bell tests can
fail the fair sampling condition16,17. A further limitation in the pre-
sent state of the art is that certain dimensionality measurements
consider only pure states9,18, yet noise mechanisms always introduce
some degree of the mixture to the system19, which has a detrimental
effect on the accuracy of measured dimensions due to the reduced
purity20. Yet, knowing the purity and dimension of the state is crucial
for fundamental tests of quantum mechanics as well as for quantum
information processing protocols, setting the required violation of
inequalities in the former, and the information capacity of the state,
the allowed error bounds in secure communication systems and the
requirement for entanglement distillation in the latter.

In this work, we present a scheme to simultaneously quantify the
dimensionality and purity of a bi-photon high-dimensional entan-
gled state, even in the presence of noise, using the isotropic state as
our test example. By measuring coincidence fringes from carefully
crafted projective measurements, we are able to accurately measure
the dimensionality and purity of our entangled state from the visi-
bility, which is only reproducible by entangled photons. We first
outline the concept and theory and then demonstrate it experi-
mentally on states with arbitrary purity and a wide range of
dimensions. To show the versatility of our approach, we use it to
measure entanglement in the topical photonic orbital angular
momentum (OAM) basis, and the pixel (position) basis, commonly
used in quantum imaging. With knowledge of the visibilities, purity
and dimensionality, we have sufficient information to infer other
salient measures. Our quantitative technique is simple, robust and
scales favourably (linearly) with dimension, making it ideal for
practical implementations of quantum protocols with general high-
dimensional photonic quantum entangled states, even under unde-
sired noise conditions.

Results
Concept. The task here is to quantify the effective dimensions
and purity of an entangled photonic state. If the state is assumed

pure and without noise, then the problem is trivial. Here, we wish
to make as few assumptions as possible, and consider the more
general case of arbitrary mixed states in the presence of noise.
Incorporating noise into the description of high-dimensional
states is highly topical of late and very much in its infancy, with a
full understanding of its deleterious impact only slowly
emerging6. In general, the purity of the quantum system, and
therefore the entanglement between photon pairs, is reduced due
to noise introduced by the source, the environment and/or the
detection system, very often in the form of white noise produced
by background photons, high dark counts in single-photon
detectors and unwanted multiphoton events20. We follow
convention6 and model such noisy quantum systems by an iso-
tropic state following:

ρ ¼ p Ψj i Ψh j þ 1� p

d2

� �
Id2 ; ð1Þ

which considers contributions of both the pure, Ψj i, and mixed,
Id2 (d2-dimensional identity operator), parts. Although this will
be our target state for extracting the purity and dimensionality, it
does not appear in the construction of the analysers nor the
measurement procedure itself. As such, the state and the para-
meters to be extracted may be modified to incorporate other
factors, e.g., mode-dependent noise due to the resolution limits of
detection devices21. The pure part, Ψj i ¼ ∑d�1

i¼0 λj j
�� � j

�� �, can be

decomposed using the Schmidt basis states, j
�� � j

�� � 2 Hd2 , with
corresponding Schmidt coefficients, λj. A variety of entangled,
quantum states (time, energy, position, hybrid and hyper-
entangled) can be decomposed in this way, thus covering a vast
number of cases. Here, p is a parameter that determines the purity
of the state, and varies from a maximally mixed (separable) state
for p= 0 to a completely pure (entangled) state for p= 1. The
purity of a non-separable d-dimensional state is given by Tr(ρ2),
where 1/d < Tr(ρ2) ≤ 1, while the bounds on p are 1/(d+ 1) <
p ≤ 1. Hence, since 1/(d+ 1) ~ 1/d for high-dimensional states, it
suffices to use the notion of purity and p, interchangeably. We use
K= 1/∑j∣λj∣4 as a measure of the local dimensions of the pure
part of the state22.

Our procedure allows us to quickly establish K and p, i.e., the
dimensionality of the pure component and its probability.
Another common measure of dimensionality is the Schmidt
rank23, which we will denote as dent. The dent refers to the
dimensionality of the entire state, not just the pure component,
and it is possible to deduce dent from our approach through
knowledge of K and p (see Supplementary Notes 1 and 6).

As we characterise the pure component of the state and
establish the overall purity, the number of required measurements
scales linearly with the dimension d of the probed Hilbert space.
This provides a significant gain in speed for high-dimensional
states.

Thus, our proposed method is a fast, accurate and simple
procedure to characterise the properties of two-photon, high-
dimensional entangled states.

The working principle of our technique is visualised in Fig. 1a,
where a set of custom analysers probe distinct parts of a discrete
Hilbert space. We can think of each analyser as a probe that scans
a sparse set of modes, reminiscent of a conditional measurement
that indicates whether there is entanglement within the subspace
or not. By combining the information gathered from a number of
such analysers, we infer how many dimensions the state occupies.
We will demonstrate this procedure both theoretically and
experimentally.

It is instructive to illustrate the concept by example. Consider a
pair of photons entangled in their polarisation, energy–time,
momentum or in the spatial basis24, the so-called structured
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light25, the former useful to access high dimensions, with up to
100 × 100 dimensions already demonstrated26. In this work, we
will consider two examples: the OAM basis27,28 and the pixel
(position) basis29. Due to the great potential of the former,
particularly for quantum information processing and
communications30–44, we first illustrate and demonstrate our
method for OAM entangled states. In this case, the basis states,
‘1
�� �

‘2
�� �

, are associated with an azimuthal phase profile,
exp(iℓ1,2ϕ), with ‘1;2 2 Z being the topological charge and ℓ1,2ℏ
OAM per photon. An OAM entangled pure state can be
expressed as

Ψj i ¼ ∑
1

‘1;2¼�1
λ‘1;2 ‘1

�� �
A ‘2
�� �

B; ð2Þ

where jλ‘1;2 j2 is the probability of generating photons in the states

± ‘1;2
�� E

for photons A and B, respectively. For our experimental

tests with a Gaussian pumped spontaneous parametric down-
conversion (SPDC) source (see “Methods” section), the state only
has non-zero probabilities when ℓ≡ ℓ1=−ℓ2. While in general
the state, Ψj i, can be represented using an unbounded number of
eigenmodes as shown, i.e., d→∞, we truncate Ψj i to d
eigenstates. This is simply applying common sense: one should
select a Hilbert space with a dimension large enough to test based
on what you are looking for (analogous to selecting a camera area
that is large enough to fit the image you hope to measure).
Importantly, since our approach scales linearly with test
dimension, there is no significant penalty for selecting a test
dimension that is “too big”, in stark contrast to QST-based
approaches (see Supplementary Table 2). In this sense, d may be
chosen at will.

To gain access to various parts of the Hilbert space, we make
use of high-dimensional mode projectors that map onto the states

M; αj in ¼ N ∑
d�1

j¼0
cnwj;M

ðαÞ j
�� �; ð3Þ

where N is a normalisation factor and j
�� � are the basis states on

the d-dimensional space. The coefficients, cnwj;M
ðαÞ, control the

amplitudes and phases of the modes in the superposition (see
“Methods” section). For OAM basis states, the coefficients can be
represented accordingly by replacing the index wj with the
topological charge ℓ= j− (d− 1)/2. Examples of the phase
profiles for two such analysers are shown in Fig. 1b, c for n= 3
and n= 7, respectively, with full details on their construction in
the “Methods” section and Supplementary Notes 2–4. While n
and M can be chosen arbitrarily, we find it optimal to set n as an
odd positive integer and M= n/2 (see Supplementary Note 5).

Next, we project each entangled photon onto the superposition
states M; θj in and �M; 0j in, respectively, where θ= [0, π/n]
controls the relative phases between the modes in the super-
position. In the context of OAM, this translates into a relative
rotation by an angle θ. A typical experimental set-up for
implementing this is sketched in Fig. 1d. Entangled photon pairs
are generated in a non-linear crystal (NLC) and subsequently
projected onto the states M; θj i and �M; 0j i by means of
holograms programmed onto spatial light modulators (SLMs)
having the transmission functions Un(ϕ; θ) and U�

nðϕ; 0Þ,
respectively. In the OAM degree of freedom, the holograms
correspond to fractional OAM modes45, which are known to have
a non-integer azimuthal phase gradient. The modulated photons
are then coupled into single-mode fibres and measured in
coincidences. The outcome probability of such a measurement,

Fig. 1 Concept and implementation using OAM as an example. a Conceptual visualisation of different analysers sampling various portions of a high-
dimensional discrete Hilbert space. Mode analysers construction for (b) n= 3 and (c) n= 7 superpositions of fractional OAM states, where βi is an
orientation angle. d Schematic of the experimental set-up used to measure the dimensionality and purity of a quantum system. NLC non-linear crystal,
f1,2,3,4 lens, BS 50:50 beam splitter, SLM spatial light modulator, D detector, APD avalanche photodiode coupled to a single-mode fibre (SMF), CC
coincidence counter.
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i.e., j 0;�Mh jn θ;Mh jnρ M; θj in �M; 0j inj, is

Pnðθ; p;KÞ ¼ pPnðθ;KÞ þ
1� p
K2 Inð0;KÞ; ð4Þ

where In(0, K)/K2 is the probability resulting from the overlap of

the analysers with the maximally mixed state and Pnðθ;KÞ ¼
∑ðK�1Þ=2

‘¼�ðK�1Þ=2 λ‘c
n
‘;Mð0Þcn�‘;�MðθÞ

��� ���2 is the overlap probability with

the pure state, with M= n/2 the fractional charge and λℓ the
initial bi-photon OAM spectrum. For a pure state, the probability
curves have a parabolic shape following Pn(θ)= (π(2t− 1)− nθ)
2/π2, where t= 1, 2, ..., n. In Fig. 2a, b, we show as solid lines the
theoretical probabilities (calculated using Eq. (4)) of such a
measurement as function of θ.

We choose odd values of n and M= n/2 to ensure high
visibility, which increases monotonically with K and p for each
analyser (see Supplementary Note 6 and Supplementary Fig. 5).
In general, both the shape and visibility of the fringes yield
information about the state. To make the approach accurate and
precise, we measure several visibilities, Vn, for n= 1, 3, 5, ...,
2N− 1, and infer the state properties by the intersection of their
solution spaces (Fig. 2e).

Orbital angular momentum basis measurements. The set-up
used to demonstrate our scheme is shown conceptually in Fig. 1d
with the corresponding detailed description in the “Methods”
section. We measure the coincidences between the signal and
idler photons for analyser projections on both arms as a function
of the relative rotation angle of the holograms. To achieve this, we
encoded the fractional OAM mode analyser on the SLM in the
signal arm fixed at an angle θ= 0, while the conjugate mode was
encoded in the idler arm and rotated at angles θ∈ [0, 2π].

To illustrate the operation of our technique, we measured the
coincidence rates for six (N= 6) analysers with n= 1, 3, 5, 7, 9
and 11, and M= n/2, with example outcomes for n= 5 and
n= 9 shown as filled circles in Fig. 2a, b, respectively. No
background subtraction was performed on the measurements to
leave noise in the system, which was deliberately increased (see
“Methods” section for experimental conditions) to enact a range
in purities for test purposes. Importantly, the periodicity in the
detected probabilities confirms the azimuthal n-fold symmetry
predicted by our theory (solid curve). Because the visibility is a
monotonically increasing function of dimension and purity,
measured visibility returns a range of possible (p, K) values, a
“trajectory” or curve in the (p, K) space. This is illustrated in
Fig. 2c, d, where the measured visibility (red horizontal plane)
intercepts the visibility function along a curve (red curve) that
restricts the possible solutions, K and p, to those consistent with
the measurement outcome. The set of such curves from
measuring many visibilities (each with its own analyser/projec-
tion) then restricts the final solution to a narrow region in (p, K),
whose uncertainty (width) is determined primarily from the
uncertainly in the visibility measurement. An example is shown
in Fig. 2e, where each solution trajectory is projected onto the
(p, K) plane. Final values and uncertainty of (p, K) can be
determined by an appropriate routine to find the interception of
all such trajectories by a minimisation procedure, as shown in
Fig. 2f.

Using this approach, we infer the purity and dimensionality of
the system to be (p, K)= (0.45 ± 0.03, 22.84 ± 0.62).

In Fig. 3a we show the six measured visibilities as square data
points together with the calculated visibility (solid red line) based
on the inferred (p, K), which clearly match very well. This is
confirmation of the minimisation procedure for finding the
intercept. In order to assess the procedure under high noise levels,

Fig. 2 Visibility, dimensionality and purity. Experimental (points) and theoretical (solid lines) coincidence count rates resulting from projections of
photons A and B onto the states M; θj in and �M;0j in, respectively, as a function of the relative orientation angle θ for a n= 5 and b n= 9. Theoretical
visibility as a function of the dimensionality (K) and purity (p) for c n= 5 and d n= 9, exemplifying it increases monotonically with both parameters. The
(red) planes intersecting the curves are the experimental visibilities, with the possible solution space for each shown as a red trajectory. The resulting
trajectories for n= 1, 3, ..., 11 are shown in (e), where the thickness of each is due to the uncertainty in the visibility outcome. The dimension and purity of
the system are found where they coincide, shown as a dashed red circle. f The latter corresponds to the optimal (p, K) that minimise the function χ2(p, K),
or, equivalently, maximises

ffiffiffiffiffiffiffiffiffi
1=χ2

p
, where the minimum of χ2 is now shown as a peak corresponding to (p, K)= (0.45 ± 0.03, 22.84 ± 0.62). The critical

bound, p≤ 1/(K+ 1), separating entangled and separable states is marked by the white dashed line.
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we introduced background noise using a white light source and
repeated the measurements, shown as the circle data points and
the associated blue dashed line in Fig. 3. The average quantum
contrast (see Supplementary Note 8), measured from the spiral
spectrum in Fig. 3c, d, dropped from Q= 19.19 to 3.76, resulting
in a reduced purity and dimensionality of (p, K)= (0.13 ± 0.01,
17.73 ± 0.71). Note that the minimisation was performed over the
parameters (p, K), but additional parameters could also be added,
e.g., to take account of the modal cross-talk in the observed data.
In our case, we choose minimisation over a small set of
parameters in order to keep the method and model simple.

As a form of validation of these results, we estimate values from
other techniques, with the comparison given in Table 1. If the
dimension and noise are known or assumed, then it is possible to
calculate the purity following p̂ ¼ ðQ� 1Þ=ðQ� 1þ KÞ, where Q is
the quantum contrast and K the dimension20. Likewise, if the state is
assumed to be pure and not mixed, and background subtraction is
done to remove noise, then the spiral spectrum can be used to get an
upper bound on the dimension. For the two noise cases in Table 1,
low and high, we find purity estimates of p̂ � 0:44 ± 0:01 and p̂ �

0:13 ± 0:02 from estimates of the dimensionality of K̂ � 22 ± 1 and
K̂ � 18 ± 1, respectively. These values are in excellent agreement
with our results, which did not require any such assumptions, nor
any noise adjustments.

Pixel basis measurements. To illustrate that OAM is only an
example and that the approach is general, we perform the same
procedure using the pixel basis, shown in Fig. 4a. Here, the spatial
basis is position as “pixels” in the transverse plane, with the
number of pixels setting the test dimension. The size and number
would be judiciously chosen based on the source of biphotons
and the imaging resolution of the optical system. We use grids
from 3 × 3 up to 11 × 11, thus testing to over 100 dimensions.
Holograms for three analyser cases are shown in Fig. 4b for the 81
dimensional example, where the phases within the 9 × 9 pixel grid
are shown to change. Although there is no resemblance to the
prior OAM holograms, the measurement procedure is identical.
From the resulting visibilities, we again infer the key parameters
from the intersection of the trajectories in (p, K) space, shown
visually in Fig. 4c, d.

Our approach has the benefit of a wealth of information in the
analyser visibilities, as well as knowledge of both K and p. This is
sufficient to infer other key information (see Supplementary
Fig. 7), such as an estimate of the state fidelity (Fp) and the
Schmidt rank, dent= K × Fp (see Supplementary Note 10 and
ref. 23). We show the outcome for this measurement in Fig. 4e,
where the “effective dimensions” as measured by the Schmidt
rank decreases as the purity decreases, becoming separable below
a critical value that corresponds to the separability boundaries
shown in Fig. 2e, f. Our data are shown with deliberately
introduced noise to reduce the purity, and juxtaposed with the
case of background subtraction to eliminate the noise. Here, we
see that the Schmidt rank gives a lower bound for the system. Our
technique can detect correlations below the separability criterion
for isotropic states, meaning that it is sensitive to correlations
even in extreme noise situations, which may prove valuable
in situations such as high-resolution quantum imaging in real-
world scenarios46.

Discussion
A quantitative measure of dimensionality and purity, particularly
in the presence of (inevitable) deleterious noise that degrades the
purity, is crucial for many quantum protocols and studies. For
example, there is a minimum purity needed to witness entan-
glement in a given dimension47–49, setting the transition from
separable to entangled states. Likewise, knowing the purity is
important in entanglement distillation processes since it informs
whether the noise can be removed for a given dimension50,51,
while in entanglement-based quantum communication there is a
minimum purity52 associated with security53. In turn, the
dimensionality sets the information capacity of the state for
quantum information processing and the error tolerance in
quantum communication protocols, while high-dimensional
states are important for fundamental tests of quantum mechan-
ics where qubits will not suffice54,55. Now we have demonstrated

a

b c

s
e

c
n

e
d

i
c

n
i

o
C
 

.
m

r
o

N

s
e

c
n

e
d

i
c

n
i

o
C

 
.

m
r

o
N

ℓ
A

ℓ
B

ℓ
A

ℓ
B

V
i
s
i
b
i
l
i
t
y

Fig. 3 Experimental visibilities and modal spectrum. a Visibility
measurements for low (top solid line) and high noise (bottom dashed line)
levels. The points are the experimental visibilities, while the lines
correspond to the fitted values of dimension and purity. Measured spiral
spectrum for the b low and c high noise levels. The shaded area
corresponds to the uncertainty in the fit (standard deviation).

Table 1 Purity and dimensionality measurements.

Noise level p K Q p̂ K̂

Low 0.45 ± 0.03 22.84 ± 0.62 19.19 ± 0.22 0.44 ± 0.01 22 ± 1
High 0.13 ± 0.01 17.73 ± 0.71 3.76 ± 0.57 0.13 ± 0.02 18 ± 1

Measured purity (p) and dimensionality (K), under low and high noise levels, compared to estimates from other methods. Here, Q is the average quantum contrast. Our experiment used a gating time of
25 ns for the coincidences with averaging over 10 s. Reducing the gating time, increasing the averaging time and taking care with the experimental conditions would significantly enhance the purities29,
even for the low noise conditions.
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a simple approach to return these crucial numbers. Although this
paper is not a report on noise in high-dimensional quantum
systems, we have deliberately introduced noise in order to
demonstrate the robustness of the approach and to attain a range
in purities for test purposes. The impact of noise in realising pure
high-dimensional quantum states is only beginning to emerge6,
revealing that there are limits to the dimensionality that can be
reached based on the quantum contrast and noise in the system.
Our findings are entirely consistent with these reports. Although
in the final test we have added noise (accidentals) subtraction to
illustrate the juxtaposed position, this is strictly speaking not
advisable56.

Unlike a conventional Schmidt decomposition, we do not
assume the state is pure, and the dimension extracted from our
technique is conditioned on the presence of entanglement: a
maximally mixed and maximally entangled system cannot yield
the same result. While our approach would benefit from the
knowledge of the modal spectrum, which can be measured very
quickly57,58, the outcome on purity and dimensionality are only
modestly affected by typical spectrum shapes (see Supplementary
Fig. 5); in our examples, the uncertainty in dimensionality is ≈5%
with knowledge of the spectrum increasing to ≈10% without.

In addition to well-established quantum tomography tools,
there are several new methods for characterising, measuring and
extracting information about different quantum states10–12. Each
method has its own set of pros and cons, regarding measurement
time, the total number of required measurement settings and the
ease of implementation. The method that we present here com-
plements the existing techniques, providing one of the fastest
mechanisms to extract and estimate valuable information about
high-dimensional entangled quantum states.

The advantage of our method is the linear scaling to the
number of measurements and the flexibility of the minimisation
procedure. Our approach is thus an excellent candidate for a fast
and easy test of purity and dimensionality prior to a more lengthy
tomography, if necessary. One of the limitations of our technique
is that prior knowledge of the form of the underlying state is

required for accurate fitting. Thus, we cannot provide definite
proof of entanglement in an assumption-free manner.

However, the easy construction of our analysers and the
resulting measurement of only visibilities reduces the complexity
of characterising quantum states significantly when contrasted
with QST-based approaches. Finally, our measurement approach
has been tested against the topical isotropic state, but we point
out that the construction of the analysers is not dependent on this
state. This is analogous to other methods where extracting a
measure always requires a target state, e.g., the fidelity from a
QST measured against a maximally entangled state. We envisage
that it may be possible to generalise the theory to extract key
parameters from states other than just the isotropic state.

In summary, we have developed a simple yet powerful tech-
nique to measure the dimensionality and purity of high-
dimensional entangled photonic quantum systems. Our
approach is robust, fast, and provides quantitative values rather
than bounds or witnesses, and works on both pure and mixed
states. Our scheme exploits visibility in fringes after joint pro-
jections, making it fast and easy to implement, returning the key
parameters of the system in a fraction of the time that a QST
would take. Thus, we believe that our approach will be useful as a
quick test with minimal experimental effort prior to more com-
prehensive state testing, valuable to the active research in high-
dimensional spatial mode entanglement and foster its widespread
deployment in quantum-based protocols.

Methods
High-dimensional state projections. Our analysers project onto the high-
dimensional Hilbert space, Hd , mapping onto the states in Eq. (9), i.e., M; αj in ,
repeated here as

M; αj in ¼ N ∑
d�1

j¼0
cnwj ;M

ðαÞ j
�� �; ð5Þ

composed of coherent superpositions of basis states j
�� � 2 f j

�� �; j ¼ 0; 1::d � 1g with
tuneable phases and amplitudes

cnwj ;M
ðαÞ ¼ e�iπwjðn�1Þ=nAn

wj
cwj ;M

ðαÞ; ð6Þ

Fig. 4 Demonstration using the pixel basis. a The basis of our entanglement is expressed as pixels, illustrated here across the SPDC source (measured at
the crystal), where each pixel is our state, jj i. b Example holograms in this basis for the visibility measurements, shown here for n= 1, 3 and 5. c, d show the
measurement outcomes for two example cases of dimension and purity, with and without background subtraction, respectively. All the measurements
outcomes are plotted as data points in (e) showing the Schmidt rank, dent as a function of purity, p, in excellent agreement with theory (lines). The
dimensionality, K, is quoted for each case. Error bars are too small to be visualised.
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and where wj= j− (d− 1)/2 and the factors

cwj ;M
ðαÞ ¼ � ie�iwjα

πðM � wjÞ
: ð7Þ

and

An
wj

¼ 1; mod wj; n
n o

¼ 0

0; otherwise

(
: ð8Þ

Here, cwk ;M
ðαÞ controls the relative phases and amplitudes of the eigenmodes and

An
wj

modulates the coefficients’ amplitudes while α∈ [0, 2π/n]. The spectrum given

by Eq. (6) can be tuned by carefully selecting n, therefore enabling precise control
of the subspaces that will be probed.

In the OAM basis, i.e., ‘j i 2 Hd , the index wj can be replaced with the index
‘ 2 Z. The mode projectors can be constructed from spiral phase profiles having
the transmission function

Unðϕ; αÞ ¼ M ∑
n�1

k¼0
exp iΦM ϕ; βk � α

� �� �
; ð9Þ

that is constructed from superpositions of fractional OAM modes45,59,

exp iΦMðϕ; αÞ
� � ¼ eiM 2πþϕ�αð Þ 0≤ ϕ< α

eiM ϕ�αð Þ α≤ ϕ< 2π
;

(
ð10Þ

having the same charge, M, but rotated by an angle βk � α ¼ mod βk þ α; 2π
	 


for βk ¼ 2π
n k, as illustrated in Fig. 1b, c for n= 3 and n= 7, respectively. Here, ϕ is

the azimuthal coordinate and M a normalisation constant.
For the pixel basis, we constructed the holograms on a d=D ×D grid with each

square corresponding to a “pixel” state. The coefficients corresponding to a
projection onto the state, M; αj in , can be mapped as

Cr;c ¼ cnwo�1 ;M
ðαÞ; ð11Þ

where o= (r− 1)D− c, for each index pair, r, c= 1, 2, 3...d, locating the row and
column index of each pixel state on the grid. This mapping converts the list of
coefficients, cwj

(for j= 0, 1, ... d− 1), into a square matrix Cr,c. To construct the

hologram, we then extract the amplitude and phase of the matrix components of C
and obtain,

Ur;c ¼ Br;c mod f arg Cr;c

� �
; 2πg; ð12Þ

where Br;c ¼ jCr;cj=maxðCÞ. The final hologram can then be obtained by
resampling U onto a high-resolution grid that can be loaded onto the SLM. In this
work, we resampled each projection hologram onto a 200 × 200 grid. Example
holograms for 9 × 9 states that were resampled onto a 200 × 200 grid are shown in
Fig. 4b.

Experimental set-up. The experimental set-up for the generation and measure-
ment of entangled photons is illustrated schematically in Fig. 1d. A potassium-
titanium-phosphate type I NLC was pumped with a 405 nm wavelength diode
laser. The crystal temperature was set to obtain co-linear signal and idler entangled
SPDC photons centred at a wavelength 810 nm. The photon pairs were then
separated in path using a 50:50 beam splitter (BS). Each entangled photon was
imaged onto an SLM using a 4f telescope (f1 and f2 having focal lengths of 100 and
500 mm, respectively), then subsequently coupled into single-mode fibres with a
second 4f telescope (lenses f3 and f4 having focal lengths of 750 and 2 mm,
respectively) and finally detected with avalanche photodetectors. Signals from each
arm were measured in coincidences within a 25 ns coincidence window. The
entangled photons were filtered with 10 nm bandpass filters centred at a wave-
length of 810 nm. For our experimental demonstration, we restrict our measure-
ments to a specific optical set-up and we varied the purity of the entangled state by
introducing background noise in the form of white light. To obtain a high purity
state (p= 0.45 in K= 22 dimensions), we had to reduce the laser power using a
neutral density filter such as to reduce multiphoton emission events, which is
known to have an impact on the purity of the SPDC photons20. To increase the
noise in the system for the OAM basis measurements, we introduced background
noise in the form of white light emitted by an incandescent light bulb until the
quantum contrast (equivalently signal-to-noise ratio) dropped to 3. The mea-
surement procedure of the quantum contrast is discussed in Supplementary Note 8.

Optimal purity and dimensionality calculation. Using the fact that the visibility
obtained for each analyser is affected by the dimensionality and purity of the input
state, we describe the procedure for determining their values for a given entangled
quantum system, assuming it can be modelled by the isotropic state in Eq. (1). We
measure the probability curves for N analysers each with n= 1, 3, ..., 2N− 1, and
compute their corresponding visibilities Vn≔ Vn(p, K). This results in a set of N
non-linear equations that depend on the parameters p and K. We then determine
the optimal (p, K) pair that best fit the function Vn(p, K) to all N measured visi-
bilities by employing the method of least squares, which aims to minimise the

objective function

χ2ðp;KÞ ¼ ∑
N

i¼1
jV The.

2i�1 ðp;KÞ � V
Exp.
2i�1 j2; ð13Þ

where the terms in the summation are the residuals (absolute errors) for each
n= 2i− 1 visibility measurement (Exp.) with respect to the theory (The.).

Data availability
The data that supports the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The codes that support the plots and multimedia files within this paper are available from
the corresponding author upon reasonable request.
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