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Cardiovascular complications are the major cause of mortality and morbidity in diabetic
patients. The changes in myocardial structure and function associated with diabetes
are collectively called diabetic cardiomyopathy. Numerous molecular mechanisms have
been proposed that could contribute to the development of diabetic cardiomyopathy
and have been studied in various animal models of type 1 or type 2 diabetes. The current
review focuses on the role of sodium (Na+) in diabetic cardiomyopathy and provides
unique data on the linkage between Na+ flux and energy metabolism, studied with
non-invasive 23Na, and 31P-NMR spectroscopy, polarography, and mass spectroscopy.
23Na NMR studies allow determination of the intracellular and extracellular Na+ pools
by splitting the total Na+ peak into two resonances after the addition of a shift
reagent to the perfusate. Using this technology, we found that intracellular Na+ is
approximately two times higher in diabetic cardiomyocytes than in control possibly
due to combined changes in the activity of Na+–K+ pump, Na+/H+ exchanger 1
(NHE1) and Na+-glucose cotransporter. We hypothesized that the increase in Na+

activates the mitochondrial membrane Na+/Ca2+ exchanger, which leads to a loss of
intramitochondrial Ca2+, with a subsequent alteration in mitochondrial bioenergetics
and function. Using isolated mitochondria, we showed that the addition of Na+ (1–
10 mM) led to a dose-dependent decrease in oxidative phosphorylation and that
this effect was reversed by providing extramitochondrial Ca2+ or by inhibiting the
mitochondrial Na+/Ca2+ exchanger with diltiazem. Similar experiments with 31P-NMR
in isolated superfused mitochondria embedded in agarose beads showed that Na+

(3–30 mM) led to significantly decreased ATP levels and that this effect was stronger
in diabetic rats. These data suggest that in diabetic cardiomyocytes, increased Na+

leads to abnormalities in oxidative phosphorylation and a subsequent decrease in ATP
levels. In support of these data, using 31P-NMR, we showed that the baseline β-
ATP and phosphocreatine (PCr) were lower in diabetic cardiomyocytes than in control,
suggesting that diabetic cardiomyocytes have depressed bioenergetic function. Thus,
both altered intracellular Na+ levels and bioenergetics and their interactions may
significantly contribute to the pathology of diabetic cardiomyopathy.
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DIABETIC CARDIOMYOPATHY

Diabetic cardiomyopathy is a multi-faceted disease. Diabetes
is associated with an increased incidence of atherosclerotic
heart disease, which results in ischemic cardiomyopathy. In
addition to ischemic – heart – disease associated cardiomyopathy,
there are other metabolic changes in the heart that are not
necessarily related to myocardial ischemia. There is altered
substrate utilization and mitochondrial dysfunction; insulin
resistance; decreased flexibility in substrate use; changes in
oxidative phosphorylation and the citric acid cycle; abnormalities
in ketogenesis and glucose free fatty acid (FFA) cycling; and
altered Ca2+ handling (Boudina and Abel, 2010; Veeranki et al.,
2016; Jia et al., 2018).

Changes in mitochondrial morphology are associated with
remodeling of the mitochondrial proteome and decreased
respiratory capacity. There are changes in mitochondrial
bioenergetics with decreased phosphocreatine (PCr)/ATP
(shown with 31P NMR); decreased oxygen consumption and
increased H2O2 production; defects in the ATP sensitive K+
channel (KATP); mitochondrial uncoupling resulting in increased
state 4 respiration and decreased ATP synthesis and increased
oxygen consumption without increased ATP production; and
mitochondrial generation of reactive oxygen species (ROS)
and lipid peroxides that may activate uncoupling proteins
(Boudina and Abel, 2010; Veeranki et al., 2016; Jia et al.,
2018).

The combination of these various insults results in left
ventricular hypertrophy, interstitial fibrosis, left ventricular
diastolic and systolic dysfunction, right ventricular dysfunction,
and impaired contractile reserve. The purpose of this paper is
to show the importance of maintaining intracellular sodium
([Na+]) homeostasis in the heart and to review some of our early
work of the effects of diabetes on metabolism (and vice versa) that
are related to ion fluxes (Na+, H+, Ca2+).

SODIUM TRANSPORT SYSTEMS IN
CARDIOMYOCYTES

Sodium transport processes and [Na+] concentration play
important roles in cellular function. [Na+]i concentration
regulates Ca2+ cycling, contractility, metabolism, and electrical
stability of the heart (Lambert et al., 2015). In the normal
cell, there is a large steady-state electrochemical gradient
favoring Na+ influx. This potential energy is used by numerous
transport mechanisms, including Na+ channels and transporters
which couple Na+ influx to either co- or counter-transport
of other ions and solutes (Bers et al., 2003). Myocardial
[Na+]i is determined by the balance between Na+ influx down
a trans-sarcolemmal electrochemical gradient, via Na+/Ca2+

exchanger, Na+/H+ exchanger 1 (NHE1), Na+/Mg2+ exchange,
Na+/HCO3

− cotransport, Na+/K+/2Cl− cotransport and Na+
channels, and Na+ efflux against an electrochemical gradient,
mediated by Na+/K+ pump (Ottolia et al., 2013; Shattock
et al., 2015). Under normal conditions, Na+/Ca2+ exchange and
Na+ channels are the dominant Na+ influx pathway; however,

other transporters may become important during pathological
conditions. The Na+/Ca2+ exchanger transports three Na+ ions
into the cytoplasm in exchange for one Ca2+ ion using the
energy generated from the Na+ gradient as a driving force,
and it is one of the main mechanisms for Na+ influx in
cardiomyocytes (Shattock et al., 2015). The eukaryotic Na+/Ca2+

exchanger protein, as exemplified by the mammalian cardiac
isoform NCX1.1, is organized into 10 transmembrane segments
(TMSs; Liao et al., 2012; Ren and Philipson, 2013) and contains
a large cytoplasmic loop between TMS 5 and 6 which play
a regulatory role (Philipson et al., 2002). Regulation of the
mammalian Na+/Ca2+ exchanger has been clearly shown both
at the functional and structural levels. Allosteric regulation of
the Na+/Ca2+ exchanger, by cytoplasmic Na+ and Ca2+ ions,
occurs from within the large cytoplasmic loop that separates
TMS 5 from TMS 6 (Philipson et al., 2002). The structures
of the two regulatory domains within this region of the
eukaryotic exchanger have been described (Hilge et al., 2006;
Nicoll et al., 2006; Besserer et al., 2007; Wu et al., 2010).
These two contiguous stretches of residues bind cytoplasmic
Ca2+, leading to an increase in exchanger activity (Hilgemann
et al., 1992; Matsuoka et al., 1995; Chaptal et al., 2009; Ottolia
et al., 2009), and are identified as Ca2+ binding domains 1
and 2. Na+ ion regulation of the Na+/Ca2+ exchanger is less
well studied; however, it is known that high cytoplasmic Na+
inactivates the exchanger (Hilgemann et al., 1992). Whether
Na+/Ca2+ exchanger modulation by cytoplasmic Na+ is relevant
to cardiac physiology remains to be established since relatively
high intracellular Na+ concentrations (≥20 mM) are required to
significantly inactivate the exchanger experimentally (Hilgemann
et al., 1992; Matsuoka et al., 1995). Recently, Liu and O’Rourke
(2013) revealed a novel mechanism of Na+/Ca2+ exchanger
regulation by cytosolic NADH/NAD+ redox potential through a
ROS-generating NADH-driven flavoprotein oxidase. The authors
proposed that this mechanism may play key roles in Ca2+

homeostasis and the response to the alteration of protein kinase
C (PKC) in the cytosolic pyrine nucleotide redox state during
cardiovascular diseases, including ischemia–reperfusion (Liu and
O’Rourke, 2013). Acting in the opposite direction, the Na+/K+
pump moves Na+ ions from the cytoplasm to the extracellular
space against their gradient by utilizing the energy released from
ATP hydrolysis. One of the strongest drivers for the activation
of the Na+/K+ pump is the elevation of [Na+]i (Shattock et al.,
2015). A fine balance between the Na+/Ca2+ exchanger and
the Na+/K+ pump controls the net amount of [Na+]i, and
aberrations in either of these two systems can have a large impact
on cardiac function (Shattock et al., 2015). While the relevance
of Ca2+ homeostasis in cardiac function has been extensively
investigated (Ottolia et al., 2013), the role of Na+ regulation
in heart function and metabolism is often overlooked. Small
changes in the cytoplasmic Na+ content have multiple effects
on the heart by influencing intracellular Ca2+ and pH levels
thereby modulating heart contractility and function. Therefore,
it is essential for heart cells to maintain Na+ homeostasis.
Despite the large amount of work done in the evaluation of
Na+ transport, there is little data that defines the metabolic
support (oxidative phosphorylation, glycolysis, and ATPase
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activity) of Na+ transport under normal and pathophysiological
conditions.

[Na+]i and Na+ transport are altered in several diseases,
including diabetes mellitus (DM) (Kjeldsen et al., 1987; Makino
et al., 1987; Warley, 1991; Regan et al., 1992; Schaffer et al., 1997;
Devereux et al., 2000; Hattori et al., 2000; Taegtmeyer et al., 2002;
Villa-Abrille et al., 2008; Young et al., 2009; Boudina and Abel,
2010). It has been shown in heart failure myocytes, that resting
[Na+]i was increased from 5.2 ± 1.4 to 16.8 ± 3.1 mmol/L
(Liu and O’Rourke, 2008). Decreased activity of the Na+/K+
pump (Greene, 1986; Kjeldsen et al., 1987; Hansen et al.,
2007) and Na+/Ca2+ exchanger (Chattou et al., 1999; Hattori
et al., 2000) were reported in hearts from animals with type
1 diabetes (T1DM). Many studies have also shown that the
function and/ or expression of the Na+/K+ pump is reduced in
cardiac hypertrophy (Pogwizd et al., 2003; Boguslavskyi et al.,
2014). Previously shown, the Na+/Ca2+ exchanger protein and
mRNA expression levels were significantly depressed in diabetic
animal models (Makino et al., 1987; Hattori et al., 2000) and
Na+/Ca2+ exchanger activity, but not mRNA, was decreased
in streptozotocin-treated neonatal rats (Schaffer et al., 1997).
Because the Na+/Ca2+ exchanger is the main mechanism for
systolic Ca2+ removal, the significant reduction in exchanger
activity could increase intracellular Ca2+ and may contribute
to diabetic cardiomyopathy as a result of altered diastolic Ca2+

removal (Dhalla et al., 1985; Villa-Abrille et al., 2008). It has
been shown that the Na+/Ca2+ exchanger activity can be restored
by insulin (Villa-Abrille et al., 2008). The myocardial NHE1
was found to be enhanced in the hypertrophied Goto-Kakizaki
diabetic rat heart (Darmellah et al., 2007) and led to higher
[Na+]i gain during ischemia–reperfusion (Kuo et al., 1983;
Pieper et al., 1984; Pierce and Dhalla, 1985; Tanaka et al., 1992;
Williams and Howard, 1994; Doliba et al., 1997; Avkiran, 1999;
Xiao and Allen, 1999; Babsky et al., 2002; Anzawa et al., 2006,
2012; Williams et al., 2007). It has been suggested that elevated
glucose concentrations in DM significantly influence vascular
NHE1 activity via glucose induced PKC-dependent mechanisms,
thereby providing a biochemical basis for increased NHE1
activity in the vascular tissues of patients with hypertension and
DM (Williams and Howard, 1994). In work done by David Allen’s
group, it was demonstrated that the major pathway for Na+
entry during ischemia appears to be the so-called persistent Na+
channel and the major pathway for Na+ entry on reperfusion
is NHE1 (Xiao and Allen, 1999; Williams et al., 2007). These
changes in [Na+]i affect the Na+/Ca2+ exchanger and contribute
to Ca2+ influx and to ROS generation, which are the major
causes of ischemia/reperfusion damage (Avkiran, 1999). It has
been also shown that Na+–glucose cotransport is enhanced in
type 2 diabetes (T2DM), which increases Na+ influx and causes
[Na+]i overload (Lambert et al., 2015).

One of the causes of altered Na+ transport and increased
[Na+]i concentration can be related to the downregulation of
bioenergetics. For example, in diabetes, alterations in oxidative
phosphorylation may compromise ion transport (Kuo et al., 1983;
Pieper et al., 1984; Pierce and Dhalla, 1985; Tanaka et al., 1992;
Doliba et al., 1997). Sarcolemmal Na+, K+-ATPase function may
also be depressed or down-regulated due to increased serum and

intracellular fatty acids (Pieper et al., 1984). Resultant changes
in intracellular cation concentrations, specifically Na+ and Ca2+,
may in turn cause changes in cellular metabolism (Makino et al.,
1987; Allo et al., 1991). In addition, changes in local (autocrine
and paracrine) and circulating neurohormones, such as ouabain
(OUA)-like (Blaustein, 1993) and natriuretic factors (Kramer
et al., 1991), can exacerbate the initial changes in ion transport
and result in functional abnormalities found in diabetes.

This review discusses the interdependence of Na+ transport
and bioenergetics in the cardiac myocyte. While an energy deficit
effects Na+ transport, on other hand, [Na+]i has a strong effect
on bioenergetics as evidenced by decreased free concentration
of ATP and PCr and reduced mitochondrial respiration and
oxidative phosphorylation related to changes in [Na+]i.

CARDIOMYOCYTE STUDIES IN
DIABETIC HEARTS

Dr. Osbakken’s laboratory employed unique non-invasive
nuclear magnetic resonance spectroscopy (NMRS) methods
for the simultaneous assessment of [Na+]i by 23Na NMRS
and adenine nucleotides by 31phosphorus (31P) NMRS in
cardiomyocytes embedded in agarose beads (Ivanics et al.,
1994; Doliba et al., 1998, 2000). 23Na NMRS allows for the
determination of total Na+ signal, and [Na+]i and extracellular
Na+ ([Na+]e) pools by splitting into two resonances after the
addition of a shift reagent to the perfusate (Doliba et al., 1998;
Doliba et al., 2000; Holloway et al., 2011). This method allowed
evaluation of changes in [Na+]i in a rat model of streptozotocin-
induced DM. Streptozotocin was injected intraperitoneally
(60 mg/kg body wt, dissolved in citrate buffer). Myocytes were
harvested four weeks after streptozotocin injection. It was found
that the baseline [Na+]i in DM cardiomyocytes increased to
0.076 ± 0.01 mmoles/mg protein (or 16.37 mmol/L) from
control (Con) levels of 0.04 ± 0.01 mmoles/mg protein (or
9.3 mmol/L); P < 0.05 (Doliba et al., 2000). This observation is
similarly reported for heart failure myocytes (Liu and O’Rourke,
2008). Of note, in DM, baseline ATP and PCr were lower
compared to Con (peak area/methylene diphosphonate standard
area; Doliba et al., 2000): ATP-Con: 0.67 ± 0.08, ATP-DM:
0.31 ± 0.06, P < 0.003; PCr-Con: 0.92 ± 0.08; PCr-DM:
0.46 ± 0.12, P < 0.009. This suggests that DM cardiomyocytes
have depressed bioenergetics function, which may contribute to
abnormal Na+, K+-ATPase function and thus result in increased
[Na+]i.

To further explore these findings, we measured 23Na and
31P spectra from superfused cardiomyocytes subjected to three
metabolic inhibitors: 2-deoxyglucose (2DG), 2, 4-dinitrophenol
(DNP), and OUA (Figures 1A,B; Doliba et al., 2000).

Inhibition of glycolysis with 2-DG was associated with
minimal or no change in [Na+]i in DM cardiomyocytes
compared to an increase in [Na+]i in Con cardiomyocytes (DM
2DG: −4.6 ± 6%, Con 2-DG: 32.9 ± 8.1% p < 0.05). The Na+,
K+-ATPase inhibitor, OUA, produced a smaller change from
baseline in [Na+]i in DM cardiomyocytes compared to Con
(DM OUA 21.2 ± 9.2%; vs Con OUA: 50.5 ± 8.8% p < 0.05;
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FIGURE 1 | (A) A typical 23Na spectra obtained from control rat cardiomyocytes showing intra- and extra-cellular sodium during baseline conditions and during
administration of 2-deoxyglucose (2-DG, 10 mM); 2,4-dinitrophenol (DNP, 10-4 M); and ouabain (OUA, 100 µM). (B) Effects of 2-DG, DNP, and OUA on 31P spectra
obtained from control rat cardiomyocytes (typical spectra presented). MDP, methylene diphosphonate standard; PME, phosphomonoester; Pi, inorganic phosphate;
PCr, phosphocreatine; ATP, adenosine triphosphate (α, γ, β); Nai, intracellular sodium; Na0, extracellular sodium. Data reprinted with permission from Doliba et al.
(2000) Translated from Biokhimiya. 2000:65(4) 590-97. Copyright 2000 by MAIK “Nauka/Interperiodica”; DOI 0006-2979/00/6504-0502$25.00; Copyright
permission granted by Pleiades Publishing, LLC.

Doliba et al., 2000). However, despite this apparent lower effect of
OUA on DM cardiomyocytes, the absolute [Na+]i after treatment
with OUA was still 41% higher in DM cardiomyocytes compared
to control due to the higher baseline [Na+]i.

In both animal models, uncoupling of oxidative
phosphorylation with DNP was associated with similar large
increases in [Na+]i; Con, 119.0 ± 26.9%; DM, 138.2 ± 12.6
(Figure 1A).

Figure 1B presents examples of 31P-NMR spectra for control
cardiomyocytes obtained during baseline and 2-DG, OUA, and
DNP interventions. In control cardiomyocytes, 2-DG caused a
26.4 ± 4.8% decrease of β-ATP and 35.4 ± 4.9% decrease of
PCr compared to baseline. In diabetic cardiomyocytes, 2-DG
caused slightly smaller decreases in β-ATP (16.2 ± 5.9%) and
PCr (27.96 ± 1.7%) when compared to control. Uncoupling
of oxidative phosphorylation with DNP caused apparent
complete depletion (i.e., to total NMR invisibility) of both
β-ATP and PCr (–100%) in both control and diabetic
cardiomyocytes. The large [Na+]i increase due to DNP
intervention suggests that both groups of cardiomyocytes require
oxidative ATP synthesis to support the cell membrane ion
gradient.

Unexpectedly, inhibition of Na, K-ATPase with OUA
produced minimal change in bioenergetic parameters in
cardiomyocytes from both animal models.

In diabetic cardiomyocytes, the decreased response of [Na+]i
to OUA and 2-DG can be related to prior inhibition of Na+/K+
pump (Greene, 1986; Kjeldsen et al., 1987; Hansen et al., 2007)
and glycolysis (Boden et al., 1996; Boden, 1997).

ISOLATED MITOCHONDRIAL STUDIES
IN DIABETIC HEARTS

The [Na+]i is tightly coupled to Ca2+ homeostasis and
is increasingly recognized as a modulating force of cellular
excitability, frequency adaptation, and cardiac contractility
(Faber and Rudy, 2000; Grandi et al., 2010; Despa and Bers,
2013; Clancy et al., 2015). Mitochondrial ATP production is
continually adjusted to energy demand through increases in
oxidative phosphorylation and NADH production mediated by
mitochondrial Ca2+ (Liu and O’Rourke, 2008). Mitochondria
in cardiac myocytes have been recognized as a Ca2+ storage
site, as well as functioning as energy providers that synthesize
a large proportion of ATP required for maintaining heart
function. In cardiac mitochondria, Ca2+ uptake and removal
are mainly mediated via the mitochondrial Ca2+ uniporter and
the mitochondrial Na+/Ca2+ exchanger (mNa+/Ca2+) (Gunter
and Pfeiffer, 1990; Bernardi, 1999; Brookes et al., 2004; Liu
and O’Rourke, 2008; Palty et al., 2010), respectively. The Ca2+

concentration for half-Vmax of the Ca2+ uniporter was estimated
as ∼10–20 mM in studies of isolated mitochondria, which far
exceeds cytosolic Ca2+ (1–3 mM; Liu and O’Rourke, 2009). By
catalyzing Na+-dependent Ca2+ efflux, the putative electrogenic
mNa+/Ca2+ exchanger plays a fundamental role in regulating
mitochondrial Ca2+ homeostasis (Gunter and Gunter, 2001; Liu
and O’Rourke, 2008), oxidative phosphorylation (Cox and
Matlib, 1993a,b; Cox et al., 1993; Liu and O’Rourke, 2008),
and Ca2+ crosstalk among mitochondria, cytoplasm, and
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the endoplasmic reticulum (ER; Szabadkai et al., 2006). The
dependence of the mNa+/Ca2+ exchanger on [Na+]i is
sigmoidal with half-maximal velocity (K0.5) at ∼5–10 mM,
which covers the range of physiological [Na+]i in the heart
(Bers et al., 2003; Saotome et al., 2005). Mitochondrial
Ca2+ activates matrix dehydrogenases (pyruvate dehydrogenase,
α-ketoglutarate dehydrogenase, and the NAD+-linked isocitrate
dehydrogenase) (Hansford and Castro, 1985; McCormack et al.,
1990; Balaban, 2002; Gunter et al., 2004) and may also
activate F0/F1-ATPase (Yamada and Huzel, 1988; Territo et al.,
2000, 2001), and the adenine nucleotide translocase (ANT;
Moreno-Sanchez, 1985). The K0.5 for Ca2+ activation of
these three dehydrogenases is in the range of 0.7–1 mM
(McCormack et al., 1990; Hansford, 1991). The overall effect
of elevated mitochondrial Ca2+ may be the upregulation of
oxidative phosphorylation and the acceleration of ATP synthesis
(McCormack et al., 1990; Balaban, 2002; Matsuoka et al., 2004;
Jo et al., 2006). Activation of Ca2+-dependent dehydrogenases by
Ca2+ increases NADH production, which is the primary electron
donor of the electron transport chain. NADH/NAD+ potential
is the driving force of oxidative phosphorylation and an increase
in NADH/NAD+ potential leads to a linear increase of maximal
respiration rate in isolated heart mitochondria (Moreno-Sanchez,
1985; Mootha et al., 1997). On the other hand, the excessive rise
in mitochondrial Ca2+ triggers the mitochondrial permeability
transition pore (PTP), resulting in pathological cell injury
and death (Hajnoczky et al., 2006). Insufficient mitochondrial
Ca2+ accumulation, secondary to cytoplasmic Na+ overload,
decreases NAD(P)H/NAD(P)+ redox potential, resulting in
compromised NADH supply for oxidative phosphorylation (Liu
and O’Rourke, 2008). Since NADPH is required to maintain
matrix antioxidant pathway flux, its oxidation causes a cellular
overload of ROS (Kohlhaas and Maack, 2010; Kohlhaas et al.,
2010; Liu et al., 2010; Clancy et al., 2015). ROS accumulation
then contributes to oxidative modification of Ca2+ handling and
ion channel targets to promote arrhythmias. This cascade of
failures, stemming from [Na+]i overload, is thus hypothesized
to provoke triggered arrhythmias (Liu et al., 2010), which, in
the context of the altered electrophysiological substrate in HF,

may induce sudden cardiac death (SCD). Interestingly, chronic
inhibition of the mNa+/Ca2+ exchanger during the induction of
HF prevents these mitochondrial defects and abrogates cardiac
decompensation and sudden death in a guinea pig model of
HF/SCD (Liu et al., 2014). Therefore, the mitochondrial Ca2+

concentration must be kept within the proper range to maintain
physiological mitochondrial function.

To further evaluate the pathophysiology of DM, our group
studied mitochondrial respiratory function [state 3 and state
4 respiration, respiratory control index (RCI), ADP/O ratio,
and rate of oxidative phosphorylation (ROP), using different
substrates, and ion transport (calcium uptake)] in DM hearts
compared to Con hearts. State 3 and RCI and ROP of DM
rat heart were decreased when using pyruvate plus malate as
substrates (Table 1; Doliba et al., 1997; Babsky et al., 2001).
State 3 and ROP were also decreased when α-ketoglutarate
was used as substrate (Table 1). The phosphorylation capacity,
expressed as ADP/O ratio, appeared to be normal with both sets
of substrates. The greatest decrease in substrate oxidation was
observed with pyruvate, suggesting that pyruvate dehydrogenase
activity is depressed in DM. It should be pointed out that in
DM mitochondria, the decrease in state 3 was dependent on
the concentration of pyruvate; and that the Km for pyruvate
was higher in DM (0.058 ± 0.01 mM) compared to Con
(0.0185± 0.0014), with no significant difference in Vmax (Doliba
et al., 1997). RCI was decreased approximately 35% at all pyruvate
concentrations.

To determine whether changes in Ca2+ transport might
be the cause of change in oxidative function presented above,
state 3 respiration was initially stimulated by ADP, and then
by CaCl2 in Con and DM mitochondria during pyruvate plus
malate oxidation; Ca2+ uptake was recorded using the change
in H+ flux (i.e., Ca2+/2H+ exchange; Figure 2; Doliba et al.,
1997). Stimulation of oxygen consumption by ADP or Ca2+ was
approximately 50% lower in DM mitochondria compared to Con.
In order to measure Ca2+ capacity, 100 mM CaCl2 was added
to the incubation medium and Ca2+ uptake was followed by
changes in pH. In contrast to Con mitochondria, mitochondria
from DM animals did not completely consume even the first

TABLE 1 | Substrate oxidation by heart mitochondria of normal and diabetic rats.

Rate of respiration Respiratory control Rate of oxidative

(ng-atoms of O/min/mg protein) phosphorylation,

State 3 State 4 (State 3/State 4) ADP/O ratio (nmoles ADP/s/mg protein)

Pyruvate

Con 192.50+16.09 29.36+4.68 6.70+1.20 2.79+0.18 9.10+1.57

DM 115.29+18.15∗ 26.44+5.01 4.40+0.54∗ 2.74+0.24 5.07+1.42∗

α-Ketoglutarate

Con 174.26+4.59 16.11+2.68 11.76+1.63 2.86+0.26 8.09+0.65

DM 156.81+3.45∗ 14.28+2.83 11.58+1.86 2.71+0.18 6.58+0.20∗

Mitochondria (1.2 mg of protein in mL) were prepared as described earlier (Doliba et al., 1998); respiration in state 3 was measured in the presence of 0.3 mM-ADP,
and respiration in state 4 was measured after ADP was completely phosphorylated. Data reprinted by permission from Nature/Springer/Palgrave: (Doliba et al., 1997).
∗Significantly different from control P ≤ 0.01. Copyright 1997 by Springer Nature; License Number 4385511236859. Originally published by Plenum Press, New York
1997 (DOI 10987654321).
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FIGURE 2 | ADP and Ca2+-stimulated respiration of mitochondria from control and diabetic rats. Mitochondria (2 mg) were added to assay medium supplemented
with 3 mM pyruvate plus 2.5 mM malate. ADP (0.3 mM) or CaCl2 (50 µM) was used to initiate state 3 respiration and Ca-uptake. Ca2+ uptake by mitochondria was
monitored by using the change in H+ flux. Stimulation of oxygen consumption by ADP or Ca2+ was approximately 50% lower in DM mitochondria compared to
Con. Data reprinted by permission from Nature/Springer/Palgrave: Doliba et al. (1997). Copyright 1997 by Springer Nature; License Number 4385511236859.
Originally published by Plenum Press, New York 1997 (DOI 10987654321).

addition of CaCl2. These data suggest that the Ca2+ capacity in
heart in DM rats is greatly decreased compared to Con.

RESPIRATORY FUNCTION AND
SUBSTRATE USE STUDIED BY MASS
SPECTROSCOPY

Previous studies in our laboratory and laboratories of other
investigators have shown abnormalities in pyruvate oxidation
in animal models of DM, possibly related to effects of abnormal
Ca2+ content on enzymes such as pyruvate dehydrogenase. To
evaluate the possible role of abnormal pyruvate dehydrogenase
function on respiratory function of heart mitochondria
from diabetic rats, mass spectroscopy determination of O2
consumption and 13C16O2 production from [1-13]pyruvate were
measured in heart mitochondria from Con (n = 8) and DM (4
weeks after streptozotocin injection; n = 8) rats (Doliba et al.,
1997). Figure 3 presents the time course of 13C16O2 production
(curve 1) and oxygen consumption (MVO2) (curve 2) during
oxidation of [1-13C]pyruvate by heart mitochondria from Con

and DM rats (Doliba et al., 1997). Both the 13C16O2 production
and MVO2 stimulated by ADP (Figure 3A) or carbonilcyanide
p-triflouromethoxyphenylhydrazone (FCCP), an uncoupler of
respiration and oxidative phosphorylation (Figure 3B), were
much less in DM mitochondria compared to Con (with ADP,
35–50% less; FCCP, 20–30% less). Addition of Ca2+ caused
minimal changes in 13C16O2 production in DM; whereas Ca2+

increased 13C16O2 production by 33–40% in Con (Figure 4;
Doliba et al., 1997). This lack of stimulation of a key enzyme
by Ca2+ may be a factor in the development and progression
of pathophysiological sequelae in DM and may be related to
abnormal Ca2+ transport function. The data presented in the
next two paragraphs suggest that abnormal mitochondrial Ca2+

transport and bioenergetics in DM cardiac mitochondria can be
related to abnormalities in Na+ flux.

Na+ Regulation of Mitochondrial
Energetics: DM Modeling Effort
Previous data reported above, and by others suggest that
the etiology of DM end organ damage may be related to
abnormalities in Na+ transport. We and others (Cox and
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FIGURE 3 | 13C16O2 production (Boudina and Abel, 2010) and O2 consumption (MVO2) (Veeranki et al., 2016) during oxidation of [1-13C] pyruvate by heart
mitochondria from control and diabetic rats. (A) 13C16O2 production and MVO2 after addition of ADP. (B) 13C16O2 production and MVO2 after addition of FCCP to
uncouple oxidative phosphorylation. Both the 13C16O2 production and MVO2 stimulated by ADP FCCP were much less in DM mitochondria compared to Con. Data
reprinted by permission from Nature/Springer/Palgrave: Doliba et al. (1997). Copyright 1997 by Springer Nature; License Number 4385511236859. Originally
published by Plenum Press, New York 1997 (DOI 10987654321).

FIGURE 4 | The effect of Ca2+ on CO2 production in Con (black squares) and
DM mitochondria (open squares). Addition of Ca2+ caused minimal changes
in 13C16O2 production in DM; whereas Ca2+ increased 13C16O2 production
by 33–40% in Con. Data reprinted by permission from Nature/Springer/
Palgrave: Doliba et al. (1997). Copyright 1997 by Springer Nature; License
Number 4385511236859. Originally published by Plenum Press, New York
1997 (DOI 10987654321).

Matlib, 1993b; Cox et al., 1993; Maack et al., 2006; Liu and
O’Rourke, 2008) proposed that increased [Na+]i is involved
in the regulation of mitochondrial oxidative phosphorylation
through the Ca2+ metabolism. Mitochondrial Ca2+ ([Ca2+]m)
plays a key role in linking ATP production to ATP demand

(i.e., mechanical activity) and as Ca2+ rises in the cell, so
does [Ca2+]m; this activates mitochondrial enzymes to step-
up ATP production (Liu and O’Rourke, 2008; Kohlhaas and
Maack, 2010). This relationship, which crucially matches ATP
supply to demand, is blocked when [Na+]i is elevated (Liu
et al., 2010). The rise in [Na+]i activates Na+/Ca2+ exchange
in the inner mitochondrial membrane and keeps [Ca2+]m low
preventing ATP supply from meeting demand, leaving the heart
metabolically compromised. Not only might this contribute
to the known metabolic insufficiency in failing hearts but
Kohlhaas et al. (2010) have shown that this mechanism increases
mitochondrial free radical formation in failing hearts, further
exacerbating injury.

To test this hypothesis, different concentrations of NaCl (in
mM: 0.05; 0.1; 0.5; 1; 3; 10) were added to Con and DM
mitochondria while respiratory function was monitored (Babsky
et al., 2001); 1 mM a-ketoglutarate was used as substrate and
mitochondrial respiration was stimulated by 200 mM ADP.
Ruthenium red (1 mM), a blocker of Ca2+ uptake, was added
to the polarographic cell before Na+ was added. Na+ in
concentrations higher than 0.5–1 mM significantly decreased
ADP-stimulated mitochondria oxygen consumption (Figure 5;
Babsky et al., 2001). Mitochondria from DM rats were more
sensitive to increasing extramitochondrial Na+ as demonstrated
by more rapid and larger decrease in state 3 respiration (Babsky
et al., 2001). The decrease in state 3 in both Con and DM
mitochondria was abolished by addition of 10 mM CaCl2 to the
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FIGURE 5 | Effect of different concentrations of Na+ on ADP stimulated
mitochondrial oxygen consumption (state 3) in control (CON) and diabetic
(DM) heart mitochondria (means ± SE, n = 5). ∗ < 0.05 CON vs DM. Baseline
of state 3 (without Na+) is assumed to be 100%. Data reprinted with
permission from Babsky et al. (2001). Copyright 2001 by the Society for
Experimental Biology and Medicine; DOI: 0037-9727/01/2266-0543$15.00.

polarographic cell before adding NaCl (Babsky et al., 2001). Our
data agree with the studies of O’Rourke and colleagues who have
shown that the elevation of [Na+]i can impair mitochondrial
energetics (Liu and O’Rourke, 2008, 2013; Kohlhaas et al., 2010;
Liu et al., 2010).

Effect of Na+ on Adenine Nucleotides
and Pi in Con and DM Mitochondria
In support of polarographic data, we used 31P NMRS to study the
influence of different concentrations of NaCl on ATP synthesis
in mitochondria isolated from Con and DM (Babsky et al.,
2001). Exposure of DM mitochondria superfused at a rate of
2.7 cc/min with buffer containing Na+ (5–30 mM) led to
greater decreases of β-ATP/Pi ratio than that found in Con
(Figure 6A; Babsky et al., 2001). Diltiazem (DLTZ), an inhibitor
of mitochondrial Na+/Ca2+ exchange, abolished the Na+ (5–
30 mM) initiated decrease of β-ATP in DM mitochondria and

reduced the increase of Pi with resultant values of β-ATP/Pi
similar in both Con and DM mitochondria (Figure 6B; Babsky
et al., 2001).

ISCHEMIA, PRECONDITIONING (IPC),
AND THE DIABETIC HEART

One of most important factors of diabetic cardiomyopathy is
post-ischemic myocardial injury that is associated with oxygen
free radical generation, intracellular acidosis, bioenergetic
depletion, as well as with abnormalities in Na+, H+, and
Ca2+-transport in cardiomyocytes. Ca2+ overload and ischemic
acidosis are also important intracellular alterations that
could cause damage to ischemic cardiomyocytes (Bouchard
et al., 2000). Sodium ions are involved in regulating both
H+ and Ca2+ levels in cardiomyocytes through NHE1,
Na+/Ca2+, Na+-K+-2Cl−, and Cl−/HCO3

− ion transporters.
Furthermore, Na+ is an important regulator of bioenergetic
processes in healthy and diseased cardiomyocytes (Babsky et al.,
2001).

Ischemic preconditioning (IPC) is a powerful protective
mechanism by which exposure to prior episodes of ischemia
protects the myocardium against longer and more severe
ischemic insults (Murry et al., 1986). The relationship between
DM and myocardial IPC is not yet clear (Miki et al.,
2012). Some studies have demonstrated that diabetes may
impair IPC by producing changes in both sarcolemmal and
mitochondrial K-ATP channels, which then alters mitochondrial
function (Hassouna et al., 2006). These changes may lead
to an elevated superoxide production which produces cellular
injuries.

Ishihara et al. (2001) show in 611 patients (including 121
patients with non-insulin treated diabetes) that DM prevents
the IPC effect in patients with an acute myocardial infarction.
However, a study of Rezende et al. (2015) showed that T2DM
was not associated with impairment in IPC in coronary artery
disease patients. In fact, there is some evidence that prior short
episodes of ischemia that can often occur in the diabetic heart

FIGURE 6 | (A) The effect of extramitochondrial Na+ on ATP and Pi ratios in CON and DM heart mitochondria. (B) 250 µM DLTZ, an inhibitor of mitochondrial
Na+–Ca2+ exchange, was added to perfusate. Baseline (without Na+) is assumed to be 100% (means ± SE. n = 4). Significance: DM vs CON: ∗P < 0.05. Data
reprinted with permission from Babsky et al. (2001). Copyright 2001 by the Society for Experimental Biology and Medicine; DOI: 0037-9727/01/2266-0543$15.00.
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are the substrate for IPC, whereby the heart is protected during
longer episode of ischemia.

Tsang et al. (2005) hypothesized that in diabetic hearts, IPC
depends on intact signaling through the phosphatidylinositol 3-
kinase (PI3K)-Akt pro-survival pathway. The authors concluded
that diabetic hearts are less sensitive to the IPC protective
effects related to defective components in the PI3k-Akt pathway.
For example, in animal models of diabetes, exposure to more
prior episodes of IPC were needed to activate PI3K-Akt
to a critical level and thus provide cardioprotection during
exposure to longer episodes of ischemia–reperfusion than in
Con.

Our group studied the effect of IPC on [Na+]i levels in
isolated perfused rat hearts (Figure 7; Babsky et al., 2002). We
have shown that 20 min ischemia increased the [Na+]i in Con
hearts by ∼50% compared to baseline. During 10–20 min of
post-ischemic reperfusion the [Na+]i significantly decreased, but
was still ∼20% higher compared to baseline levels. Even though
IPC significantly improved the post-ischemic recovery of cardiac
function (LVDP and heart rate), unexpectedly the [Na+]i levels
were higher than Con at end IPC, and during ischemia, and were
similar to Con during reperfusion. These results are in agreement
with the data reported by Ramasamy et al. (1995). While our
studies did not include a DM model, Ramasamy’s studies did;
and showed that the % change in [Na+]i from baseline was lower
during ischemia in DM than in Con, and that the effect of the
NHE1 inhibitor EIPA (similar to preconditioning ischemia) was
less in DM than in Con. This suggests that the NHE1 activity was
impaired in DM. The topic of NHE1 and ischemia is discussed
further below.

Although diabetes mostly poses higher cardiovascular risk,
the pathophysiology underlying this condition is uncertain.
Moreover, though diabetes is believed to alter intracellular
pathways related to myocardial protective mechanisms, it is
still controversial whether diabetes may interfere with IPC, and
whether this might influence clinical outcomes. We believe that
ischemia developed in diabetic heart does not produce the same
conditions that are developed in animal models when two–
three 5-min ischemic episodes are each followed by 5–10 min
of reperfusion. This difference may be a reason for the many
controversies concerning relationship of IPC and the diabetic
heart.

To conclude this discussion, it is likely that the changes in
[Na+]i may contribute to ischemic and reperfusion damage,
possibly through their effects on Ca2+ overload (Allen and Xiao,
2003; Xiao and Allen, 2003; Williams et al., 2007).

ISCHEMIA AND NHE1

Ischemic conditions may activate the NHE1. There are data
that show that hyperactivity of NHE1 results of the increase
in [Na+]i that leads to Ca2+ overload through the Na+/Ca2+

exchanger, myocardial dysfunction, hypertrophy, apoptosis, and
heart failure (Cingolani and Ennis, 2007). David Allen’s group
showed that two inhibitors of NHE1, amiloride and zoniporide,
cause cardioprotection which was judged by the recovery of
LVDP and by the magnitude of the reperfusion contracture
(Williams et al., 2007). The authors also showed that there were
two different mechanisms for Na+ entry during ischemia and

FIGURE 7 | Relative changes in intracellular sodium (Nai) resonance areas as a function of time in control (CON, n = 6) and preconditioned (IPC, n = 4) rat hearts.
Nai baseline is normalized to 100. Significance: ∗P < 0.01 (IPC vs CON), #P < 0.05 (IPC group vs end of ischemia), and &P < 0.01 (vs pre-ischemic level for each
group). Data reprinted with permission from Babsky et al. (2002). Copyright 2002 by the Society for Experimental Biology and Medicine; DOI:
1535-3702/02/2277-0520$15.00.
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reperfusion: a major pathway for Na+ entry during ischemia is
the persistent Na+ channels (INa,P) and the major pathway for
Na+ entry on reperfusion is NHE1 (Williams et al., 2007). The
optimal therapy may require blocking both pathways. Pisarenko
et al. (2005) show that inhibition of NHE1, similar to IPC,
protects rat heart. In rabbit hearts, inhibition of NHE1 has
been shown to be associated with significant protection during
ischemia/reperfusion injury in immature myocardium, mostly by
reducing myocardial calcium overload (Cun et al., 2007; Zhou
et al., 2008). Furthermore, NHE1 inhibition leads to a decrease
of infarct size after coronary artery thrombosis and thrombolysis
and provides a comparable to preconditioning degree of
cardioprotection against 60 min of regional ischemia (Hennan
et al., 2006). NHE1 inhibition attenuates the cardiac hypertrophic
response and heart failure in various experimental models. For
example, early and transient administration of a NHE1 inhibitor
inhibits cardiomyocyte hypertrophy in cultured cells, as well
as in vivo cardiac hypertrophy and heart failure, suggesting a
critical early NHE1-dependent initiation of hypertrophy (Kilic
et al., 2014). However, in a dog model, one NHE1 inhibitor
such as EMD 87580 did not protect against ischemia–reperfusion
injury, and no additive protection beyond preconditioning was
obtained (Kingma, 2018). It appears that NHE1 activity has
a biphasic effect on myocardial function. Total blockage of
activity provides a beneficial effect, but overexpression also
provides cardioprotection. It is important to point out that the
mitochondrial KATP channel also plays an important role during
ischemia and reperfusion damage (Garlid et al., 1997; Sato and
Marban, 2000). The mitochondrial damage, which is in part
a consequence of closure of KATP channels, can be partially
reversed by mitochondrial KATP channel openers (Xiao and
Allen, 2003). Combined treatment of NHE1 by Cariporide and
KATP channels by diazoxide provide the most beneficial effect
(Xiao and Allen, 2003).

It is interesting to note that the cardioprotective effects of the
NHE1 inhibitor, Cariporide, were tested in several clinical trials
to protect the heart from ischemia during coronary artery bypass
surgery (CABG; Boyce et al., 2003; Mentzer et al., 2008). While
Cariporide (at its highest dose of 120 mg) provided protection
against all-cause mortality and myocardial infarction at day 36
and 6 months after CABG compared to placebo, there was
an increased mortality in the form of cerebrovascular events.
Thus, Cariporide was not further developed for clinical use as a
cardioprotection agent.

SODIUM TRANSPORT INHIBITORS IN
TREATMENT OF DIABETIC
CARDIOMYOPATHY

The NHE1 are integral membrane proteins that may have
multiple activities in the heart. Nine different NHEs have been
identified. NHE1 is the major isoform found in the heart, and
plays an integral role in regulation if intracellular pH, Na+ and
Ca2+. Aberrant regulation and over-activation of NHE1 can

contribute to heart disease and appears to be involved in acute
ischemia–reperfusion damage and cardiac hypertrophy. Changes
in intracellular pH related to changes in NHE1 function can
stimulate the Na+/Ca2+ exchanger to eliminate intracellular Na+
and increase intracellular Ca2+ (Levitsky et al., 1998; Odunewu-
Aderibigbe and Fliegel, 2014).

Pharmacological overload caused by angiotensin II,
endothelin-1, and a1-adrenergic agonists can enhance the activity
of the NHE1, which leads to an extrusion of H+ and an increase
in intracellular Na+. Inhibition of NHE1 can reverse these
effects and lead to regression of myocardial hypertrophy that
can produce a beneficial effect in heart failure, and can protect
against ischemic injury in genetic diabetic rat and non-diabetic
rat hearts. However, at present, there are no NHE1 inhibitors
that have been found to be therapeutically useful in the treatment
of heart disease (Ramasamy and Schaefer, 1999; Cingolani and
Ennis, 2007).

More recently, during studies of newer anti-diabetic drugs
on cardiac function, it was found that Na+-glucose exchangers
used in the treatment of diabetes provided significant cardiac
protection. Further investigation into the potential etiology
of this protection suggests that at least one of these drugs,
Empagliflozin (EMPA) may produce this affect via inhibition of
NHE1. This protective effect is apparently unrelated to EMPA
effect on HbA1C. In two animal models (rabbit and rat), the effect
appears to be related to decreases in cytoplasmic Na+ and Ca2+

and an increase in mitochondrial Ca2+. It is unclear what the
effects are due to in humans, but some evidence suggests that
they may be similar (Baartscheer et al., 2017; Lytvyn et al., 2017;
Packer, 2017; Packer et al., 2017; Bertero et al., 2018; Inzucchi
et al., 2018).

SUMMARY

The data presented in this review paper suggest that while
changes in bioenergetic function may be a cause of ion transport
abnormalities, it is as likely that abnormalities of ion content
and transport may contribute to metabolic (bioenergetics and
respiratory function) abnormalities. The results also suggest
that increased [Na+]i concentration in DM cardiomyocytes
may be a factor, leading to chronically decreased myocardial
bioenergetics. Further studies in this area may provide insight
into some possible cellular and mitochondrial mechanisms which
contribute to progressive pathophysiological processes as disease
progresses and may set the stage for better therapies in future.
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