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Abstract: Worldwide, the ocurrence of acute subdural hematomas (ASDHs) in road traffic crashes
is a major public health problem. ASDHs are usually produced by loss of structural integrity of
one of the cerebral bridging veins (CBVs) linking the parasagittal sinus to the brain. Therefore,
to assess the risk of ASDH it is important to know the mechanical conditions to which the CBVs
are subjected during a potentially traumatic event (such as a traffic accident or a fall from height).
Recently, new studies on CBVs have been published allowing much more accurate prediction of
the likelihood of mechanical failure of CBVs. These new data can be used to propose new damage
metrics, which make more accurate predictions about the probability of occurrence of ASDH in road
crashes. This would allow a better assessement of the effects of passive safety countermeasures and,
consequently, to improve vehicle restraint systems. Currently, some widely used damage metrics
are based on partially obsolete data and measurements of the mechanical behavior of CBVs that
have not been confirmed by subsequent studies. This paper proposes a revision of some existing
metrics and constructs a new metric based on more accurate recent data on the mechanical failure of
human CBVs.

Keywords: bridging veins; TBI; injury metrics; damage metrics; biomechanics; strain rate dependent
materials

1. Introduction

Road traffic crashes and their sequelae are a major problem of Public Health [1]. Every
year more than one million people pass away in road traffic collisions and, worldwide,
about ten million people are injured or disabled by these traumatic events [2]. A large
number of road traffic fatalities are associated with traumatic brain injuries (TBI). About
a 33.6% of the road traffic injuries produce some type of TBI (the exact figure varies
from region to region, ranging from 28.9% in Northern America to 34.4% in Africa) [3].
Globally, the total number of TBI events due to all causes affects worldwide between 64 and
74 million people suffer some form of TBI each year. One of the most common severe types
of TBI is acute subdural hematoma (ASDH), caused by rupture of blood vessels connecting
the sagittal sinus to the brain [4]. The incidence of ASDH in all non-missile head injuries
ranges from 26% to 63% [5,6], and the mortality rate ranges from 30% to 90% [7]. These
figures suggest that road crashes cause some 16 million events with subdural hematoma,
1.25 million being severe cases. Due to these figures, it can be concluded that ASDH
represents an important part of the Public Health problem of road traffic crashes.

Within the automotive industry, a common approach to mitigate TBI occurrence has
been the inclusion of passive and active safety systems, as well as the improvement of
restraint systems, to minimize the accelerations and stress to the body in a traffic collision.
Different crash tests, as well as finite element models, were used to assess the effectiveness
of these countermeasures. Specifically, in the research of the effects of road collisions, the
so-called finite element head models (FEHMs) have been used [8,9]. FEHMs can estimate
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from the acceleration data from real crash tests how much stress is induced on the various
parts of the body and in particular on the anatomical structures contained within the skull.
The computational results obtained from FEHM can be compared with the estimated limits
of mechanical strength conducted on biological tissues. Therefore, the FEHMs allow the
evaluation of risk indexes, also called injury metrics, from which the probabilities of injury or
mechanical failure in different structures of the brain can be calibrated. This is the approach
followed in this article. Injury metrics can improve the design of restraint systems and can
provide reference values for limits in vehicle regulations [10].

For these injury metrics to make accurate predictions, more and better constitutive
models are needed for the mechanical behavior of tissues. Moreover, accurate empirical
data are needed to establish the physiological ranges of strength of anatomical structures
located inside the head. Such data can only be obtained by direct mechanical testing on
biological tissue specimens.

In this article, we will focus on some of the most widely used injury metrics to
assess the probability of ASDH occurrence. Statistical analysis will lead to propose an
improvement of existing metrics and even a new injury metric based on more recent data
and with higher accuracy than the data available when some of the initial injury metrics
were proposed. In addition, it will be shown along the paper, that there are new usable
data to improve predictions about the occurrence of ASDH for traumatic events. This
improvement in prediction could be used to improve vehicle regulations and restraint
systems in order to have an impact on public health: regulatory changes in vehicle safety
systems and improved design of restraint systems, would reduce ASDH figures associated
to road traffic crashes.

2. Data and Methods
2.1. Materials and Data

For this study, previously published data of human cerebral bridging veins (CBVs)
obtained by the authors themselves [11] and by other authors [12] were used.

For moderate strain rate, the data were previously obtained by the authors themselves
from tensile tests of CBVs. These specimens were dissected from different sections of the
meningeal-cortex space, obtained from nine autopsies of post-mortem human subjects
(PMHS) conducted in the Forensic Pathology Service of the Legal Medicine and Forensic
Science Institute of Catalonia For high or very high strain rate, the data published by
Monea et al. [12] were used. Specifically, the data chosen were the tensile tests with strain
rate in the range of 10 < ε̇ < 150 s−1. This strain rate range chosen is because simulations
of pedestrian collisions show that the observed range of strain rate during the traumatic
event rarely exceeds 200 s−1).

2.2. Injury Metrics

An injury metric to assess TBI is a real-valued functional which depends on the linear
acceleration of the skull a(t) and the rotational acceleration of the skull α(t) which is used
to estimate the probability of a specific type of TBI.

In practice, two types of injury metrics are commonly used for injury prediction:
empirical metrics and analytical metrics. Empirical metrics are simpler and can be computed
from purely kinematic data, while analytical metrics compute an injury measure based on
simulated strain or stress in tissue structures, by means of an adequate FEHM. In this article,
we compare three analytical injury metrics and their predictions for a computational dataset
calculated using the SIMon model, a FEHM developed by Takhounts and coworkers [13,14].

In addition, there are some mathematical properties that make a metric suitable, which
we will examine for the three metrics. As a mathematical functional, the suitable prop-
erties of an injury metric are scalability, continuity and convexity [15] (see Appendix A).
Scalability and continuity are intuitive, while convexity is required for the existence of an
acceleration curve which minimizes the damage under specific conditions and, therefore,
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the value of the injury metric. Specific attention was placed on ensuring that the proposed
metrics and enhancements to existing ones satisfy these suitability requirements.

The occurrence of ASDHs associated with traumatic events is clearly correlated to the
mechanical failure of cerebral parasagittal bridging veins (CBVs). The mechanical failure
of a blood vessel of this type generally causes a major hemorrhage in the meningeal-cortex
space, resulting in an ASDH, a potentially life-threatening situation for the subject who has
suffered the traumatic event.

The most widely used metric for estimating the probability of mechanical failure of
CBVs has been the relative motion damage measure (RMDM), first introduced in 2003 [13,16].
This metric can be written as:

RMDMt = max
k∈Nv

〈εk(t)〉+
Eu(log10 ε̇k(t))

(1)

where Nv = {1, . . . , n} is the set of CBVs used in the model, 〈·〉+ are the Macaulay
brackets, used to define the ramp function 〈x〉+ = max{0, x}, εk(t) the instantaneous
strain of kth vein, Eu(x) = 0.0608x2 − 0.4414x + 0.9872 is the Löwenhielm-Takhounts
failure function [13,17], and ε̇k(t) the kth strain rate.

This metric has been extensively used in many subsequent empirical and theoretical
studies which showed the usefulness of RMDM for assessing traumatic events [15,18–21].
The basic idea of this metric was to calculate the strain value of the CBVs and compare the
obtained value with the value Löwenhielm–Takhounts failure function at the instantaneous
strain rate. However, there is a problem with the original data, as Löwenhielm himself
in a later study discarded the dependence on strain rate from their previous work due to
methodological problems [22]; this fact seems to have been largely ignored in the literature
using RMDM to assess ASDH risk. Moreover, Löwenhielm found that the ultimate strain
was reduced from about 70% to 20% with increasing strain rate from 1 s−1 to 1000 s−1,
although other much more recent studies, using better measurement techniques, show a
slight increase in ultimate strain with strain rate [11,12], contradicting the original findings
of Löwenhielm.

In fact, it is important to note that, after Löwenhielm’s work, a good number of
published studies of the mechanical properties of CBVs have been done [11,12,23–25]. All
the newer studies have much better precision data than the first studies, essentially due to
improved measurement accuracy, so these data can be properly used to propose a more
accurate and suitable injury metric.

2.3. Proposed Injury Metric

As mentioned before, RMDM used the idea that excessive stretching along the longitu-
dinal direction of a CBV was the cause of its mechanical failure. Furthermore, a conjecture
on how ultimate strain decreases with increasing strain rate in Löwenhielm’s empirical
data [13,17] led to define the RMDM as the ratio of the instantaneous strain to the expected
value of ultimate strain. Actually, the same idea can be applied to longitudinal stress and
ultimate stress (or, equivalently, to current axial force and ultimate axial force). Recent
data show that the ultimate stress Su depends on the strain rate [11,25], and a statistical
analysis of the expected value of Su and its variation in terms of the strain rate allows to
build new injury metrics on more accurate and precise recent data than the available data
from Löwenhielm. Let E(Su|ε̇) be the expected value of ultimate strain Su, given a strain
rate ε̇, then, a possible injury metric would be to divide the instantaneous stress by the
expected value for ultimate stress at the current strain rate. In Section 3.1, it is shown that
Su = S∗u · φ(ε̇) so an analysis of the intrinsic magnitude S∗u provides the adequate expected
value (see Section 3.2).

The above reasoning allows us to construct a risk index for a single CBV. However,
in the brain there are more than a dozen of CBVs, and to assess the possibility of a
ASDH would require an analysis of the probability that at least one vessel connecting
the parasagittal sinus to the brain presents a mechanical failure. In a traumatic event in
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which the skull and brain undergo large accelerations, the probabilities of failure of the
different CBVs are not independent, because the axial forces experienced by the veins
depend on the global forces produced in the interaction of the whole brain and skull.
Although if we know the forces to which each individual CBV is subjected, a common
situation in FEHM simulations, then it turns out that the conditional expected values
E(Su,i|ε̇i, Fi) for the mechanical failure of each CBV with respect to its strain rate and the
applied force are independent variables (since the failure of a specific CBV after having
exceeded its strength limit does not affect the other CBVs). Now, let us call pi(Fi, ε̇i) the
probability of failure of the i-th CBV (estimated from empirical data in Section 3.2), knowing
the values of the applied axial force and strain rate, and suppose that there are n = |Nv|
specimens of CBVs in the whole brain; then the probability P0 of no ASDH would be
equivalent to none of the CBVs exhibiting mechanical failure. Therefore, the probability
of no ASDH would be the product P0 = (1 − p1) . . . (1 − pn) and the complementary
probability (1− P0) would be the probability of occurrence of an ASDH because any of the
n CBVs exhibited mechanical failure. Thus, we have for the probability of occurrence of
an ASDH:

P(ADSH|F, ε̇) = 1− (1− p1) . . . (1− pn) = 1−
n

∏
i=1

(1− pi(Fi, ε̇i)) (2)

where F = (F1, . . . , Fn) is the array of axial forces and ε̇ = (ε̇1, . . . , ε̇n) is the set of strain
rates of the CBVs. If we designate the Cumulative Distribution Function (CDF) for the
strength ΦF∗u , estimated from empirical data (see Section 3.2), the value of the strength that
equals the probability in (2) will be the new risk measure we call Bridging Vein Damage
Metric (BVDM):

BVDM = Φ−1
F∗u

(P(ADSH|F, ε̇)) (3)

It is interesting that the specific empirical form of the distribution ΦF∗u leads to a closed,
logical and very manageable formula for BVDM, see Equation (9).

With resecto to the estimated risk, it is important to note that some studies using
RMDM simply take the risk of ASDH as the highest value of this injury metrics, but that
underestimates the risk. If we go back to the Equation (2), it can be easily shown by
induction that for 0 < pi < 1:

(1− p1) . . . (1− pn) ≥ max{p1, . . . , pn} (4)

In fact, only when one of the probabilities is much larger than the others are, then the
following approximation is possible:

(1− p1) . . . (1− pn) ≈ max{p1, . . . , pn} = pmax (5)

but when all the CBVs have similar and relatively high risks P(ADSH|F, ε̇) >> pmax. i.e.,
the overall risk of ASDH can be much higher than the risk estimated only from the bridging
vein in the most critical situation. This allows us to give an improved version of RMDM,
the RMDM∗eq, calculated as:

RMDM∗eq = φ−1(1− (1− φ(RMDM1)) . . . (1− φ(RMDMn)) (6)

where φ(RMDM) is the probability of failure for a CBV from the RMDM risk curve. The
risk curve was estimated with empirical data in [13]. From the same risk curve, we estimate
the probabilities p̂i = φ(RMDMi) of independent failure of each CBV from its specific
RMDMi value.

3. Results

This section details how to separate the effect of intrinsic factors from effect of the
strain rate ε̇ on the ultimate stress Su of a CBV specimen (Section 3.1). This separation
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allowed us to find the intrinsic ultimate stress, on which the damage metric is built. For
this purpose, the probabilities of finding an ASDH due to mechanical failure of some CBV
are calculated (Section 3.2). Finally, a comparison between the predictions of RMDM and
BVDM is presented in Section 3.3.

3.1. Dependence of Ultimate Stress on Strain Rate

For low strain rate, the analysis of empirical data for ultimate stress Su shows a
significant increasing trend (p < 0.001) of this magnitude with strain rate (see Figure 1).
The data from Monea et al. also show such an increasing trend [12], although in the
range studied 50 < ε̇ < 200 s−1 the effect of strain rate does not reach to be significant.
This suggests that there is a significant increase in Su for low strain rate, but that effect is
“saturated” for values of the strain rate ε̇ > 10− 25 s−1, as shows Figure 2.

Figure 1. Scatterplot of ultimate stress vs. strain rate for low values of strain-rate a significant relation
exists (p-value < 0.001).

For this reason, a strain-rate dependence function (SRDF) ϕ(ε̇) is constructed, which
interpolates the high sensitivity of Su at low strain rate, with the relative insensitivity of
the same magnitude at high strain rate. In particular, the following factorization is used:

Su = S∗u · ϕ(ε̇) = S∗u
[
α0 − (1− α0)(1− e−γε̇)

]
(7)

The first factor S∗u is called the intrinsic ultimate stress and the second one, in square
brackets, is the SRDF ϕ(ε̇), which captures the average effect of the strain rate (the fitted
values for the parameters are α0 = 0.256 and γ = 1.721). Thus, it is proposed that the
maximum stress supported by a specimen of CBV is a combination of two types of factors:
the intrinsic factors of the specimen quantified by S∗u, and the effect of the strain rate that
is accounted for by the SRDF given by Equation (7). Note that the same equation implies
that α0 < ϕ(ε̇) < 1. Furthermore, the factorization proposed in Equation (7) allows to
statistically analyze the intrinsic mechanical failure of each CBV specimen by looking for
the distribution function of the S∗u variable.
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Figure 2. The nonlinear relation of ultimate stress and strain rate, for higher values of strain-rate
ε̇ > 10 s−1 the ultimate stress seems independent of the strain rate. The SRDF ϕ(ε̇) is proportional to
the black dotted line.

3.2. Distribution of the Intrinsic Ultimate Stress

It is a well-known fact that when examining a population of the same type of force-
resistant elements possessing a certain micro-structure, the ultimate stress is often dis-
tributed according to a generalized extreme value distribution (GEV distribution). In-
terestingly, the fundamental theorem of extreme value theory (EVT), the Fisher–Tippett–
Gnedenko theorem [26], has its origin in observations of ultimate strength, since the British
statistician L. H. C. Tippett working for the British Cotton Industry Research Association
developed some of the basic ideas of EVT when he dealt with the problem of textile fiber
strength [27,28]. Similarly, EVT considerations seem to explain why in many practical
situations the ultimate stress of many ceramic materials is given by a Weibull distribu-
tion [29–31], which is a particular case of GEV. Even in collagenous fabrics, there are
theoretical reasons to expect the ultimate stress to conform to a GEV distributiib [32].

A total sample of N = 52 values of pairs (ε̇, Fu) were used for the statistical analysis.
From the known axial force values, the probability distribution functions were sought for
the values of the ultimate axial force (Fu = Su · A, being A the cross-section area of the CBV
and the intrinsic ultimate axial force F∗u = S∗u · A = Fu/φ(ε̇), see Equation (7). Figure 3
shows the distributions for both variables: Fu and F∗u . The larger variance found for Fu is
due to the fact that the effect of the strain rate is not being taken into account. When F∗u is
considered instead of Fu, the coefficient of variation (CV = standard deviation/average) is
reduced from CV = 0.450 (for Fu) to CV = 0.293 (for F∗u ). The larger variance in Fu is due to
the variation associated with different values of strain rate.
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Figure 3. Comparison of the distributions for the ultimate axial force (Fu) and the intrinsic ultimate force (F∗u ).

From all the distributions which were examined, the distribution that better represents
the data was a Weibull distribution, confirming the expectations mentioned at the beginning
of this section. Thus, the CDF for the intrinsic ultimate axial force is F∗u :

ΦF∗u (F) = P(F∗u ≤ F) = 1− e−(F/F0)
p

(8)

where the fitted values for the parameters are: F0 = 1.197 [N] for the scale parameter and
p = 3.974 for the shape parameter. The p-values obtained in the goodness-of-fit tests to a
Weibull distribution were high, corroborating that the Weibull distribution can adequately
represent the data: for the Kolmogorov–Smirnov test the p-value was 0.962 and for the
chi-squared test (χ2) the p-value was 0.958. Figure 4 shows the form of the CDFs for Fu
and for F∗u . The CDF for F∗u coincides with Equation (8).

Figure 4. Comparison of the Cumulative Distribution Function (CDF) for the ultimate axial force (Fu) and the intrinsic
ultimate force (F∗u ), red line: Weibull distribution, green line: empirical distribution function.

Once the probability of mechanical failure for an individual CBV is known, the
problem of finding an injury metric that considers the possible damage in n independent
CBVs is easy. The problem was discussed in Section 2.3, where the Equation (3) was
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proposed. Interestingly, the fact that CDF for the intrinsic force ΦF∗u is a Weibull distribution
implies that the BVDM is given in a natural way by an p-norm of the intrinsic axial forces:

BVDM = max
t∈R
‖F∗(t)‖p = max

t∈R
(|F∗1 |p + · · ·+ |F∗n |p)

1/p (9)

This formula is proved in Appendix A. In the Formula (9), the intrinsic axial forces are
given by the ratio of the nominal axial force by the SRDF, i.e., F∗i = Fi/ϕ(ε̇i), so the above
equation can be written in terms of ordinary axial forces as:

BVDM = max
t∈R

(
n

∑
i=1

∣∣∣∣ Fi(t)
α0 − (1− α0)(1− e−γε̇i )

∣∣∣∣p
)1/p

(10)

It is clear that BVDM is a scalable and continuous function. Moreover, in the Appendix A
it is justified that, for p ≥ 1, it is also a convex function, under some reasonable assumptions.
All these properties make BVDM a mathematically suitable metric in the sense of [15]. As for
the suitability of RMDM, it was previously discussed in the same reference.

3.3. Comparison of the Metrics in a Fall from a Height

In order to compare the above metrics (the conventional RMDM, the equivalent global
RMDM∗eq of Section 2.3, and the proposed new metric BVDM), some simulations were
conducted. We considered the fall of a person from a certain height, being hit on the head
first and, as a consequence, being stopped by the ground. More specifically, we used the
SIMon FEHM [14] to simulate the fall of a person of 1.80 m falling from a height of 2.50 m.
The center of gravity of the person follows a parabolic trajectory, while the body is rotating
at ω = 2.86 s−1. The ground is tough and has a ballast stiffness of kb = 40 N/cm3. The
vertical component of the impact velocity of the head is Vy = 6.495 m/s and the horizontal
component is Vx = 0.214 m/s. The kinematic data were incorporated into the SIMon
FEHM which calculated strain, stress and axial forces in the different anatomic parts of the
head. The axial force curves computed by the FEHM for each of the n = 14 CBVs of the
SIMon model are shown in Figure 5.

Figure 5. Axial Forces on the CBVs of the SIMon model (FEHM), computed for the described fall
from a height of 2.5 m against a ground of ballast stiffness kb = 40 N/cm3. One line is presented for
each pair of CBVs of the FEHM. Each color line represents a different CBV, the forces differ because
the CBVs are located in different parts of the brain.
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From the axial force and strain rate values, the instantaneous values of RMDMt,
RMDM∗eq,t and BVDMt were computed. Figure 6 shows the evolution over time of the
probabilities predicted by the last two metrics (RMDM is qualitatively similar to RMDM∗eq,
although smaller in magnitude, because of this, its predicted probability is not represented).
The maximum probability over time is obtained for the maximum of the instantaneous
values of RMDMt and BVDMt. The maximum probability for each injury metric, in Figure 6,
is the estimated probability of the occurrence of an ASDH during head-on-ground impact.

Figure 6. Comparison of the predictions of RMDM∗eq and the BVDM, at the beginning of the traumatic
event both metrics make similar predictions, but towards the end, when the head rebounds and the
axial forces stabilize, the predictions differ considerably.

From Figure 5, we see that initially, when the head hits the ground, the largest forces
are registered, and the elastic compresive waves shake the brain mass inside the skull
walls. Regarding the comparison between RMDM and BVDM, in the initial phase, up to
0.25 ms (see Figure 5), the RMDM∗eq and BVDM predictions run almost parallel and the
maximum ASDH probabilities reach 47.5% and 50.0%. During the next phase, where the
head rebounds from the ground, the brain mass is compressed and the CBVs together with
the skull stretch it. In this phase the force of the most requested CBV is 40% of the value in
the initial phase, and the strain rate is considerably lower, and the RMDM and the BVDM
differ markedly, since they treat the strain rate effect in a different way: the Löwenhielm-
Takhounts failure function, inside Equation (1) and the SRDF inside Equation (7) differ
considerably. Due to this, the risk predicted by RMDM, when the strain rate is low for
t > 0.100 s, is considerably smaller than the risk predicted by BVDM.

4. Discussion

The use of injury metrics to assess the likelihood of injury has been a growing trend
over the past few decades [33–36]. In fact, a large number of injury metrics has been
proposed: for diffuse axonal damage [37,38], for concussion [39], for rib breakage and
thorax deformation [40,41], and even for whiplash or vertebral fracture [42]. However, the
mechanical failure of CBVs has been comparatively less studied. The only widely used
injury metric or risk index to assess the likelihood of ASDH is the RMDM [13–15]. However,
the empirical data from Löwenhielm which were used to construct RMDM [13,17] are in
question, as it appears that many authors have not found ultimate strain to decay noticeably
with strain rate in the range 10 < ε̇ < 150 s−1 [11,12,22,25]. Using recent data, it has been
found that at low strain rate ε̇ < 2 s−1, Su, increases significantly [11] and from ε̇ > 10 s−1

no significant changes are detected [12]. This agrees with the case of other tissues, where
the ultimate strength also increases with strain rate [43].

For our analysis, an estimation of the CDF for both the ultimate stress Su and the
ultimate axial force Fu was made from the empirical data of recent studies of CBVs. More-
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over, the same data allowed us to distinguish the effect of intrinsic factors, independent of
the strain rate and affecting the failure of the CBVs, from the average effect of the strain
rate itself. Because of this, it was easy to find a CDF for the so-called intrinsic axial force
F∗u . In fact, this latter CDF had a lower dispersion and presents a better fit to an expected
distribution for mechanical failure (a GEV distribution). This suggests that factoring the
strain rate effect is on the right track, as it allowed us to better pinpoint the mechanical
failure probabilities of the CBVs. For our analysis, we preferred to use the ultimate axial
force Fu since the cross-sectional area of the CBVs also varies markedly and seemingly
randomly between individuals, so the Su data present a variability practically as large
as that of Fu. That is why in this paper we chose to work with force measures rather
than stress measures, as they are more direct, simple to obtain and directly comparable to
mechanical test data. It also turns out that many FEHMs use reduced models for CBVs and
only compute the value of the axial force F. For all these reasons, the proposed new metric
BVDM (9) has been formulated in terms of axial forces. However, with trivial modifications
the approach followed here would be applicable to empirical data based on ultimate stress
and thus, does not detract from the generality of the paper’s approach. In recent years,
FEHM modeling the CBV complex in a more realistic way have appeared [8,9,44,45], and
in these FEHMs the above approach can be applied just replacing ultimate axial forces with
ultimate stress.

Another interesting point of our analysis is the distinction between local risk (failure
in a specific CBV) and global risk (failure in any of the existing CBVs). Since any of the
n CBVs within the brain surface could lead to an ASDH, the individual probabilities of
failure of each CBV must be combined to assess the global risk of ASDH. In fact, in many
cases it is insufficient to consider the risk of ASDH as the risk of the most critical CBV
(especially if several CBVs have a moderate and relatively similar level of risk). For the
case of the ultimate intrinsic axial force, this probabilistic analysis leads to an injury metrics
that is a scalable, continuous and convex function of the forces, that is particularly simple
(p-norm in the space of ultimate axial forces), as the experimental failure data seem to be
given by a Weibull distribution.

This combination of individual risks in the overall aggregated risk is important,
since, in addition to SIMon FEHM which includes 7 element pairs for the CBVs, most
recognized FEHMs use multiple elements to model the CBVs. In this sense, the KTH FEHM
(S. Kleiven) [46] uses 11 pairs of CBVs, the UCDBTM (University College Dublin) [47,48]
also uses 11 pairs, the WSUBIM (Wayne State University) [49] uses 8 pairs, and the YEAHM
(University of Aveiro) uses 9 pairs [9,50]. This last FEHM substantially improves both the
geometrical and mechanical realism of the CBVs.

In addition, a comparison of the overall risk calculated using RMDMmax, RMDM∗eq and
the proposed new injury metric, BVDM, has been presented. This comparison estimates
the risks for a fall from height where the head strikes a floor of known stiffness, using the
SIMon FEHM to calculate internally induced forces for CBVs. The comparison showed that
ASDH probabilities estimated from RMDM and a reduction in ultimate strain can differ
markedly from predictions based on more recent data based on ultimate stress or ultimate
axial force.

A limitation of the empirical data used is that viscoelastic effects in CBVs have been
insufficiently studied [25]. Moreover, failure data available correspond to loading curves
in which the strain rate is approximately constant. However, as shown in Figure 5 at the
beginning of a strong head impact highly oscillating values of the force are observed, partly
because the existing FEHMs do not model any viscoelastic effect in CBVs. That could
be producing somewhat larger instantaneous force peaks than the actually existent ones.
It should also be investigated whether the deduced failure force for monotonic loading
curves needs some correction because of the viscoelastic preconditioning also discussed
in [25,51].

For these reasons, further work is needed to corroborate whether in mechanical
tests with PMHS the BVDM that frequently predicts a higher risk than the RMDM for
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low strain rate could outperform the metrics currently in use. At the present stage and
based on experiments on isolated CBVs, it is not completely sure to say that BVDM will
perform better than RMDM, even if it is based on recent measurements and with lower
measurement errors.

5. Conclusions

The number of ASDH occurrences due to road traffic crashes constitute an important
Public Health issue. Although the usual approach of automotive industry based on injury
metrics seems well founded from a theoretical point of view, it should make use of most
recent data on the mechanical properties of CBVs, because the measurements in more
modern tests are more accurate. Specifically, the injury metric most commonly used to
predict ASDH is based on old data that subsequent research does not seem to have validate.
Therefore, FEHMs are very helpful to figure out whether a metric based on more modern
and accurate constitutive model data is better than the old ones. Here, the BVDM has been
proposed to make more accurate predictions, and providing an additional guide for the
design of restraint systems.

This paper explains how to use modern data to find intrinsic forces and stress, inde-
pendent of strain rate, which can be used to construct a new injury metric that satisfies
the reasonable mathematical requirements for any injury metric. All these improvements
could play a role in vehicle regulations that would eventually reduce the percentage of
more serious TBI cases in which ASDH appears as a consequence of road traffic crashes.
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Appendix A. Suitability of BVDM

In this appendix, we show how the Formula (3) leads to Formula (9), when the
variables involved are distributed according to a Weibull distribution. Moreover, we justify
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here that the metric associated with Equation (9), the BVDM, is a scalable, continuous and
convex functional.

With respect to deduction of Formula (9), note that the CDF of the intrinsic axial force
F∗u has the form:

pi = ΦF∗u (Fi) = 1− e−(Fi/F0)
p

(A1)

substituting this formula in the initial product of the Equation (4), it follows that:

(1− p1) . . . (1− pn) = e−(F1/F0)
p

. . . e−(Fn/F0)
p
= e−[(F1/F0)

p+···+(Fn/F0)
p ] (A2)

and since the inverse of the function of (A1) is given by:

Φ−1
F∗u

(q) = F0[− ln(1− q)]1/p (A3)

We have that, introducing the final part of the Equation (A2) in Equation (A3), we
get that:

Φ−1
F∗u

(
1− e−[(F1/F0)

p+···+(Fn/F0)
p ]
)

= F0

[(
F1
F0

)p
+ · · ·+

(
Fn
F0

)p]1/p

= F0
|F0|

[
Fp

1 + · · ·+ Fp
n

]1/p

This is precisely the basic form contained in Equation (9).
As for the suitability of injury metrics (9), we justify that this metric is scalable,

continuous and convex. For this purpose, we make the natural assumption that the stress
tensor of the CBVs (σ depends continuously on the accelerations imposed on the skull
(a(t), α(t)), since the stress is obtained from an equation in partial derivatives where the
skull accelerations appear in the form:

div(σ) + b = ρ
∂v
∂t

= ρa (A4)

In addition, we note that, when the accelerations are rescaled by λ > 1, i.e., by
imposing (λa(t), λα(t)) on the skull, the volume forces change as follows b 7→ bλ =
b0 + b1λ + b2λ2 [15], where b0 represents all the terms independent of acceleration (ba-
sically weight), b1 depends on the linear acceleration of the center of mass (the Euler
and the Coriolis accelerations), and b2 depends on the centripetal acceleration. It should
also be noted that the forces in the skull are continuous functions of linear and angular
accelerations, i.e., Fi = fi(a, α).

For points on the periphery of the brain, we should expect those terms to have the
same sign and thus always increase stress in each and every CBV. Convexity is more
difficult to justify without additional assumptions. For example, wa admit that the axial
force on each of the CBVs is itself a convex functional of the imposed accelerations (this is
difficult to prove explicitly, given the complexity of FEHMs, but seems consistent with the
observed facts). Assuming this property, it is immediate to show that the BVDM leads to
a convex metric, since the p-norm (|x1|p + · · ·+ |xn|p)1/p is always a convex function for
p ≥ 1, indeed as a vector norm over Rn it is continuous and convex:

‖(1− λ)x + λy‖p ≤ (1− λ)‖x‖p + λ‖y‖p

for 0 < λ < 1 and x, y ∈ Rn. Trivially, this function is also scalable, since ‖λx‖p =
|λ|‖x‖p > ‖x‖p, for λ > 1.
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