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Abstract: Reversible protein phosphorylation at serine, threonine and tyrosine is a well-known
dynamic post-translational modification with stunning regulatory and signalling functions in
eukaryotes. Shotgun phosphoproteomic analyses revealed that this post-translational modification is
dramatically lower in bacteria than in eukaryotes. However, Ser/Thr/Tyr phosphorylation is present
in all analysed bacteria (24 eubacteria and 1 archaea). It affects central processes, such as primary and
secondary metabolism development, sporulation, pathogenicity, virulence or antibiotic resistance.
Twenty-nine phosphoprotein orthologues were systematically identified in bacteria: ribosomal
proteins, enzymes from glycolysis and gluconeogenesis, elongation factors, cell division proteins, RNA
polymerases, ATP synthases and enzymes from the citrate cycle. While Ser/Thr/Tyr phosphorylation
exists in bacteria, there is a consensus that histidine phosphorylation is the most abundant protein
phosphorylation in prokaryotes. Unfortunately, histidine shotgun phosphorproteomics is not possible
due to the reduced phosphohistidine half-life under the acidic pH conditions used in standard
LC-MS/MS analysis. However, considering the fast and continuous advances in LC-MS/MS-based
phosphoproteomic methodologies, it is expected that further innovations will allow for the study of
His phosphoproteomes and a better coverage of bacterial phosphoproteomes. The characterisation
of the biological role of bacterial Ser/Thr/Tyr and His phosphorylations might revolutionise our
understanding of prokaryotic physiology.

Keywords: bacteria; Ser/Thr/Tyr phosphorylation; His phosphorylation; phosphoproteomics;
differentiation; sporulation; LC-MS/MS

1. Introduction

Phosphoproteomics involves the analysis of a complete set of phosphorylation sites present
in a cell. It has undergone a revolution since 2000, thanks to the advances in mass spectrometry
(MS) based phosphoproteome methodologies. Large datasets describing the phosphoproteomes of
several organisms were created. While nine amino acids (Ser, Thr, Tyr, His, Lys, Arg, Asp, Glu and
Cys) can be modified by four types of phosphate protein linkages, only the phosphorylations at
Ser, Thr and Tyr have been extensively characterised and associated with stunning regulatory and
signalling cellular functions, especially in eukaryotes [1]. For instance, the human phosphoproteome
harbours more than 30,000 Ser/Thr/Tyr phosphorylation sites [2]. Bacterial proteins can also be
phosphorylated at Ser/Thr/Tyr, but to a much lesser extent. To date, 38 Ser/Thr/Tyr phosphoprotemic
studies on bacteria have been reported, describing the phosphoproteome of 24 species of eubacteria
and one species of archaea (Halobacterium salinarum) (Table 1). Mycobacterium tuberculosis harbours
the largest bacterial pohosphoproteome described as consisting of 500 Ser/Thr/Tyr phosphorylation
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sites from 257 proteins [3]. Bacterial Ser and Thr phosphorylation (average abundances of 59% and
34.1% for Ser and Thr, respectively) is much more abundant than Tyr phosphorylation (average
abundance of 9.9%) (Table 1). While Ser/Thr/Tyr phosphorylation exists in bacteria, there is a
consensus about that histidine phosphorylation is the most abundant protein phosphorylation in
prokaryotes [4]. However, these residues have almost not been subjected to phosphoproteomic analyses.
There have only been three studies describing bacterial histidine phosphoproteomes [5–7]. This is
a consequence of the acid lability of the histidine phosphate linkage, which is not compatible with
most of the proteomic liquid chromatography tandem–mass spectrometry (LC-MS/MS) protocols.
Protein phosphorylation at amino acid residues, other than Ser/Thr/Tyr or His, is less abundant and has
been poorly characterised. In this work, we review the state of the art and the challenges of bacterial
Ser/Thr/Tyr and His phosphoproteomics.

Table 1. Bacterial Ser/Thr/Tyr phosphoprotemic studies. Abbreviations: n.r., not reported;
Ch, chemoheterotrophic.

Bacterium Year pSer (%) pThr (%) pTyr (%) Reference

Bacillus subtillis 2007 69.2 20.5 10.3 [8]
Escherichia coli (E. coli) 2008 68 23 9 [9]

Lactococcus lactis 2008 46.5 50.6 2.7 [10]
Klebsiella pneumoniae 2009 31.2 15.1 25.8 [7]

Pseudomonas aeruginosa/putida 2009 52.8 36.1 11.1 [11]
Halobacterium salinarum 2009 84 16 0 [12]

Mycobacterium tuberculosis 2010 40 60 0 [3]
Streptomyces coelicolor 2010 34 52 14 [13]

Streptococcus pneumoniae 2010 47 44 9 [14]
Bacillus subtilis 2010 n.r. n.r. n.r. [15]

Neisseria meningitidis 2011 n.r. n.r. n.r. [16]
Streptomyces coelicolor 2011 46.8 48 5.2 [17]
Listeria monocytogenes 2011 93 43 7 [18]

Helicobacter pylori 2011 42.8 38.7 18.5 [19]
Clostridium acetobutylicum 2012 40 50 10 [20]

Rhodopseudomonas palustris (Ch) 2012 63.3 16.1 19.4 [21]
Thermus thermophilus 2012 65.3 26 8.7 [22]
Thermus thermophilus 2013 57 36 7 [23]

Synechococcus sp. 2013 43.9 42.44 13.66 [24]
E. coli 2013 75.9 16.7 7.4 [25]

Staphylococcus aureus 2014 n.r. n.r. n.r. [26]
Acinetobacter baumanii Abh12O-A2 2014 71.8 25.2 3.8 [27]
Acinetobacter baumanii ATCC 17879 2014 68.9 24.1 5.2 [27]

Pseudomonas aeruginosa 2014 49 24 27 [28]
Listeria monocytogenes 2014 64 31 5 [29]

Saccharopolyspora erythraea 2014 47 45 8 [30]
Bacillus subtilis 2014 74.6 18.6 7.3 [31]

Chlamydia caviae 2015 n.r. n.r. n.r. [32]
Sinorhizobium meliloti 2015 63 28 5 [33]

E. coli 2015 n.r. n.r. n.r. [34]
Bacillus subtilis 2015 n.r. n.r. 22.6 [35]

Synechocystis sp. 2015 n.r. n.r. n.r. [36]
Acinetobacter baumannii SK17-S 2016 47 27.6 12.4 [6]
Acinetobacter baumannii SK17-R 2016 41.4 29.5 17.5 [6]

Mycobacterium smegmatis 2017 27.79 73.97 1.24 [37]
Mycobacterium tuberculosis 2017 68 29 3 [38]

Microcystis aeruginosa 2018 n.r n.r. n.r. [39]
Streptomyces coelicolor 2018 50.6 47.4 2 [40]

Zymomonas mobilis 2019 73 21 6 [41]
Streptococcus thermophilus 2019 43 33 23 [42]

Average 55.9 34.1 9.9
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2. Bacterial Ser/Thr/Tyr Phosphoproteomics

Classical protein chemistry phosphoproteomic approaches require protein purification, peptide
mapping and identification of phosphorylated peptide regions and sites by N-terminal sequence
analysis. These kinds of analyses are tedious, and they could cover only one phosphoprotein or a few
phosphoproteins. Chemistry approaches basically disappeared with the development of 2DE gel-based
analyses, combined with MS or MS/MS analysis for protein identification. The most recent advances in
LC-MS/MS make these traditional chemistry approaches obsolete. In this review, we describe the state
of the art of a large bacterial dataset of Ser/Thr/Tyr phosphorylation identified using gel-based and
LC-MS/MS-based methodologies.

2.1. Gel-Based Analyses

Classically, proteomics and phosphoproteomics are based on the use of 2DE gels. 2DE gel-based
phosphoproteomic experiments use specific dyes [43] or antibodies [44] to identify and
quantify phosphorylated protein spots. These methodologies are still useful, particularly in
identifying possible isoforms of phosphorylated proteins [45]. However, due to the reduced
bacterial Ser/Thr/Tyr phosphorylation, only a few reports describing bacterial Ser/Thr/Tyr
phosphoproteomes by means of 2DE gel approaches have been reported. The phosphoproteomes of
Neisseria meningitidis, Staphylococcus aureus and Chlamydia caviae were characterised by means of 2DE
gel approaches [16,26,32] (Table 2).

Table 2. 2DE gel-based bacterial phosphoproteome studies.

Bacterium Year Phosphoproteins Phosphorylation Sites Phosphoproteome Reference

Neisseria meningitidis 2011 51 n.r. Many biological
processes [16]

Staphylococcus aureus 2014 103 76 Pathogenicity and
virulence [26]

Chlamydia caviae
(elementary body) 2015 42 n.r. Virulence [32]

Chlamydia caviae
(reticulate body) 2015 34 n.r. Virulence [32]

2.2. LC-MS/MS-Based Phosphoproteomic Analyses

Most phosphopeptide enrichment protocols use immobilised metal affinity chromatography
(IMAC), which consists positively charged metal ions, such as Fe (3+), Ga (3+), Al (3+), Zr (4+)
and Ti(4+) [46]. The most widespread method is the use of TiO2 affinity chromatography [46].
TiO2 affinity chromatography-based phosphoproteomics is mainly optimised for eukaryotic samples.
Further work on optimising this method to study the relatively low Ser/Thr/Tyr phosphorylation
present in bacteria will contribute to deepen the characterisation of bacterial phosphoproteomes.
In this sense, an interesting phosphopeptide pre-enrichment method, which largely enhances TiO2

efficiency, is the use of calcium phosphate precipitation (CPP) [47]. CPP consists of coprecipitated
phosphorylated tryptic peptides with calcium phosphate at high pH levels [47]. CPP-pre-enriched
samples are used for IMAC, enhancing the amount of purified phosphopeptides, which are further
identified by LC-MS/MS analysis [47]. CPP has been successfully used in several eukaryotes, including
humans [48,49], mice [50], plants [47] and yeasts [51]. CPP phosphopeptide pre-enrichment is also
used in bacterial phosphoproteomics [17,40]. In Streptomyces coelicolor, CPP pre-enrichment increases
TiO2 LC-MS/MS-based phosphopeptide identification by five times [17].

2.2.1. Bacterial Ser/Thr/Tyr Nonquantitative LC-MS/MS-Based Phosphoproteomic Analyses

Due to low levels of Ser/Thr/Tyr bacterial phosphorylation, most bacterial Ser/Thr/Tyr
phosphoproteomic studies used large amounts of protein (milligrams), obtained during the vegetative
growth phase, to detect a relatively low number of phosphopeptides [17]. The aim of these studies
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was to identify as many phosphosites as possible, and they do not provide information about the
dynamic of this phosphorylation during bacterial development. Twenty-four phosphoproteomes from
18 eubacterial species and an Archaeon (Halobacterium salinarum) were analysed using nonquantitative
LC-MS/MS-based phosphoproteomic approaches (Table 3). These studies, together with the 2DE
gel-based studies described above, were pioneering in the characterisation of the existence of Ser/Thr/Tyr
phosphorylation in bacteria, rather than in the characterisation of the variation of phosphoproteomes
during their development or in response to different stimuli.

Table 3. LC-MS/MS-based nonquantitative bacterial phosphoproteome studies. Abbreviation:
Ph, photoheterotrophic.

Bacterium Year Phosphoproteins Phosphorylation Sites Phosphoproteome Reference

Bacillus subtilis 2007 78 78 Carbohydrate metabolism [8]

E. coli 2008 79 81 Similar to Bacillus [9]

Lactococcus lactis 2008 63 79 Over-representation of
phosphothreonines [10]

Klebsiella pneumoniae 2009 81 93 Capsular biosynthesis [7]

Pseudomonas aeruginosa 2009 39 61 Motility, transport and
pathogenicity [11]

Pseudomonas putida 2009 59 55 Several biochemical
pathways [11]

Halobacterium
salinarum 2009 26 31 Phosphoproteome in

Archaea [12]

Mycobacterium
tuberculosis 2010 301 500 Several biochemical

pathways [3]

Streptomyces coelicolor 2010 40 46 Housekeeping proteins [13]

Streptococcus
pneumoniae 2010 84 163

Carbon/protein/nucleotide
metabolisms, cell cycle and

division
[14]

Listeria monocytogenes 2011 112 143
Virulence, translation,

carbohydrate metabolism
and stress response

[18]

Helicobacter pylori 2011 67 126 Virulence [19]

Clostridium
acetobutylicum 2012 61 107 Carbon metabolism [20]

Rhodopseudomonas
palustris (Ch) 2012 54 63 Carbon metabolism [21]

Rhodopseudomonas
palustris (Ph) 2012 42 59 Carbon metabolism [21]

Thermus thermophilus 2012 48 46 Wide variety of cellular
processes [22]

Thermus thermophilus 2013 53 67
Central metabolic pathways

and protein/cell envelope
biosynthesis

[23]

Synechococcus sp. 2013 245 410 Two-component signalling
pathway and photosynthesis [24]

Acinetobacter baumanii
Abh12O-A2 2014 70 80 Pathogenicity and drug

resistance [27]

Acinetobacter baumanii
ATCC 17879 2014 41 48 Several biochemical

pathways [27]

Pseudomonas aeruginosa 2014 28 59 Extracellular virulence
factors [28]

Sinorhizobium meliloti 2015 77 96 Rhizobial adaptation [33]

Microcystis aeruginosa
(nontoxic) 2018 37 n.r. Several biochemical

pathways [39]

Microcystis aeruginosa
(toxic) 2018 18 n.r. Regulation of toxin

generation [39]
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2.2.2. Bacterial Ser/Thr/Tyr LC-MS/MS-Based Quantitative Phosphoproteomic Analyses

Once the existence of bacterial Ser/Thr/Tyr phosphorylation was demonstrated, the next issue
to be explored was whether the bacterial phosphorylation changed during bacterial differentiation
and/or in response to different developmental conditions. As stated above, phosphorylation in bacteria
is dramatically lower than that in eukaryotes, making bacterial phosphoproteomics challenging,
especially quantitative phosphoproteomics (i.e., analyses of the amount of specific phosphorylation
sites and how they vary during development). To our knowledge, there are 15 reported quantitative
phosphoproteomic studies on bacteria [6,15,17,25,29,31,34–38,40–42] (Table 4).

Table 4. LC-MS/MS-based quantitative bacterial phosphoproteome studies.

Bacterium Year Phosphoproteins Phosphorylation Sites Phosphoproteome Method Reference

Bacillus subtilis 2010 27 45
Phosphoproteome

changes in different
media

SILAC [15]

Streptomyces
coelicolor 2011 127 289

Sporulation factors,
transcriptional

regulators, protein
kinases and other

regulatory proteins

Label-free [17]

E. coli 2013 133 108 Stationary phase SILAC [25]

Bacillus subtilis 2014 141 177 Stationary phase SILAC [31]

Listeria
monocytogenes 2014 191 242

Purine biosynthesis
regulated by PrfA
phosphorylation

SILAC [29]

Saccharopolyspora
erythraea 2014 88 109

Carbon metabolism,
environmental

stress and protein
synthesis affected by

phosphorylation

SRM [30]

E. coli 2015 71 n.r.
Phosphorylation

varied during
development

SRM [34]

Bacillus subtilis 2015 124 155 Spore-specific
determinants Label-free [35]

Synechocystis sp. 2015 188 262

Increased
phosphorylation
during nitrogen

limitation

Dimethyl [36]

Acinetobacter
baumannii SK17-S 2016 248 410 Antibiotic resistance Label-free [6]

Acinetobacter
baumannii SK17-R 2016 211 285 Antibiotic resistance Label-free [6]

Mycobacterium
smegmatis 2017 154 224 Transmembrane

proteins Label-free [37]

Mycobacterium
tuberculosis 2017 257 512 Virulence

Tandem
mass tag
(TMT)

[38]

Streptomyces
coelicolor 2018 48 85 Regulatory proteins TMT [40]

Zymomonas mobilis 2019 125 177 N2 fixing regulated
by phosphorylation Label-free [41]

Streptococcus
thermophilus 2019 106 161

Divisome proteins
phosphorylated by

the PknB kinase
Dimethyl [42]

The first bacterial quantitative phosphoproteomic study was performed in 2010 on Bacillus subtilis
(B. subtilis) using the stable isotope labelling of amino acids (SILAC) in a cell culture, describing
the changes in the B. subtilis phosphoproteome in different media [15]. In 2014, another SILAC
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analysis was also performed on B. subtilis, analysing different developmental stages [31]. Other
quantitative phosphoproteomic analyses using SILAC were performed on Escherichia coli (E. coli) and
Listeria monocytogenes [25,29].

In 2011, we performed the first quantitative phosphoproteomic study describing the differences in a
bacterium during development [17]. We used CPP combined with TiO2 chromatography and LC-MS/MS
to analyse Streptomyces coelicolor (S. coelicolor) Ser/Thr/Tyr phosphorylation [17]. This methodology
was successful in identifying a relatively large amount of phosphorylation (127 phosphoproteins
and 289 phosphorylation sites) from a relatively low protein amount (0.3 mg) [17]. Later, in 2018,
our group improved the S. coelicolor quantitative phosphoproteome analysis by applying tandem mass
tag (TMT) isobaric labelling to the protein extracts, prior to CPP/TiO2 phosphopeptide enrichment
and LC-MS/MS analysis [40]. Protein and phosphoprotein abundance quantification was highly
improved [40]. However, phosphopeptide identification was reduced to 48 phosphoproteins [40],
while 127 phosphoproteins were identified in our previous label-free analysis [17]. The lower efficiency
in phosphopeptide identification in the TMT analysis [17] was probably a consequence of mixing
the very low phosphorylated vegetative samples with the more highly phosphorylated reproductive
stages. TMT isobaric labelling was later used to quantify the phosphoproteome variation in virulent
and nonvirulent Mycobacterium tuberculosis strains [38]. Dimethyl labelling was also used to analyse
the variation of bacterial phosphoproteomes in Synechocystis sp. and Streptococcus thermophilus [36,42].

Label-free quantitative phosphoproteomic analyses were also performed in Bacillus subtilis,
Acinetobacter baumannii, Mycobacterium smegmatis and Zymomonas mobilis [6,35,37,41]. Scheduled
multiple reaction monitoring (sMRM), another label-free approach that consists in selecting the masses
of the ions to be sequenced in the MS/MS, was used to analyse the E. coli and Saccharopolyspora erythraea
phosphoprotoemes [30,34].

3. Bacterial Proteins and Pathways Modulated by Ser/Thr/Tyr Phosphorylation

3.1. Bacterial Proteins Identified as Phosphorylated

Bacterial cellular processes including proteins identified as phosphorylated comprise
carbon/protein/nucleotide metabolism, transcription, translation, protein/cell envelope biosynthesis,
two-component signalling pathways, stress response, transport or extracellular proteins (Tables 2–4).
These results suggest a role of Ser/Thr/Tyr phosphorylation in the regulation of central metabolism.
Proteins participating in nonessential but clinically and industrially relevant cellular activities
were also identified as phosphorylated. The phosphoproteomes of the pathogenic bacteria,
Staphylococcus aureus [26], Chlamidia caviae [32], Klebsiella pneumoniae [7], Streptococcus pneumoniae [14],
Helicobacter pylori [19], Acinetobacter baumanii [6,27] and Mycobacterium tuberculosis [38], include proteins
related to pathogenicity and virulence as they are capsule biosynthetic proteins, proteins involved in
drug resistance or proteins related to motility. Streptomyces, the most important source for bioactive
secondary metabolites in nature (mainly antibiotics, but also antitumorals, immunosupressors, etc.) [52],
harbours Ser/Thr/Tyr-phosphorylated proteins that are involved in secondary metabolism regulation,
suggesting a role of Ser/Thr/Tyr-modulating antibiotic production [17,40].

Bacteria are the most diverse group of living beings on the planet. Consequently, finding
and comparing protein orthologues is not always possible. However, when we compared the
38 bacterial phosphoproteomes already known (Tables 2–4), we were able to identify 29 phosphoprotein
orthologues present in at least four phosphoproteomes. These 29 phosphoproteins include 12 ribosomal
proteins, four enzymes from glycolysis and gluconeogenesis, three elongation factors, two cell
division proteins, one RNA polymerase subunit, one ATP synthase subunit and one enzyme from the
citrate cycle (Figure 1a). Consequently, Ser/Thr/Tyr phosphorylation might modulate transcription,
translation, stress response, central metabolism (glycolysis, gluconeogenesis and citrate cycle), energy
production (oxidative phosphorylation) and cell division. Interestingly, the most commonly identified
phosphorylated bacterial protein is the GroEL chaperone, showing 63 phosphorylation sites in
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20 phosphoproteomes (Figure 1b) from 17 bacterial species. This corresponds to an average of three
phosphorylation sites per protein.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 14 

 

 

Figure 1. The phosphoprotein orthologues systematically identified in the 38 bacterial 
phosphoproteomic studies are shown in Tables 1–4. (a) Phosphoproteins (highlighted in red) are 
classified by function. The bacteria, in which they were identified, are indicated. (b) Total number of 
the phosphorylation sites identified for each phosphoprotein orthologue in the 38 analysed bacteria, 
as well as the number of bacteria, in which a phosphoprotein was detected. Asterisks indicate 
multiphosphorylated proteins, i.e. these showing more phosphorylation sites than bacteria. 
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residue, and ϕ is a large hydrophobic residue) [3], and EXXpT, PpT and pTXp [38] were found in 
Mycobacterium tuberculosis; PFxFA[T/S]GY was described in Sinorhizobium meliloti [33]; and X(pT)xEx 
was identified in Streptomyces coelicolor [17]. It is clear that new workflows need to be explored to 
identify bacterial Ser/Thr/Tyr phosphorylation motifs. It may be interesting to combine all of the 
bacterial phosphorylated orthologue sequences, perhaps separated into different taxonomic groups, 
in the same motif search. In addition, the search algorithms might be modified to mine 

Figure 1. The phosphoprotein orthologues systematically identified in the 38 bacterial
phosphoproteomic studies are shown in Tables 1–4. (a) Phosphoproteins (highlighted in red) are
classified by function. The bacteria, in which they were identified, are indicated. (b) Total number of
the phosphorylation sites identified for each phosphoprotein orthologue in the 38 analysed bacteria,
as well as the number of bacteria, in which a phosphoprotein was detected. Asterisks indicate
multiphosphorylated proteins, i.e., these showing more phosphorylation sites than bacteria.

3.2. Bacterial Ser/Thr/Tyr Phosphorylation Motifs

The relatively low number of bacterial Ser/Thr/Tyr phosphorylations makes it difficult to find
statistically significant phosphorylation motifs. To our knowledge, only four phosphoproteomic
works reported phosphorylation motifs in bacteria: the motifs XααααTX(X/V)φ(P/R)I (α is an acidic
residue, and φ is a large hydrophobic residue) [3], and EXXpT, PpT and pTXp [38] were found in
Mycobacterium tuberculosis; PFxFA[T/S]GY was described in Sinorhizobium meliloti [33]; and X(pT)xEx
was identified in Streptomyces coelicolor [17]. It is clear that new workflows need to be explored to identify
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bacterial Ser/Thr/Tyr phosphorylation motifs. It may be interesting to combine all of the bacterial
phosphorylated orthologue sequences, perhaps separated into different taxonomic groups, in the same
motif search. In addition, the search algorithms might be modified to mine phosphorylation motifs
in the reduced bacterial phosphoproteomes. Until significant bacterial Ser/Thr/Tyr phosphorylation
motifs are found, it will be difficult to create robust bioinformatics tools to perform reliable in silico
bacterial phosphorylation predictions.

3.3. Bacterial Processes Demonstrated to be Modulated by Ser/Thr/Tyr Phosphorylation

While Ser/Thr/Tyr phosphorylation is present in all of the analysed bacteria (Tables 1–3; Figure 1),
there are very few bacterial processes that have been demonstrated to be regulated by Ser/Thr/Tyr
phosphorylation. Some of the best characterised bacterial activities modulated by Ser/Thr/Tyr
phosphorylation are cell wall metabolism, transcription and protein synthesis. Ser/Thr/Tyr kinases are
required to modulate the activity of Bacillus cell wall hydrolases, in response to peptidoglycan fragments
during spore germination [53] and the vegetative stage [54]. The Ser and Thr phosphorylation of
Deinococcus radiodurans FtsA and FtsZ cell division proteins affects their functional interactions [55].
DivIVA, the key protein controlling apical growth in the mycelial bacterium Streptomyces, is modulated
by the Ser/Thr kinase AfsK [56]. The Streptococcus suis DivIVA orthologue was also demonstrated to be
modulated by a Ser/Thr kinase [57].

Other important bacterial processes were demonstrated to be regulated by Ser/Thr/Tyr
phosphorylation. Quorum sensing was described to be regulated by phosphorylation in
the marine pathogen, Vibrio alginolyticus [58,59]. Streptococcus suis growth is modulated by
phosphorylation [60]. Gene expression was reported to be modulated by Ser/Thr/Tyr phosphorylation
in Staphylococcus aureus [61] and Streptococcus [62]. The Tu elongation factor is modulated by
Thr phosphorylation in Mycobacterium tuberculosis [63]. Photosynthesis was demonstrated to be
modulated by Ser/Thr/Tyr phosphorylation in the model cyanobacterium, Synechocystis sp. [64].
The phosphorylation of theβ subunits of phycocyanins affects the energy transfer and the state transition
of Synechocystis photosynthesis [64]. Bacterial virulence can also be modulated by phosphorylation.
Phosphorylation of the AmpC β-lactamase reduces β-lactamase activity and increases antibiotic
resistance in Acinetobacter baumannii [6]. Xanthomonas citri virulence is activated by the phosphorylation
of the Lon protease, which stabilises HrpG, the master regulator of type III secretion systems in this
pathogenic bacterium [65].

4. Bacterial Histidine Protein Phosphorylation

Histidine phosphorylation was first demonstrated in bacterial two-component systems in 1980 [66].
Since then, several descriptions of two-component system signalling in prokaryotes have been reported.
Histidine kinases are the most abundant protein kinases in bacteria. For instance, Streptomyces
coelicolor, a bacterium harbouring the largest amount of eukaryotic-type Ser/Thr/Tyr kinases [17],
has 47 Ser/Thr/Tyr kinases and 149 histidine kinases. By contrast, to the best of our knowledge, only a
single His kinase in eukaryotic cells, which is highly conserved in eukaryotes and implicated in
suppressing tumour metastasis, has been characterised [4,67].

4.1. Methodological Challenges

The histidine phosphate linkage has a half-life of about 30 min at pH 3 [68], which makes histidine
phosphorylation incompatible with most LC-MS/MS analyses. Consequently, the characterisation of
histidine phosphoproteomes remains a difficult challenge. To the best of our knowledge, there are
only three reports describing His phosphoproteomic analyses on bacteria by means of standard
shotgun phosphoproteomics, i.e., using acidic solvents [5–7]. Lai et al. [5] analysed the histidine
phosphoproteome of nine bacteria, identifying seven and 31 phosphopeptides per bacterium [5].
They identified some pathogenicity proteins that were phosphorylated at histidine in Acinetobacter
baumannii, Klebsiella pneumoniae, Vibrio vulnificus and Helicobacter pylori [5]. Lin et al. [7] and Lai et al. [6]
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analysed histidine phosphorylation together with the phosphorylation of Ser, Thr, Tyr and Asp in
Klepsiella pneumoniae and Acinetobacter baumanii, respectively. They found that 12.9% (in Klebsiella)
and 4.9% (in Acinetobacter) of the identified phosphorylations correspond to pHis. Given that acid
buffers were used in these three works [5–7], there are probably many phosphohistidines that were
not identified. These works give rise to the interesting question of whether the raw data of the other
Ser/Thr/Tyr bacterial phosphoproteomic works can be processed, setting pHis as a post-translational
modification, to identify novel histidine phosphorylations.

Histidine phosphorylation has constituted a methodological challenge for decades. The recent
development of 1- and 3-pHis monoclonal antibodies [69,70] has contributed, at least in part,
to overcoming this important methodological drawback. Kleinnijenhuis et al. [71] proposed to
develop a fast LC method or nonacidic solvent systems to protect phosphohistidines from acidic
dephosphorylation. Reverse-phase chromatography at a neutral or basic pH value, combined with the
use of negative-ion-mode MS, might also be an alternative.

4.2. Bacterial Pathways Modulated by Histidine Phosphorylation

Bacterial two-component systems are the most important form of bacterial signal transduction.
Canonical two-component systems are formed by a sensor histidine kinase, usually a transmembrane
receptor, and a response regulator, usually a transcriptional regulator. The sensor histidine kinase
transfers the phosphoryl group to the response regulator modulating its activity. Bacterial genomes
harbour huge amounts of two-component signalling systems. For instance, Streptomyces coelicolor
harbours more than 100 two-component signalling systems (www.sanger.ac.uk), many of which
regulate secondary metabolism and antibiotic production [72]. Bacterial two-component systems
modulate important cellular processes, such as photoreception [73], quorum sensing [74], temperature
sensing [75] and plant-bacteria interactions [76].

Histidine kinases belonging to two-component systems can be predicted in silico, since the
kinases and their response regulator genes are usually located adjacently in a genome. Once identified,
their putative response regulators and functions can be studied. However, there are bacterial histidine
kinases beyond two-component systems, of which the biological function is much more difficult to
characterise. These latter types of kinases, which are not associated with the known response regulators,
also show important regulatory activities, such as chemotaxis [77] or nucleoside metabolism [75].

5. Conclusions

The huge advances in LC-MS/MS methodologies and phosphopeptide enrichment, developed over
the last 20 years, has made the study of large datasets of Ser/Thr/Tyr phosphopeptides possible, mainly
in eukaryotes, but also in bacteria. Ser/Thr/Tyr protein phosphorylation in bacteria is dramatically
lower than that in eukaryotes. However, this important post-translational modification is present
in all the analysed bacteria (Tables 1–4) and affects important cellular processes. While Ser/Thr/Tyr
phosphorylation exists and is important in bacteria, there is a consensus that histidine phosphorylation is
the most abundant protein phosphorylation in bacteria. However, histidine phosphoproteomes remain
elusive due to the reduced phosphohistidine half-life under the acidic pH levels used in the shotgun
phosphoproteomic procedures. Considering the fast and continuous advance in LC-MS/MS-based
phosphoproteomic methodologies, it is expected that further innovations, such as the recent EasPhos
platform developed by Humphrey et al. [78] and the development of workflows compatible with
histidine phosphorylation stability, will allow for a better coverage of bacterial Ser/Thr/Tyr and His
phosphoproteomes. Applying these kinds of methodologies to analyse bacterial phosphoproteomes
might revolutionise our understanding of bacterial physiology.
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