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Abstract: Many metallic structural and non-structural parts used in the transportation industry
can be replaced by textile-reinforced composites. Composites made from a polymeric matrix
and fibrous reinforcement have been increasingly studied during the last decade. On the other
hand, the fast development of smart textile structures seems to be a very promising solution for in
situ structural health monitoring of composite parts. In order to optimize composites’ quality
and their lifetime all the production steps have to be monitored in real time. Textile sensors
embedded in the composite reinforcement and having the same mechanical properties as
the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper
presents a new generation of textile fibrous sensors based on the conductive polymer complex
poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating
method. Conductive coating for yarn treatment was defined according to the preliminary study of
percolation threshold of this polymer complex. The percolation threshold determination was based
on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors.
A novel laboratory equipment was designed and produced for yarn coating to ensure effective and
equally distributed coating of electroconductive polymer without distortion of textile properties.
The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ
structural damages detection of textile reinforced thermoplastic composites in real time.

Keywords: textile sensors; conducting polymers; textile-reinforced composites; electromechanical
properties; gauge factor

1. Introduction

Many metallic structural and non-structural parts used in the transportation industry could be
replaced by textile-reinforced composites where each production step has to be monitored to obtain
high tech products. These composites have to be produced to meet technical performance specifications,
weight reduction, recyclability and market requirements [1–10]. Composites made from a polymeric
matrix and a fibrous reinforcement have been increasingly studied during the last decade due to
their remarkable features such as corrosion, chemical and impact resistance, dimensional stability,
design flexibility, suitable electromagnetic properties, temperature tolerance, etc. [11,12]. In composite
applications, the low material density is of environmental interest because fuel consumption and CO2

emissions are directly related to vehicle weight [8,13].
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The role of the interface needs to be also taken into account in composite structure-property
relationship requirements [8,10,11]. The interface is defined as the three-dimensional region
surrounding reinforcement yarns, in contact with the matrix, with its own characteristics,
corresponding neither to yarn properties nor to matrix ones [10]. A better interfacial bond between
fibre and matrix gives better properties to the composites, such as the interlaminar shear strength and
delamination [14].

Textile-reinforced thermoplastic composites maintain good tolerances, material strengths
and show distinct advantages over thermoset composites like lower density, unlimited storage,
semi-products delivered ready for use, thermoformability, a faster processing cycle, no solvent
emissions during the processing stage, etc. Furthermore, concerning their high fracture toughness,
recycling possibility, various forms, high damage tolerance and resistance to medias and corrosion,
they appear to be more promising for industrial applications. These composites are consumed in large
volume, especially in the transportation industry for automotive, railway and truck component part
production [13,15–22].

Composites are more complex than their metallic counter parts due to non-homogeneous
structures. Their durability and safety issues are more important [23]. For metals, a predominant single
crack is the most common failure mechanism. In composites, there are four basic failure mechanisms:
(i) fibre breakage; (ii) delamination; (iii) cracking and (iv) interfacial debonding [6,15].

The usage of smart textile structures in order to realize textile fibrous sensors compatible with
composite technology is a very promising solution for in situ structural health monitoring of composite
parts. Such smart materials could be made by coating or treating textile filaments, yarns, or fabrics
with nanoparticles or conductive and semi-conductive polymers, giving them specific performance
characteristics [24].

Smart textiles play a significant role in the European textile sector and have helped the textile
industry in its transformation into a competitive knowledge-driven industry. These kinds of textiles
combine knowledge from many disciplines with the specific textile requirements [25].

Textile sensors are a large class of smart textiles in general, typically found in medical
applications [1–4,26–29]. These sensors perform a dual function inside a composite. After integration in
the reinforcement, they act as a part of structural material and have actuating and sensing capabilities.
Their working principle originally relied on the traditional metal-based strain gauges [30,31]. In general,
strain gauges for textiles are based on electrically resistive materials or structures whose electrical
resistance changes reversibly according to an applied stress. The term “piezo-resistive sensor”
is commonly used and its development is the main objective of this study [1,2,32–36]. Recently,
interest has focused on the possibility to develop these sensors from Intrinsically Conductive Polymers
(ICPs) also called “synthetic metals”.

In the late 1970s, Heeger, MacDiarmid and Shirakawa discovered how to get polymers that
conduct electricity. These polymers resulted in a paradigmatic change in scientific thinking and
opened new frontiers in chemistry, physics and materials science. The first material used as
an intrinsically conductive polymer was polyethyne (other name polyacetylene (PAc)), after a doping
with iodine. The announcement of this discovery quickly reverberated around the scientific community,
and the intensity of research seeking other conductive polymers magnified dramatically [2].

ICPs are composed of polymer chains containing alternating single and double bonds called
conjugated double bonds. Electrons are able to move from one end of the polymer to the other through
the extended p-orbital system [1,2,32–36]. They can be applied to the surface of various substrates by
using different techniques, such as dip-coating, solution casting, inkjet printing, 3D printing, etc. [2,22].

Unlike metals, their conductivity increases with temperature similarly to amorphous
semiconductors. Variable electrical conductivity, electroactive properties and the ability to produce
these polymers at low cost have led to investigations of their potential applications such as
electromagnetic shielding, corrosion protection, radar absorption, sensing, actuating, thin film
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transistors, organic light emitting diodes, supercapacitors, organic solar cells and electrochromic
displays [34,37,38].

Polypyrrole (PPy), polythiophene (PTh), polyaniline (PANI) and poly(3,4-ethylenedioxythiophene)
(PEDOT) offer the best compromise between stability and processability and a broad range of electrical
conductivity from 10−10 to 10+6 S·cm−1 [1,2,32–36].

Amongst the wide range of ICPs PEDOT is one of the most promising conducting polymers
due to its interesting properties such as excellent transparency in the visible range, high conductivity
(>300 S·cm−1) and good thermal stability [39,40]. Like other ICPs, PEDOT has a stiff conjugated
aromatic backbone structure, which makes it insoluble in most organic and inorganic solvents.

Polystyrene sulfonic acid (PSS), a water-soluble polyanion, is used during the polymerization
of PEDOT as a charge balancing dopant. Electrostatic interactions between the charged sulfonate
groups on the PSS backbone and the PEDOT backbone occur [39–43]. PSS allows the dispersion of
the PEDOT in water generating a complex where the oligomeric PEDOT segments are attached to
the long chains of the PSS [44]. The PEDOT:PSS gel particles have excellent film-forming properties
and are easily processable into thin coatings on a variety of substrates. This coating processability has
facilitated the widespread availability of PEDOT:PSS as a commercially useful polymer complex for
the production of highly transparent conductive polymer coatings with high mechanical flexibility,
excellent chemical (environmental) and thermal stability, ease of synthesis [45–47]. The ionic species
PEDOT+ and PSS- could not be separated by standard capillary electrophoresis methods [39,43,47–49].
However, PSS itself is a non-conducting polymer, which limits the conductivity of the polymer complex
PEDOT:PSS to the 1–10 S·cm−1 range [39,47,48,50].

Today ICPs based on PEDOT are commercially available in large quantities [47]. PEDOT:PSS has
been widely used as an electrode material in organic thin film transistors or as a hole transport layer in
organic light emitting diodes. This polymer complex can coat hard surfaces of microelectronics as well
as fibres and fabrics and other stretchable substrates [51].

Due to its interesting electromechanical properties and a possibility to be used as a coating
material the PEDOT:PSS polymer complex has been selected in this work for the development of
a new generation of textile fibrous sensors adapted for in situ Structural Health Monitoring (SHM) of
textile-reinforced thermoplastic composites.

Percolation threshold determination of this polymer complex was based on conductive dry films’
electrical properties analysis in order to develop highly sensitive sensors to detect small deformations
occurring within composite structure and to guarantee their optimal functioning.

A novel piece of laboratory equipment based on a conceptual design study has also been produced
to ensure effective and equally distibuted coating of electroconductive polymer without distortion of
textile properties.

The final objective of this paper focuses on the realization of predictive maintenance concept.
The electromechanical properties of textile fibrous sensors were observed to validate their suitability
for in situ structural damages detection of textile-reinforced thermoplastic composites in real time.

2. Experimental

2.1. Materials and Methods

The fibrous sensors developed in this study are based on functionalization of commingled
yarns that have been used for the manufacturing of reinforcements for composite structures.
The functionalization made of reinforcement yarns as strain gauge sensors is locally on the areas
that have been coated. This methodology is important because it enables the reinforcement
yarns deformations measurements on the real “reinforcement” yarns and gives accurate results on
their deformations. Also, the functionalization procedure should not modify reinforcement yarns
mechanical properties.



Sensors 2017, 17, 2297 4 of 21

E-glass/polypropylene (GF/PP) commingled yarn, E-glass/polyamide66 (GF/PA66) commingled
yarn and E-glass (GF) yarn produced by PD Fiberglass group (Glasseiden GmbH, Oschatz, Germany)
were used for textile sensors development presented in Table 1. The list of chemicals and other
materials needed for their production are shown in Tables 2 and 3.

The coating thickness and uniform distribution are very important parameters having diverse
effects on the properties of textile sensors developed and consequently on end-user applications.
Yarn treated only with aqueous dispersion of polymer complex PEDOT:PSS is too brittle during
the tensile test according to previous investigations [37].

Table 1. Yarn and corresponding filament characteristics.

Yarn GF/PP GF/PA66 GF

Fineness (tex) 842.130 957.000 830.840
Diameter (mm) 0.798 0.821 0.638
Density (g/cm3) 1.682 1.797 2.600
Mass content (%) 71:29 65:35 100
Volume content (%) 46:54 45:55 100

Filament GF PP GF PA66 GF

Diameter (µm) 14.50 42.90 14.42 33.02 14.96
Number (%) 88 12 80 20 100
Density (g/cm3) 2.60 0.90 2.60 1.14 2.60

Table 2. List of chemicals for textile sensor production.

Nomenclature Application Chemical-Trade Name Producer

A Conductive coating CLEVIOS P FORM. CPP105D Heraeus, Leverkusen, Germany
B Conductive coating CLEVIOS F ET Heraeus, Leverkusen, Germany
C Protective coating Latex Appretan 96100 Clariant, Paris, France
D Wetting agent NOVAROL DEL Olea, Lodz, Poland

Table 3. List of other materials for textile sensors production.

Materials Producer

Enamelled copper wire coil, Φ 0.20 mm Conrad, Hirschau, Germany
Silver 5 g bottle paint conductive adhesive RS Components, Corby, UK

Therefore, an aqueous dispersion of PEDOT:PSS polymer complex, CLEVIOS P FORM. CPP105D
(A) or CLEVIOS F ET (B), and synthetic latex, Latex Appretan 96100 (C), were combined (Table 4).

Aqueous dispersion of polymer complex PEDOT:PSS consists of sub-micrometre-sized gel particles
which upon drying can form a continuous film which is both conductive and transparent [52,53].

According to the results of preliminary studies, A/B mixture was stirred at 50 ◦C until 40%
solvent evaporation while B/C mixture at 50 ◦C until 25% solvent evaporation to increase its viscosity
and conductivity [54–57]. The speed of dispersion mixing was 550 rpm the first 30 min and after that
1100 rpm until needed solvent evaporation (ca. 4 h).

The polymer films for electrical resistance testing were prepared by delivering 500 µL of
dispersion(s) by micropipette corresponding to the various content of PEDOT:PSS polymer complex
(Table 5) to frames placed on a plexiglass surface (Figure 1). These frames were based on cellulose
acetate tracks with dimensions 100 mm × 10 mm (track length × track width, L × l). Three polymer
films were realized for each formulation.
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Table 4. Technical data of chemicals used for yarn coating [55–57].

Chemical Technical Data

A B C

Dispersion of PEDOT:PSS Polymer Complex,
Organic Solvents and Polymeric Binders

Dispersion Based on Acrylic
Esters Copolymer

Mixture of Propan-2-ol
(45%) and Water (55%)

Mixture of Ethanediol
(10%) and Water (90%)

Self-Crosslinkable, Very Flexible,
Hydrophobic, Free APEO

Solid content (%) 1.3 3.1 -
Appearance liquid liquid liquid

Colour blue blue milky-white
Density at 25 ◦C (g/cm3) 0.89 1 1.06

Concentration (%) - - 50
pH 3.0 Not determined 3.5

Brookfield viscosity at 20 ◦C
and 100 s−1 (mPa·s) 30 55 100

Conductivity (S·cm−1) <300 ~300 0
Dilutablity/Solubility Fully miscible with water

Table 5. Preparation of PEDOT:PSS aqueous dispersions.

Mass of Aqueous Dispersion A or B
Mass of PEDOT:PSS in Aqueous Dispersion

A B

20 g 0.26 g 0.62 g

PEDOT:PSS Content in Aqueous Dispersion A/B or B/C Mass of Non-Conductive Aqueous Dispersion C

2% 12.74 g 30.38 g
10% 2.34 g 5.58 g
15% 1.47 g 3.51 g
20% 1.04 g 2.48 g
25% 0.78 g 1.86 g
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Figure 1. Conductive polymer films preparation for percolation threshold study: (a) frame preparation;
(b) dry PEDOT:PSS films; (c) optical profilometer.

After 48 h of solvent evaporation the thicknesses of the dry films were determined by an optical
profilometer (Altisurf 500, Altimet SAS, Thonon-les-Bains, France).

Dry films placed on the plexiglass surface were positioned under the measuring head. A scan of
each dry film was performed to record its surface roughness, from which the thickness of each dry
film was deduced. Thickness of each dry film [3,58–61] is an average of ten profiles measured along
the track.

Final thickness for each conductive formulation was calculated as an average of three films per
previously mentioned formulation.
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2.1.1. Electrical Resistance and Resistivity of Conductive Dry Films

Conductive dry films were realized with different thicknesses ranging from 7 to 166 µm for A/C
formulations and from 21 to 169 µm for B/C formulations depending on the content of PEDOT:PSS
polymer complex (Figure 2).

The thickness of these films (tracks) could not be presumed uniformly planar, the standard
deviation is taken into account based on ten profiles measured (observed) along the track for three films
per formulation, previously mentioned [43].
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Figure 2. Conductive dry films (tracks) thicknesses ranging for different content of polymer complex
PEDOT:PSS in aqueous conductive dispersion: (a) A/C formulation; (b) B/C formulation.

Silver drops (RS Components) were placed at 5 cm distance (D5) at each dry film (Figure 3a).
The electrical resistances of conductive dry films were measured by a standard Ohmmeter after 6, 8,
12, 65, 70 and 75 days (Figure 3b) to analyze their electrical resistances and related electrical resistivity
changes versus time.
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Figure 3. Conductive dry films preparation (a) and electrical resistance measurements by a standard
Ohmmeter at distance of 5 cm between silver points (b).

Silver paint is used for various applications including to paint-on an electrical screen, or to make
electrical connections to non-solderable surfaces. Its application is simple with a brush and is touch-dry
in 10 min and usable in 30 min.

The evolutions of the electrical resistances after 6, 8, 12, 65, 70 and 75 days of conductive dry films
monitoring at distance of 5 cm between silver points are presented in Figure 4.
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Following properties related to electrical resistance have been observed:

(i) The electrical resistances of 2–25% PEDOT:PSS conductive dry films increased when the track
thicknesses decreased depending on the PEDOT:PSS content in the prepared A/C or B/C
formulations. The electrical resistances also increased with the decrease in thickness for the neat
PEDOT:PSS film compositions.

(ii) The electrical resistances decrease with the increase in the PEDOT:PSS content in dispersions.
(iii) Electrical resistance of dry films increased with time for 2–25% PEDOT:PSS formulations. There is

an insignificant electrical resistance decrease afterwards:

• 8 days compared to 6 days for 2% PEDOT:PSS A/C dry film
• 8 and 12 days compared to 6 days for 2% B/C dry film
• 20 days compared to 12 days for 20% PEDOT:PSS A/C dry film
• 12 and 65 days compared to 8 days for 25% PEDOT:PSS B/C dry film

(iv) Electrical resistance of conductive dry films also increased with time for 100% PEDOT:PSS dry
films with insignificant electrical resistance decrease afterwards:
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• 8 days compared to 6 days for 100% PEDOT:PSS A dry film
• 70 days compared to 65 days for 100% PEDOT:PSS A dry film
• 8 days compared to 6 days for 100% PEDOT:PSS B dry film

Higher changes in electrical resistance of mostly all dry films can be observed after 65 days.
100% PEDOT:PSS B-dry films are more stable during observed period than 100% PEDOT:PSS
A-dry films.

Finally, the electrical resistivity and related electrical conductivity calculations of conductive dry
films gave more precise data analysis. The electrical resistivity of dry film, ρ (Ω·m), is calculated from,
R, the electrical resistance (Ω), D, the distance between silver points (m), l, the width of the track (m)
and, h, the thickness of the track (m) (Equation (1)):

ρ =
R · l · h

D
(1)

The electrical conductivity, σ (S·m−1), is the reciprocal value of the electrical resistivity, ρ, (Ω·m)
(Equation (2)):

σ =
1
ρ

(2)

2.1.2. Percolation Threshold

The electrical resistivity of conductive dry films is an important parameter for the percolation
threshold determination of A/C and B/C formulations in order to define the appropriate PEDOT:PSS
content for textile sensor development. The critical amount of the conductive filler to form continuous
conductive paths or networks and cause a dramatic resistivity decrease is known as the percolation
threshold [62,63].

Electrical resistivity changes versus PEDOT:PSS content in A/C or B/C formulations (conductive
dispersions) after 6, 8, 12, 65, 70 and 75 days of dry films monitoring at distance of 5 cm between silver
points are presented in Figure 5.

The percolation threshold has been determined in the left part of the slope for both aqueous
conductive dispersions. In general, there are no mathematical methods to determine the percolation
threshold [1]. In order to determine it properly, the percolation zone has been identified.

For PEDOT:PSS A/C formulation, it ranges from 10% to 20%. This zone corresponds to the sharp
modification of the electrical resistivity, then the average value—15%—is taken as a percolation threshold.
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For PEDOT:PSS B/C formulation, the percolation zone is also going from the concentration
of less than 10% up to 20%. In this case we have decided to define the percolation threshold at
the beginning of the percolation zone that is 8% in order to have more sensitive sensor for small
deformation measurements, and to verify its behaviour with rather low concentration of PEDOT:PSS.

The ratio for the first conductive formulation corresponds to a PEDOT:PSS/C ratio of 15:85
studied by monitoring of mixture A/C, 20 g of chemical A and 1.47 g of chemical C, while for
the second formulation the PEDOT:PSS/C ratio corresponds to 08:92 by monitoring of mixture B/C,
20 g of chemical B and 7.13 g of chemical C, during its stirring under strict conditions previously
mentioned. Electrical conductivity of dry films is presented in S·cm−1 (Figure 6). Electrical conductivity
of both formulations after preparation started to decrease progressively in observed period of 75 days.
A-dry films are less conductive compared to B-dry films. Non-conductive aqueous dispersion,
chemical C, gives additional stability of developed conductive dry films after 12 days. 25% PEDOT:PSS
B/C dry film is even more stable and electrically conductive compared to 100% PEDOT:PSS B-dry film.
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Scanning electron micrographs of conductive dry films, 15% PEDOT:PSS A/C dry film (thickness
94.90 µm) and 8% PEDOT:PSS B/C dry film (thickness 135.67 µm) are presented in Figure 7.
Both conductive dry films have granular morphology. The second dry film (Figure 7c,d) shows
a more homogeneous surface, justifying its better electrical conductivity. Hence, higher electrical
conductivity may be attributed to uniformity of the coating.
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2.2. Textile Sensors Production

According to the design concept study developed in our studies [64] and presented in Appendix A
(Figure A1) an aluminum roll to roll laboratory device and plexiglass chamber (Figure 8) were realized
and used for fibrous sensor production, guaranteeing good quality and optimal coating repeatability.

After partially yarn coating at the center of the sample, the yarn is slightly moved manually
without stopping the process from the coating to the non-coating zone of the aluminum rollers N◦2
(Φ 20 mm) till the next sample coating in a series.
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Figure 8. Developed system for roll to roll coating method: (a) aluminum roll to roll laboratory device
with plexiglass chamber; (b) plexiglass chamber.

Non-coating zone of the rollers N◦2 was shaped in a way to obtain free movement of the yarn
during the process after coating (Figure 9). For each coating step, rollers N◦2 with notches width
of 1 mm (A-first protective coating), 1.5 mm (C-first conductive coating), 1.7–1.8 mm (D-second
conductive coating) and 2 mm (B-third conductive coating) has to be optimized. These rollers are not
fixed onto the laboratory device and it is possible to change its notches’ position (pairs A-A, B-B, C-C
or D-D). Two rollers “in pair” form a circular trajectory and give possibility for direct yarn going from
a bath to the heating zone by obtaining equally coating distribution.
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Hereafter, textile sensors were prepared by an original roll to roll coating method and a novel
laboratory equipment under the defined protocol. The sensor preparation steps are presented in
Appendix A (Figures A2 and A3).

3. Results and Discussion

Electromechanical Properties of Textile Sensors

In order to carry out electromechanical tests (electrical resistance variation during tensile testing
of textile sensors developed (Table 6)), the tensile testing machine (MTS Systems Corporation,
Eden Prairie, MN, USA) was used. Textile sensors were tested at the speed of 150 mm/min
with a pre-load of 0.5 N. The distance between the clamps was 150 mm. The electrical resistance
measurements were done by using a KUSB-3100 data acquisition digital I/O counter/timer (Keithley,
Cleveland, OH, USA) and a simple resistance box connected to a computer (QuickDAQ software,
Keithley, Cleveland, OH, USA).

Table 6. Textile sensor development.

Sample Label Yarn Number of Copper Twisted Wires Conductive Drops

GF/PP Sy-cd GF/PP 5 + 2 8% PEDOT:PSS B/C
GF/PP Sy-sp GF/PP 5 + 2 Silver

GF/PA66 Sy-sp GF/PA66 5 + 2 Silver
GF Sy-sp GF 3 Silver

Additional description: Sy—sensor, cd—conductive drops added after copper wires insertion around conductive
coated yarn, sp—silver drops added after copper wires insertion around conductive coated yarn.

Primarily, GF/PP sensors with 8% PEDOT:PSS B/C conductive drops, GF/PP Sy-cd, and with
silver drops, GF/PP Sy-sp, added after copper wires insertion around conductive coating yarn
were compared (Figure 10). Those conductive drops guarantee better electrical contact and smaller
contact resistance.

Other textile sensors were prepared with silver drops added during the preparation and
electromechanically tested for in situ structural health monitoring of textile reinforced thermoplastic
composites in real time (Figure 11).
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Water resistance of these sensors is uncertain due to the several steps of their production and
will be taken into greater consideration in our next study. Textile sensors show more uniform
coating for produced GF sensors, GF Sy-sp, compared to GF/PP sensors, GF/PP Sy-sp and GF/PA66
sensors, GF/PA66 Sy-sp by visual perception after their production (Figure 12). This conclusion is
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supported by interface phenomena and related surface free energy (SFE) of textile sensors studied
in a previous works [57,65]. According to Wu theory, SFE of GF/PP sensor is 47.55 mJ·m−2 and SFE
of GF/PA66 sensor is 35.65 mJ·m−2. Lower SFE of GF sensor, 37.28 mJ·m−2, than expected could be
explained by a better coating process and “connection” (adhesion) of GF yarn and added coatings [65].
8% PEDOT:PSS B/C conductive dry film prepared on the plexiglass surface shows also low SFE,
35.10 mJ·m−2 [57].

When the textile sensor is stretched, two phenomena occur: the first one is related to
the geometrical properties of the textile sensor; the cross-sectional area is decreasing, while the length
is increasing; the sensor electrical resistance is increasing [1]. The second phenomena is related
to the conductive layer made of PEDOT:PSS polymer complex and its electrical properties.
As the concentration of the PEDOT:PSS is defined in order to be at the percolation threshold,
the electrical conductivity is strongly decreasing when this layer is stretched, because a number
of conductive paths inside the conductive material is broken. Therefore, this electrical conductivity
is decreasing, or the electrical resistivity is increasing contributing to the increasing of the sensor
electrical resistance together with “geometrical” increase of its resistance.

Sensors 2017, 17, 2297 14 of 21 

 

Water resistance of these sensors is uncertain due to the several steps of their production and 
will be taken into greater consideration in our next study. Textile sensors show more uniform coating 
for produced GF sensors, GF Sy-sp, compared to GF/PP sensors, GF/PP Sy-sp and GF/PA66 sensors, 
GF/PA66 Sy-sp by visual perception after their production (Figure 12). This conclusion is supported 
by interface phenomena and related surface free energy (SFE) of textile sensors studied in a previous 
works [57,65]. According to Wu theory, SFE of GF/PP sensor is 47.55 mJ m−2 and SFE of GF/PA66 
sensor is 35.65 mJ m−2. Lower SFE of GF sensor, 37.28 mJ m−2, than expected could be explained by a 
better coating process and “connection” (adhesion) of GF yarn and added coatings [65]. 8% 
PEDOT:PSS B/C conductive dry film prepared on the plexiglass surface shows also low SFE,  
35.10 mJ m−2 [57]. 

When the textile sensor is stretched, two phenomena occur: the first one is related to the 
geometrical properties of the textile sensor; the cross-sectional area is decreasing, while the length is 
increasing; the sensor electrical resistance is increasing [1]. The second phenomena is related to the 
conductive layer made of PEDOT:PSS polymer complex and its electrical properties. As the 
concentration of the PEDOT:PSS is defined in order to be at the percolation threshold, the electrical 
conductivity is strongly decreasing when this layer is stretched, because a number of conductive 
paths inside the conductive material is broken. Therefore, this electrical conductivity is decreasing, 
or the electrical resistivity is increasing contributing to the increasing of the sensor electrical resistance 
together with “geometrical” increase of its resistance. 

 
(a) (b)

Figure 12. Textile sensors with silver drops added during preparation: (a) GF/PP sensor, (b) GF 
sensor. 

GF sensors, GF Sy-sp, show lower electrical resistance, ~850 Ω prior testing and lower elongation 
at break, 5.45%, higher force at break, 414.14 N, and higher gauge factor 3.5939 compared to GF/PP 
sensors, GF/PP Sy-sp (Table 7). 

GF/PA66 sensors, GF/PA66 Sy-sp, show higher elongation at break, 7.20%, and lower gauge 
factor, 1.3412, compared to other textile sensors although number of copper twisted wires applied 
during their production has to be taken into account. Electrical resistance of GF/PA66 Sy-sp is slightly 
lower after production compared to other textile sensors, with lower dispersion of results. 

Higher difference in electrical resistance values could not be observed at higher elongations, 
which confirms the coating uniformity achieved of treated yarns. Non-uniform coatings [66] tend to 
crack where there is a thin deposited layer. This causes a marked increase in electrical resistance 
whenever a conductive track breaks up. 
  

Figure 12. Textile sensors with silver drops added during preparation: (a) GF/PP sensor; (b) GF sensor.

GF sensors, GF Sy-sp, show lower electrical resistance, ~850 Ω prior testing and lower elongation
at break, 5.45%, higher force at break, 414.14 N, and higher gauge factor 3.5939 compared to GF/PP
sensors, GF/PP Sy-sp (Table 7).

GF/PA66 sensors, GF/PA66 Sy-sp, show higher elongation at break, 7.20%, and lower gauge
factor, 1.3412, compared to other textile sensors although number of copper twisted wires applied
during their production has to be taken into account. Electrical resistance of GF/PA66 Sy-sp is slightly
lower after production compared to other textile sensors, with lower dispersion of results.

Higher difference in electrical resistance values could not be observed at higher elongations,
which confirms the coating uniformity achieved of treated yarns. Non-uniform coatings [66] tend
to crack where there is a thin deposited layer. This causes a marked increase in electrical resistance
whenever a conductive track breaks up.
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Table 7. Electromechanical tests of textile sensors: sensor electrical resistance, tensile results and
gauge factor.

Sample Label
Sensor Electrical Resistance

Force at Break
(N)

Elongation at
Break (%)

Gauge FactorAfter Production
(Ω)

Prior Testing
(Ω)

GF/PP Sy-cd-1 930 2560 264.24 7.40 3.4738
GF/PP Sy-cd-2 950 2450 305.15 6.10 4.7615
GF/PP Sy-cd-3 920 2510 290.79 6.20 3.5767

Average 933 2507 286.73 6.57 3.9373
Standard deviation 15 55 20.76 0.72 0.7156

GF/PP Sy-sp-1 880 980 269.03 7.90 2.5027
GF/PP Sy-sp-2 700 800 140.80 7.20 2.0564
GF/PP Sy-sp-3 1540 1460 270.79 5.70 3.8872

Average 1040 1080 226.87 6.93 2.8154
Standard deviation 442 341 74.55 1.12 0.9546

GF Sy-sp-1 1240 1200 337.69 4.50 3.9768
GF Sy-sp-2 500 500 490.60 6.40 3.2110

Average 870 850 414.14 5.45 3.5939
Standard deviation 523 495 108.13 1.34 0.5415

GF/PA66 Sy-sp-1 990 1150 295.41 7.30 1.1434
GF/PA66 Sy-sp-2 810 930 271.85 8.00 1.4136
GF/PA66 Sy-sp-3 690 820 214.93 6.30 1.4665

Average 830 967 260.73 7.20 1.3412
Standard deviation 151 168 41.38 0.85 0.1733

4. Conclusions

The electrical resistivity of conductive dry films is an important parameter for the percolation
threshold determination in order to define PEDOT:PSS content for textile sensor development.
The electrical conductivity of PEDOT:PSS formulations after preparation started to decrease
progressively during the 75 days observation period. Conductive dry films have granular morphology
which confirmed that a more homogeneous surface resulted in higher electrical conductivity. According
to the design concept study, an aluminum roll to roll laboratory device and a plexiglass chamber
were realized and used for fibrous sensor production guaranteeing good quality and optimal coating
repeatability. Textile sensors were prepared by an original roll to roll coating method and by a novel
laboratory device following the defined protocol. A new generation of textile fibrous sensors based
on PEDOT:PSS polymer complex are ready to be used for in situ structural health monitoring of
textile reinforced thermoplastic composites in real time according to analysis of electromechanical
measurements. GF sensors showed lower electrical resistance and elongation at break, higher force
at break, and higher gauge factor compared to GF/PP sensors with silver drops added after copper
wires insertion around conductive coated yarn. Those conductive drops guarantee good electrical
contact and small contact resistance. GF/PA66 sensors indicated slightly lower electrical resistance
after production, higher elongation at break, but lower gauge factor compared to other sensors.
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Appendix A

Appendix A.1. Roll to Roll Coating Method

The yarn movement is controlled with two motor devices placed at the ends of the coating
path. The duration of yarn introduction in a bath (135 mL of dispersion) at each coating step
has been determined precisely in order to avoid depositing used dispersions on aluminum rollers
(Figure A1) [52]. A slower coating speed, 0.2 m/min, must be used during the process due to later
slower drying of the coated yarn. A temperature of 170 ◦C is used for the heating system, HG 2310
LCD programmable intellitemp™ heatgun (Steinel Professionel, Herzebrock-Clarholz, Germany),
at a distance of less than 5 cm from the coated yarn. The left N◦1 rollers (Φ 40 mm) after pre-testing
were finally set up at an angle of 20◦ between the aqueous dispersion surface in a plexiglass chamber
and the right N◦1 rollers to prevent early yarn coating.
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Appendix A.2. Textile Sensors Preparation

A coloured pen is used to mark the given distance at sole yarn surface (Figure A2). It is possible
to make ten or more textile sensors in one series, but final product quality must be taken into account.
After each 1 m of yarn in a series short length (30 mm) of PP yarn is twisted around the yarn to
recognize each new sample during the coating. Besides, additional yarn length must be taken for
(sensor) yarn placement (raw bobbin and coated bobbin) on the two motor devices, M1 and M2,
approximately 3 m on each side.
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The textile sensors in a series were prepared according to description below:

(i) The sole yarn was coated with protective coating, chemical C, (Figure A3a). One drop of
fast-acting anionic wetting agent, NOVAROL DEL, chemical D, used for the treatment of cotton,
wool and synthetic fibres was added in C-aqueous dispersion for the first protective coating
to improve homogeneity of yarn coating and to increase the adhesion between the conductive
coating and yarn as a following step for textile sensors production.

(ii) After that, two conductive coatings, 8% PEDOT:PSS B/C dispersion, were applied according to
the preliminary study as the optimum number of conductive coatings (Figure A3b).

(iii) Copper wires were twisted around conductive coated yarn, 5 rounds in one direction and
2 in the opposite direction, to avoid electrical disturbance due to inductivity and capacity of
the connections (Figure A3c), or 3 rounds in one direction (Figure A3d), before the last protective
coating and placed at the distance of 5 cm.

(iv) Conductive drops of 8% PEDOT:PSS B/C mixture or silver were added after wires insertion
(Figure A3e) around conductive coated yarn due to connection improvement between them.

(v) The last protective coating was applied on the treated yarn(s) with paintbrush (Figure A3f).
(vi) Samples were dried overnight under standard conditions (20 ◦C, 65% R.H.).
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