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Abstract
Background: Single variant approaches have been successful in identifying DNA methylation quantitative trait loci (mQTL), although
as with complex traits they lack the statistical power to identify the effects from rare genetic variants. We have undertaken
extensive analyses to identify regions of low frequency and rare variants that are associated with DNA methylation levels.
Methods: We used repeated measurements of DNA methylation from five different life stages in human blood, taken from
the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Variants were collapsed across CpG islands and their
flanking regions to identify variants collectively associated with methylation, where no single variant was individually
responsible for the observed signal. All analyses were undertaken using the sequence kernel association test.
Results: For loci where no individual variant mQTL was observed based on a single variant analysis, we identified 95 unique
regions where the combined effect of low frequency variants (MAF�5%) provided strong evidence of association with
methylation. For loci where there was previous evidence of an individual variant mQTL, a further 3 regions provided evidence of
association between multiple low frequency variants and methylation levels. Effects were observed consistently across 5
different time points in the lifecourse and evidence of replication in the TwinsUK and Exeter cohorts was also identified.
Conclusion: We have demonstrated the potential of this novel approach to mQTL analysis by analysing the combined effect
of multiple low frequency or rare variants. Future studies should benefit from applying this approach as a complementary
follow up to single variant analyses.
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Introduction
Genome wide association studies (GWAS) have had a profound
influence on the number of complex diseases associated com-
mon variants identified. Current endeavours have now shifted to
elucidate the functional role of these variants and to better
understand the underlying mechanisms by which they influence
phenotypic varition. One approach to this has been to determine
their impact on DNA methylation, an epigenetic regulation
mechanism known to play a key role in many biological pro-
cesses and disease susceptibility (1,2). Recent studies have found
success in identifying methylation quantitative trait loci (mQTLs)
using individual variant approaches (3–5). However, these
approaches have limited power to detect effects from rare vari-
ants, which is also true when analysing complex traits. However,
there may be many low frequency and rare variants across the
genome which can help explain a large proportion of the additive
genetic variance of complex traits and diseases (6,7).

Collaborative efforts have found success in improving the
statistical power to detect disease associated rare variants by
pooling large sample sizes together (termed meta-GWAS) (8,9).
However, adopting such an approach to uncover mQTL caused
by rare variation is challenging for several reasons, such as
measurements being taken from differing tissue types, samples
with a wide range of disease states and matching studies which
have defined different quality control parameters. An alterna-
tive and feasible approach to leverage statistical power for rare
variant analysis involves collapsing them together across the
same functional unit or genomic region and analysing their
combined effect on phenotypic traits (10,11).

We have undertaken extensive analyses using repeated
measures of methylation data from the Accessible Resource for
Integrated Epigenomic Studies (ARIES)(12) project to identify
mQTL effects from collapsed regions of low frequency and rare
variants. Our sample consisted of mother-offspring pairs from
the Avon Longitudinal Study of Parents and Children
(ALSPAC)(13,14) cohort. Our aim was to identify regions sur-
rounding CpG islands where no single variant was sufficiently
responsible for the observed association signal, but rather a
combined effect contributed to by several variants not detected
by a single variant analysis. Moreover, for CpG islands where
there was evidence of a single variant mQTL, we wanted to in-
vestigate these regions to evaluate whether there were any in-
dependent effects from low frequency and rare variants.

Results
All analyses were undertaken using the ARIES dataset (12)
which includes 450k DNA methylation data collected at five dif-
ferent time points across the life course using individuals from
the ALSPAC cohort (13,14). Study characteristics for data from
ARIES can be located in Table 1. The childhood time point in
ARIES (n¼ 834, Mean Age¼ 7.49 (Standard Deviation¼ 0.15), pro-
portion female¼ 0.50) was selected as the discovery analysis for
this study and all results are from this data unless stated other-
wise. The imputed genotype dataset for these analyses con-
tained 3,721,682 low frequency variants (MAF� 5%). 1,787,681 of
these were rare variants (MAF� 1%).

Discovering novel mQTL

There were 27,176 CpG island regions according to UCSC annota-
tions using the hg19 build of the human reference genome(15).
10,836 of these regions had a reported mQTL in close proximity

(i.e. within the island or its flanking regions 6 1kb). This was
based on the results of a single variant analysis previously under-
taken in the ARIES dataset by Gaunt et al. (16). Of the remaining
16,340 CpG islands, variants were first of all collapsed across just
CpG islands themselves, followed by expanded regions of interest
to also include flanking shore and shelf regions. The following
numbers of regions had at least 2 low frequency or rare variants
within them and were therefore eligible for analysis:

1) 2,934 CpG islands with no flanking regions
2) A further 8,701 CpG islands with shore regions (i.e. islands
þ2kbs up and downstream)

3) A further 4,407 CpG islands with shore and shelf regions
(i.e. islands þ4kbs up and downstream).

An illustration of these 3 definitions can be found in Figure 1.

Cis-mQTLs
Each collapsed region of variants was analysed in turn with each
good quality CpG probe (294,905 out of 485,577, based on evalua-
tions by Naeem et al. (17)) within 1 mega base (MB) distance of the
region analysed to identify cis-effects. The Sequence Kernel asso-
ciation Test (SKAT) (18) was used in all analyses to evaluate asso-
ciations between sets of variants and methylation, using two
MAF cut offs of� 5% and� 1%. For consistency, we applied the
same p-value threshold as Gaunt et al. (19) when evaluating find-
ings in the subsequent analyses (P< 1.0� 10� 14).

Methylation levels at five positions were influenced by low
frequency variants (MAF� 5%) that were restricted to being lo-
cated within proximal CpG islands (Supplementary Material,
Table S1). Extending these regions to include variants within ad-
jacent shores provided strong evidence of association for 90
unique regions, 88 of which were not identified when collapsing
variants from island regions alone. The top hits for these results
can be located in Table 2. Extending our region of interest out
further to include islands along with shores and shelves identi-
fied 37 unique regions with strong evidence of association for
cis-mQTL, although only one of these regions was not previ-
ously identified using island and shore regions alone in the pre-
vious analyses (Supplementary Material, Table S2). Q-Q plots for
all these results can be found in Figure 2. Using a MAF threshold
of� 1%, we only observed strong evidence of association be-
tween one region of variants (chromosome 2: 233,243,999-
233,248,448 (CpG island & shores)) and nearby CpG probe
cg16700265, near ALPP (P¼ 3.62 � 10�17). Results can be found in
Supplementary Materials, Table S3–S5.

All sets of variants responsible for cis-mQTL effects that sur-
vived the correction for multiple comparisons were further evalu-
ated by calculating individual variant effects using linear
regression. This was to ensure that no single variant was indepen-
dently responsible for evidence of association, as well as discerning

Table 1. Study characteristics

Time point Sample Size Mean Age Proportion Female

Birth 771 NA (all zero) 0.49
Childhood 834 7.49 (0.15) 0.50
Adolescence 837 17.14 (1.01) 0.49
Pregnancy 764 29.22 (4.41) 1 (all female)
Middle Age 742 47.45 (4.46) 1 (all female)

-Study characteristics for ALSPAC individuals enrolled in the ARIES project

across five different life stages in human blood.

4340 | Human Molecular Genetics, 2016, Vol. 25, No. 19

Deleted Text: Introduction
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: Results
Deleted Text: N
Deleted Text: Figure 
Deleted Text: : 
Deleted Text: x
Deleted Text: 5
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw283/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw283/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw283/-/DC1
Deleted Text: Figure 
Deleted Text: x
Deleted Text: &thinsp;
Deleted Text: &thinsp;
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw283/-/DC1


which variants were collectively responsible for driving the ob-
served signal (Supplementary Materials, Tables S6–S11).

Trans-mQTLs
2,553,242,326 analyses were undertaken to evaluate all possible

trans-mQTL using CpG islands and flanking shore regions
((8,701 regions x 294,905 probes) subtracting 12,726,079 possible
cis-mQTL effects). Due to the computational burden of this
analysis, only CpG island and shore regions were evaluated as
this region of interest appeared to be the most effective at iden-
tifying evidence of cis-mQTL in the previous analysis (88 of the
94 cis-mQTL effects were observed using this region of interest).

Only one result survived the conservative multiple testing
correction. The observed association was found between 9 low
frequency variants (MAF� 5%) located on chromosome 21 (be-
tween 33,982,367 – 33,987,450, near C21orf5) and cg09050820
(chromosome 6:167,586,206 near TCP10L2) with a P-value of 1.50
� 10�15. No observed associations survived the multiple testing
correction using a cutoff of 1% MAF. Results can be found in
Supplementary Materials, Tables S12 and S13.

Analyses in other time points

All results that survived the correction for multiple testing were
further evaluated using all 4 other time points in the ARIES

project which included offspring previously analysed as well as
their mothers. Using the top 10 hits of the CpG island and shore
analysis, which provided the strongest evidence of association
for novel mQTL, we observed consistently low p-values across
all other time points in ARIES. These results can be located in
Table 3. Effects across other time points for all other hits can be
located in Supplementary Materials, Tables S14 and S15.

Replication in independent cohorts

Evidence of replication for the top 10 hits in the CpG island and
shore analysis was evaluated using individuals from two inde-
pendent cohorts, TwinsUK (n¼ 847) (20) and Exeter (n¼ 608)
(Hannon et al., manuscript in preparation). Replication analyses
were successful as low p-values were observed for each mQTL
(P< 0.01). Results can be found in Table 4.

Leave-one-out analysis

To ensure that our results were robust to outliers (i.e. individual
low frequency/rare variants associated with extremely high/low
methylation), we firstly generated box and whisker plots to vi-
sually inspect possible outliers for the top 10 hits of the CpG is-
land and shore analysis (Supplementary Material, Fig. S1).
These figures did not suggest outliers were an issue in our anal-
ysis, although to be certain we have also undertaken leave one
out analyses to discern whether signals were driven by a single
variant influenced by extreme measurements of methylation.
Variants within regions were firstly pruned using plink software
(21), followed by re-running our analysis for each mQTL except
systematically removing individual variants in turn. Results
were plotted with –log10 p-values on the y-axis and the variant
removed on the x-axis. Overall, these results help illustrate that
collapsed mQTL are a combined effect of low frequency and
rare variants on DNA methylation, where evidence of associa-
tion remains consistently strong even when removing each var-
iant in turn. Furthermore, these results show that our approach
is robust to the presence of outliers and linkage disequilibrium
between variants. The plots for these analyses can be located in
Supplementary Material, Figure S2.

Whole genome sequence evaluation

To verify that observed associations were not due to an overlap-
ping rare variant in the probe sequence, we identified a subset of
394 individuals from the discovery analysis who had whole

Table 2. Analysis of variants within CpG islands & shores (MAF�5%)

CpG Island & Shores Nearest
Gene

Probe nVars P-value

chr21:45,728,220–45,732,444 PFKL cg21069494 6 6.24x10�24

chr8:144,715,866–144,720,798 ZNF623 cg16316162 3 4.02x10�23

chr11:66,492,937–66,498,387 SPTBN2 cg24851651 6 2.68x10�21

chr2:75,785,717–75,790,312 EVA1A cg26175789 8 6.73x10�21

chr12:120,753,346–120,757,672 PLA2G1B cg06379361 5 1.21x10�20

chr7:100,873,555–100,878,212 CLDN15 cg01299997 7 1.26x10�20

chr3:53,076,956–53,083,101 RFT1 cg04865290 10 2.03x10�20

chr2:196,519,555–196,524,950 SLC39A10 cg19655195 8 2.23x10�20

chr1:1,287,707–1,293,126 MXRA8 cg17132079 3 1.11x10�19

chr11:64,407,877–64,413,253 NRXN2 cg19395706 4 1.43x10�19

Top 10 results for analysis between low frequency variants collapsed within

CpG Island & flanking Shore regions (where there is no previously reported sin-

gle variant mQTL effect) and nearby methylation probe (þ/- 1Mb of region ana-

lysed). nVars¼number of variants analysed. Probe¼450k probe ID. P-value¼P-

value according to SKAT.

Figure 1. A simple diagram of a theoretical CpG Island and flanking regions. These regions of interest were proposed to aggregate variants together over and analyse

their combined effect on measures of methylation at CpG probes.
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genome sequence (WGS) data as part of the UK10K project (22).
For the top 10 hits found in Table 2 from our discovery analysis,
only 1 probe had an overlapping rare variant based on the UK10K
WGS data (cg17132079). We therefore repeated the analysis of the
3 low frequency variants at the CpG island near MXRA8 and this
probe. The observed p-value had attenuated due to the reduction
in sample size (P¼ 1.62�10�11). However, after conditioning our
analysis by including the overlapping rare variant as a covariate
in our model we did not observe an attenuation in the observe ef-
fect (P¼ 1.38�10�11), suggesting that this analysis was not biased
by the overlapping rare variant.

Conditional mQTL analysis

For the remaining 10,836 CpG island regions not evaluated in the
initial mQTL analysis, 2,433 had two or more variants within their
island or flanking shore region. These regions were not previously
analysed due to evidence of mQTL detected in close proximity
(65kbs on the island) in the single variant analysis conducted by

Gaunt et al. (16). Therefore, these regions were analysed as before
using SKAT but conditioning on the single variant responsible for
the evidence of an mQTL detected at that loci. Variants which
were in high linkage disequilibrium (LD) with the mQTL (defined as
D’� 0.8) were removed for these regions before analysis.

Results from this analysis suggested that methylation levels
were influenced independently at 3 loci by low frequency vari-
ants (MAF� 5%) after conditioning analyses on reported single
mQTL effects. The nearest genes to these loci were PPP2R2A,
C2orf80 and SLC32A1. All of these collapsed mQTL were acting
in cis. The results for this analysis can be found in Table 5.
Supplementary Material, Table S16 includes all time points
in ARIES where these effects were observed to have a
P-value< 1 � 10� 14.

Discussion
We have undertaken a novel approach to mQTL analysis by in-
vestigating the combined impact of multiple low frequency and

Figure 2. Quantile-Quantile plots for results of the cis-mQTL analysis after aggregating variants according to 1) CpG islands 2) CpG islands & shores 3) CpG islands,

shores and shelves.
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rare variants on DNA methylation. Altogether we identified 95
unique regions of low frequency variants (MAF� 5%) that were
collectively associated with DNA methylation. 94 of these were
acting in cis (associated with methylation within 1MB distance
away) and 1 in trans (greater than 1MB away). Importantly, none
of these effects were driven by an individual variant and there-
fore were not identified in the single variant analysis. Evidence of
replication was observed both internally and in external datasets
for the top 10 hits of this analysis which supports evidence that
these associations are driven by causal effects. We also identified
a further 3 loci with previous evidence of an mQTL effect from
the single variant analysis, where there was evidence of an inde-
pendent signal from multiple low frequency variants. This ap-
proach was less successful in identifying association signals from
regions of rare variation (MAF� 1%), although further studies
with larger sample sizes may yield stronger evidence of associa-
tion for these types of effects.

We found that 88 of the 94 unique regions responsible for ob-
served cis-mQTL effects were identified by expanding our region
of interest from CpG islands to include flanking shore regions.
When conducting a variant collapsing analysis, the definition of
a functional unit or genomic region by which variants are col-
lapsed together is crucial to identifying association signals (23).
This is reflected in our study, as using CpG islands alone would
have overlooked the vast majority of signals identified, whereas
extending regions to include both shores and shelves also re-
sulted in fewer association signals rather than just islands and
shores alone. This is most likely due to an increased number of
neutral variants in the analysis window, which incorporate sta-
tistical noise into the analysis (24).

The strongest evidence of association in our study was a cis-
mQTL identified near the PFKL gene region (P¼ 6.24�10�24 in the
discovery analysis). Methylation of the ATF-motif in PFKL was
observed to be reduced in obese patients compared to non-
obese controls in a study investigating epigenetic modifications
in terms of the aetiology of type 2 diabetes (25). CLDN15
(P¼ 1.26�10�20 in the discovery analysis) was another locus
which provided evidence of association in this analysis. This
gene was observed to be dysregulated according to methylation
status in tumour cell lines according to a recent study (26).
Amongst the other top hits in our discovery analysis were
mQTL identified near the ZNF623 and PLA2G1B genes which
have previously been reported to be hypermethylated (27,28).
Previous evidence detected at these loci in methylation studies,
along with the replication of these effects in external cohorts,

supports the validity of the approach used in this study to de-
tect mQTL caused by low frequency and rare variants. This is
important for future studies interested in mQTL as single vari-
ant approaches may not have sufficient power to detect these
types of effects.

Extending analyses to loci where there was previous evi-
dence of an mQTL effect detected using single variant
approaches identified 3 more associations between multiple
low frequency variants and methylation levels. Analyses were
conditioned on the previously identified mQTL, which means
that this evidence suggests that these association signals are in-
dependent of each other. As with the previous analyses, apply-
ing this approach with a MAF cutoff of� 1% lacked statistical
power to detect any strong evidence of association. A reason for
this may be due to the relatively small sample sizes for the data
analysed in this study (n¼�800). The validity of these
approaches should still be useful for future studies with larger
sample sizes, in terms of detecting combined effects from rare
variants on DNA methylation which would not be identified us-
ing single marker approaches. One result which was of interest
involved rare variants contributing to a cis effect at the DVL1
loci (P¼ 6.26�10�14), as it is a previously reported imprinted
gene (29). Although evidence was not quite strong enough to
survive the strict P-value threshold used in this study, this is en-
couraging for future studies which hope to detect novel variants
associated with methylation by applying this approach.

Moreover, the analysis pipeline undertaken in this study can be
adapted depending on the study hypothesis. For example, in this
study, we have collapsed low frequency and rare variants together
based on CpG island regions, although collapsing variants together
across gene regions may also be a viable approach to mQTL analy-
sis. The genotype data used in this study was imputed SNP micro-
array data, which is suboptimal for identifying signals from rare
genetic variants. For example, on average there were 5.4 variants
with a MAF less than or equal to 1% in CpG islands and flanking re-
gions after applying appropriate quality filters. Therefore, applying
this approach to next generation sequencing data which directly
assays rare variants should identify evidence of an association
from rare genetic variants not detected in our study.

Despite undertaking an exhaustive number of tests, we found
identifying strong evidence of association for trans-mQTL chal-
lenging, an outcome also encountered by previous studies (3,30).
This is likely due to smaller effect sizes relative to cis-mQTL,
which is a trend also observed for trans-eQTL (31). Single variant
approaches have been used to investigate the relationship

Table 3. Evaluations using other time points in ARIES

CpG Island & Shores Probe Offspring Mothers

Birth (n¼ 771) Adolescence (n¼837) Pregnancy (n¼764) Middle Age (n¼742)

chr21:45,728,220–45,732,444 cg21069494 9.34x10�20 1.63x10�18 2.15x10�18 2.39x10�20

chr8:144,715,866–144,720,798 cg16316162 5.72x10�22 2.62x10�19 1.29x10�23 3.73x10�28

chr11:66,492,937–66,498,387 cg24851651 1.06x10�12 7.04x10�17 4.52x10�12 1.76x10�11

chr2:75,785,717–75,790,312 cg26175789 3.27x10�14 1.08x10�20 7.24x10�19 5.47x10�18

chr12:120,753,346–120,757,672 cg06379361 3.99x10�20 8.86x10�16 3.66x10�19 6.11x10�21

chr7:100,873,555–100,878,212 cg01299997 4.08x10�22 3.75x10�15 1.96x10�12 3.33x10�19

chr3:53,076,956–53,083,101 cg04865290 1.34x10�12 6.69x10�24 3.82x10�22 1.99x10�13

chr2:196,519,555–196,524,950 cg19655195 1.25x10�14 1.68x10�18 1.84x10�15 6.86x10�16

chr1:1,287,707–1,293,126 cg17132079 2.99x10�13 4.02x10�20 1.06x10�14 4.54x10�14

chr11:64,407,877–64,413,253 cg19395706 7.53x10�14 3.00x10�16 5.63x10�17 7.56x10�23

Each column refers to a different time point within ARIES than the one used in the discovery analysis, as described in Table 1. All columns contain p-values according

to SKAT. Probe¼450k probe ID, n¼ sample size at each time point.
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between sequence variation, gene expression and DNA methyla-
tion (32). Extending the analysis framework demonstrated in this
study to also incorporate the combined impact of variants on
gene expression is necessary to better understand the functional
consequence of rare variants. Moreover, investigating the impact
of environmental exposures known to influence DNA methyla-
tion would be worthwhile to establish whether these influenced
the observed associations between low frequency variants and
DNA methylation. The framework easily allows for this by adjust-
ing for covariates in the model and the findings could be impor-
tant in terms of the molecular mechanisms of complex disease.

There are features of the ARIES project which should be
taken into consideration when interpreting the results of this
study. Firstly, all adults in the ARIES project are female and so
sex was not a source of variability for the two respective time
points. All methylation measurements are taken from periph-
eral blood, meaning we are unable to evaluate our findings us-
ing different tissue types. Furthermore, cord blood obtained
from the birth time point is not equivalent to peripheral blood
in its cell type composition. However, it has been reported that
evidence for the majority of mQTL is consistent across tissue
types (33) and the results in this study appear to reflect this as
results were consistent across all time points in ARIES.

The motivation for undertaking an analysis of the association
of low frequency and rare variants with DNA methylation is driven
by a desire to understand the contribution made by genotype to

epigenetic variation and, in turn, the role that this might play in
development and disease. The biological function of the loci identi-
fied as being associated with methylation variation in this study
has not been explored here but future studies are warranted.

In conclusion, we have presented a complementary approach
to single variant mQTL analysis. Future studies should benefit
from applying this approach as a follow-up analysis to uncover
low frequency and rare variants associated with DNA methylation
that may have been overlooked using single variant approaches.

Methods
Accessible resource for integrative epigenomic studies
project (ARIES)

Study Sample
All samples in the discovery analysis are taken from the Avon
Longitudinal Study of Parents and Children (ALSPAC)(13,14).
Blood samples were taken from 1018 mother-offspring pairs
(offspring at three timepoints and their mothers at two time-
points) who were enrolled as part of the Accessible Resource for
Integrative Epigenomic Studies project (ARIES, http://www.arie
sepigenomics.org.uk/) (12). For the purposes of the planned
analyses, one timepoint in the offspring (Mean Age¼ 7.49
(Standard Deviation¼ 0.15), proportion female¼ 0.50), was des-
ignated for the discovery analysis, whereas measures from

Table 4. Replication analysis in the TwinsUK and Exeter cohorts

CpG Island & Shores Probe ALSPAC TwinsUK Exeter

nVars P-value nVars P-value nVars P-value

chr21:45,728,220–45,732,444 cg21069494 6 6.24x10�24 6 8.13x10�5 0 N/A
chr8:144,715,866–144,720,798 cg16316162 3 4.02x10�23 3 1.14x10�6 2 4.67x10�18

chr11:66,492,937–66,498,387 cg24851651 6 2.68x10�21 6 0.03 2 2.14x10�4

chr2:75,785,717–75,790,312 cg26175789 8 6.73x10�21 8 1.42x10�3 5 7.57x10�16

chr12:120,753,346–120,757,672 cg06379361 5 1.21x10�20 5 8.23x10�3 2 1.63x10�7

chr7:100,873,555–100,878,212 cg01299997 7 1.26x10�20 7 4.85x10�5 3 8.45x10�3

chr3:53,076,956–53,083,101 cg04865290 10 2.03x10�20 10 9.23x10�6 3 5.44x10�18

chr2:196,519,555–196,524,950 cg19655195 8 2.23x10�20 8 4.55x10�3 3 1.85x10�7

chr1:1,287,707–1,293,126 cg17132079 3 1.11x10�19 3 1.01x10�3 0 N/A
chr11:64,407,877–64,413,253 cg19395706 4 1.43x10�19 4 7.61x10�7 0 N/A

nVars¼number of variants analysed. This varied depending on imputation quality for each cohort. P-value according to SKAT.

Table 5. Conditional analysis of low frequency variants collapsed by CpG island and shore regions with single variant mQTL

Conditional analysis results Single Variant mQTL results

Region Nearest Gene Probe nVars05 P-value05 nVars01 P-value01 SNP P-value

chr2:208,974,900–208,979,396 C2orf80 cg10392614 5 2.56x10�20 0 NA rs28575061 1.36x10�169

chr20:37,350,130–37,359,372 SLC32A1 cg15490840 5 2.88x10�20 2 0.76 rs10932241 1.64x10�17

chr8:26,045,804–26,050,097 PPP2R2A cg12285565 3 1.16x10�18 0 NA rs2867326 1.00x10�19

chr16:1,003,902–1,008,281 LMF1 cg07338658 5 3.34x10�13 0 NA rs111820009 1.06x10�33

chr19:41,302,467–41,307,050 RAB4B cg11298343 5 6.32x10�12 0 NA rs111833532 9.61x10�50

chr3:13,321,438–13,326,929 NUP210 cg05265484 3 8.54x10�12 0 NA rs36024363 1.77x10�43

chr2:1,799,618–1,804,060 MYT1L cg04722030 9 1.17x10�11 1 0.96 rs13387965 1.43x10�20

chr13:111,299,316–111,303,593 CARS2 cg15747390 18 1.22x10�11 4 0.01 rs61970542 5.87x10�97

chr3:112,928,437–112,933,506 BOC cg23260991 3 1.56x10�11 3 1.56 x10�11 rs931702 7.48x10�16

chr1:91,187,139–91,191,400 BARHL2 cg22507154 4 1.42x10�10 3 9.14 x10�7 rs72720396 8.12x10�25

nVars05¼number of variants analysed (MAF�5%), P-value 05¼SKAT P-value conditioned on single variant mQTL at this loci (MAF�5%), nVars01¼number of variants

analysed (MAF�1%), P-value01¼SKAT P-value conditioned on single variant mQTL at this loci (MAF�1%), SNP¼mQTL variant at this loci associated with methylation

from probe in single variant analysis, P-value¼ single variant P-value between SNP and probe from single variant analysis.

4344 | Human Molecular Genetics, 2016, Vol. 25, No. 19

Deleted Text: ve
Deleted Text: Methods
Deleted Text: R
Deleted Text: I
Deleted Text: E
Deleted Text: S
http://www.ariesepigenomics.org.uk/
http://www.ariesepigenomics.org.uk/


other timepoints were used to evaluate findings. As this data
was analysed in a cross-sectional manner, adjustment for relat-
edness was not undertaken. Cord and peripheral blood samples
were collected according to standard procedures for all available
mother-offspring pairs at each time point. Written informed
consent was obtained from all study participants. Ethical ap-
proval for the study was obtained from the ALSPAC Ethics and
Law Committee and the Local Research Ethics Committees.
Please note that the study website contains details of all the
data that is available through a fully searchable data dictionary
(http://www.bris.ac.uk/alspac/researchers/data-access/data-dic
tionary/).

Methylation assays
DNA samples were bisulfite treated using the Zymo EZ DNA
MethylationTM kit (Zymo, Irvine, CA). The Illumina
HumanMethylation450 BeadChip (HM450k) was used to mea-
sure methylation across the genome and the following arrays
were scanned using Illumina iScan, along with an initial quality
review using GenomeStudio. A purpose-built laboratory infor-
mation management system (LIMS) was responsible for gener-
ating batch variables during data generation. LIMS also reported
quality control (QC) metrics for the standard probes on the
HM450k for all samples and excluded those which failed QC.
Data points with a read count of 0 or with low signal:noise ratio
(based on a P-value> 0.01) were also excluded. Methylation
measurements were then compared across timepoints for the
same individual and with SNP-chip data (HM450k probes clus-
tered using k-means) to identify and remove sample mis-
matches. All remaining data from probes was normalised with
the Touleimat and Tost (34) algorithms using R with the
wateRmelon package (35). This was followed by rank-
normalising the data to remove outliers. Potential batch effect
was removed by regressing data points on all covariates. These
included the bisulfite-converted DNA (BCD) plate batch and
white blood cell count which was adjusted for using the
estimateCellCounts function in the minfi Bioconductor package
(36).

Genotyping assays
Genotype data were available for all ALSPAC individuals en-
rolled in the ARIES project, which had previously undergone
quality control, cleaning and imputation at the cohort level.
ALSPAC offspring selected for this project had previously been
genotyped using the Illumina HumanHap550 quad genome-
wide SNP genotyping platform (Illumina Inc, San Diego, USA) by
the Wellcome Trust Sanger Institute (WTSI, Cambridge, UK) and
the Laboratory Corporation of America (LCA, Burlington, NC,
USA). Samples were excluded based on incorrect sex assign-
ment; abnormal heterozygosity (<0.320 or>0.345 for WTSI
data;<0.310 or>0.330 for LCA data); high missingness (>3%);
cryptic relatedness (>10% identity by descent) and non-
European ancestry (detected by multidimensional scaling anal-
ysis). After QC, 500,527 SNP loci were available for the directly
genotype dataset. Data for ALSPAC mothers was generated us-
ing the Illumina human660W-quad genome-wide SNP genotyp-
ing platform (Illumina Inc, San Diego, USA) at the Centre
National de Génotypage (CNG, Paris, France). Samples were ex-
cluded due to non-European ancestry, missingness, related-
ness, heterozygosity or gender mismatches. PLINK (v1.07) (21)
was used for QC on an initial set of 10,015 subjects and 557,124
directly genotyped loci. Following QC the final directly geno-
typed dataset contained 526,688 SNP loci.

Imputation was performed for all genotyped mothers and
children to improve SNP density. ShapeIt (version 2 revision
727) was used to phase genotypes and Impute (version 2.2.2)
was used to impute this data using the 1000 genomes reference
panel (phase 1 version 3, phased using ShapeIt version 2,
December 2013, using all populations). Genotypes were then fil-
tered to include those with a Hardy-Weinberg equilibrium of
P> 5� 10 � 7, MAF� 5% and imputation info score> 0.8. The final
imputed dataset for all subsequent analyses contained
3,721,682 loci. 1,787,681 of these had a MAF� 1%.

Replication cohorts

TwinsUK
The TwinsUK cohort was established in 1992 to recruit monozy-
gotic and dizygotic twins (20). More than 80% of participants are
healthy female Caucasians (age range from 16 to 98 years old).
The cohort includes more than 13,000 twin participants from all
regions across the United Kingdom, and many have had multi-
ple visits over the years. The TwinsUK cohort has been used in
many epidemiological studies and is representative of the gen-
eral UK population for a wide range of diseases and traits (37).

Samples from TwinsUK were genotyped using the Illumina
Hap317K and Hap610K assays (Illumina, San Diego, USA) follow-
ing standard procedures. Normalised intensity data were pooled
and genotypes called on the basis of the Illluminus algorithm
(38). No calls were assigned if the most likely call was less than
a posterior probability of 0.95. SNPs that had a low call rate
(<95%), Hardy-Weinberg P values< 10� 4 were excluded. We
also removed subjects if the sample call rate was less than 95%,
autosomal heterozygosity was outside the expected range, ge-
notype concordance was over 97% with another sample and the
sample was of lesser call rate. Imputation of genotypes was car-
ried out using the software IMPUTE (39).

DNA methylation was measured for 877 individuals ran-
domly selected from the TwinsUK cohort, 847 who also had ge-
netic information. The Infinium HumanMethylation450
BeadChip (Illumina Inc, San Diego, CA, USA) was used to mea-
sure DNA methylation. Details of experimental approaches
have been previously described (40). Normalization was carried
out using the ‘minfi’ R package (41), a procedure equivalent to
the Lumi:QNþBMIQ pipeline. DNA methylation probes that
mapped incorrectly or to multiple locations in the reference se-
quence and probes with a detection P value of>0.05 or missing
values were removed, resulting in 452,874 probes. Blood cell
type coefficients were estimated from the methylation data us-
ing the method described by Houseman et al. (42). For this proj-
ect, normalized methylation beta values were regressed out
effects of family structure, batch effects and predicted cell count
data. The obtained methylation residuals were used to test the
association between genetic variants and methylation.

Exeter
These samples are the first phase of a multi-stage case-control
EWAS of schizophrenia (Hannon et al. 2016. Submitted). 500ng
of DNA from each sample was treated with sodium bisulfite us-
ing the EZ-96 DNA Methylation kit (Zymo Research, CA, USA).
DNA methylation was quantified using the Illumina Infinium
HumanMethylation450 BeadChip (Illumina Inc, CA, USA) run on
an Illumina iScan System (Illumina, CA, USA) following a stan-
dard protocol. Samples were randomly assigned to chips and
plates to ensure equal distribution of cases and controls across
arrays and minimise batch effects. Data were imported in R
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programming environment using the methylumIDAT() function
in the methylumi package (43). Our stringent quality control
pipeline included checking methylated and unmethylated sig-
nal intensities, bisulfite conversion efficacy, tissue prediction (of
blood origin) from the Epigenetic Clock software (https://dna
mage.genetics.ucla.edu/) (44), gender and detection p values of
all samples. Principal component (PC) analysis was used (calcu-
lated across all probes) to identify outliers, excluding sam-
ples> 2 standard deviations from the mean for both PC1 and
PC2. Normalization of the DNA methylation data was performed
used the dasen() function in the wateRmelon package (35).
Genotyping was performed using the Affymetrix Mapping 500K
Array and the Genomewide Human SNP Array 5.0 or 6.0
(Affymetrix, CA, USA). Genotypes were culled from raw inten-
sity data using the Birdseed component of the Birdsuite algo-
rithm (45,46). Samples were genotyped by the Genetic Analysis
Platform at The Broad Institute of Harvard and MIT according to
standard protocols. All samples were concordant across the
methylation and genotype data for SNPs assayed on both plat-
forms. Prior to imputation, PLINK (21) was used to remove sam-
ples with>5% missing data. We also excluded SNPs
characterized by>5% missing values, a Hardy-Weinberg equi-
librium P-value< 0.001 and a minor allele frequency of<5%.
Imputation was performed using ChunkChromosome (http://ge
nome.sph.umich.edu/wiki/ChunkChromosome) and Minimac2
(47,48) with the 1000 Genomes reference panel of European
samples (phase 1, version 3). Imputed genotypes were then con-
verted back in the PLINK format files using GCTA software (49)
only including variants with Rsq> 0.1.

The UK10K project

DNA Samples from 4,030 UK10K study participants (2,040 off-
spring from the ALSPAC cohort, 1,990 from the TwinsUK cohort)
were subjected to low coverage (6-8x average read depth)
whole-genome sequencing (WGS). Sequencing was performed
at both the Wellcome Trust Sanger Institute (WTSI) and the
Beijing Genomics Institute (BGI). DNA (1-3lg) was sheared to
100–1000 bp using a Covaris E210 or LE220 (Covaris, Woburn,
MA, USA). Sheared DNA was size subjected to Illumina paired-
end DNA library preparation. Following size selection (300–
500 bp insert size), DNA libraries were sequenced using the
Illumina HiSeq platform as paired-end 100 base reads according
to manufacturer’s protocol.

Data that passed quality control (QC) was aligned to the
GRCh37 human reference used in phase 1 of the 1000 Genomes
Project. Reads were aligned using BWA (v0.5.9-r16) (50). Of the
4,030 participants, 3,910 samples (1,976 ALSPAC and 1,934
TwinsUK) went through the variant calling procedure. Low
quality samples were identified by comparing the samples to
their GWAS genotypes using about 20,000 sites on chromosome
20. A total of 112 samples (48 ALSPAC and 64 TwinsUK) were re-
moved, leaving 3,798 samples (1,928 ALSPAC and 1,870
TwinsUK) that were eligible for the genotype refinement phase.

Missing and low-confidence genotypes in the filtered VCFs
were refined out using the imputation procedure in BEAGLE 4
(51) with default parameters. Additional sample-level QC steps
were carried out on refined genotypes, resulting in 17 samples
(16 TwinsUK and 1 ALSPAC) being removed due to either non-
reference discordance with GWAS SNV data> 5%, multiple rela-
tions to other samples or failed sex check. A principal compo-
nents analysis was conducted using EIGENSTRAT (52) to
exclude participants of non-European ancestry after merging

our data with a pruned 11 HapMap3 population dataset (53). 44
subjects (12 TwinsUK and 32 ALSPAC) did not cluster to the
European (CEU) cluster and were removed. The final sample
size for association analyses comprised of 3,621 individuals
(1,754 TwinsUK and 1,867 ALSPAC).

Statistical analysis

Discovering novel mQTL
Annotations for UCSC CpG Islands were obtained using the R
Package ‘COHCAPanno’(15) according to the hg19 build of the
human reference genome. All low frequency variants
(MAF� 5%) were collapsed together within regions where there
were no mQTL loci identified from the individual variant analy-
sis carried out by Gaunt et al. (16) using the same dataset. These
regions were defined as:

1) CpG islands as defined by UCSC co-ordinates
2) CpG islands and shores (i.e. islands þ2kbs up and

downstream)
3) CpG islands, shores and shelves (i.e. islands þ4kbs up and

downstream).

Cis-mQTL
Regions which had a reported mQTL in close proximity (CpG is-
land 6 5kb) were not analysed here, but in a subsequent analy-
ses conditioning on the reported mQTL effect. The remaining
regions which had least 2 variants were analysed using the
Sequence Kernel Association Test (SKAT) (18) with each CpG
probe in turn that was withinþ/- 1Mb distance from the region
analysed (30). Regions with only 1 variant were not evaluated as
there was no benefit to applying a collapsing method in these
instances. Other types of collapsing methods make assump-
tions about the direction of effect for variants within the analy-
sis window. As we hypothesised that variants collapsed across
these regions may have conflicting directions of effects (i.e. vari-
ants within a region may cause methylation levels to either in-
crease or decrease at a particular loci), SKAT was chosen above
alternatives. Details on SKAT can be found in the publication by
Wu et al. (18). In brief, SKAT uses a linear model in this study as
our outcome of interest is continuous:

yi ¼ a0 þ a0Xi þ b0Gi þ ei

where y is the rank normalized measure of DNA methylation, a0

is the intercept term, [a1,. . .,am]’ is a vector of regression coeffi-
cients for m covariates, Xi¼ [Xi1,. . .,Xim] denotes covariates,
b¼ [b1,. . .,bp]’ is the vector of regression coefficients for the p ob-
served variants with a region, Gi¼ [Gi1,. . .,Gip] denotes the geno-
types for p variants within the region (i.e. 0, 1 or 2) and e is the
error term. SKAT assumes that the genetic effect bj of an indi-
vidual variants j follows an arbitrary distribution with mean 0
and variant wjsi where s is a variance component and wj is a
weight of variant j. SKAT assumes that

ffiffiffiffi

w
p

j follows a Beta(MAFj;
a1, a2).

This analysis was undertaken using two MAF cut offs of� 5%
(for low frequency variants) and� 1% (for rare variants). We
used a conservative multiple testing correction of P< 1.0x10 � 14

as undertaken by Gaunt et al. (16). This was to reduce the num-
ber of false positive findings. Individual variant effects from re-
gions that survived this correction were evaluated using linear
regression to ensure that no individual variant would have been
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identified in the previous study, but when analysed together
with other low frequency or rare variants we observed much
stronger evidence that they were collectively influencing
methylation.

Trans-mQTL
We applied the same approach as above but to identify trans-
mQTL (defined as associations between variants and CpG
probes more thanþ/- 1Mb from regions analysed). Due to the
computational demand required for the number of tests, we col-
lapsed variants together only using CpG islands with flanking
shore regions, as these regions provided the number of associa-
tion signals that survived the correction for multiple compari-
sons in the cis-analysis. This analysis was undertaken using 2
MAF cutoffs of 5% and 1% and evaluated with the same multiple
testing correction as before.

Analyses in other time points
Analyses were initially undertaken using all available individ-
uals from the Childhood time point in ARIES (Mean Age¼ 7.49
(Standard Deviation¼ 0.15), proportion female¼ 0.50), which
was designated as our discovery analysis. Results which sur-
vived the correction for multiple testing were further evaluated
by analysing the same set of variants with methylation values
measured at the same probe from all other time points in both
children and mothers. These analyses were conducted using
each time point in turn and without adjustment for relatedness.
Variants which did not exist amongst the sample of mothers
were not replaced in these analyses (i.e. we attempted to repli-
cate the effects with available variants without replacement).
We did not evaluate all potential cis- and trans-mQTL at all-
time points due to the computationally exhaustive number of
analyses needed, as well as the potential number of false posi-
tive findings incurred by doing so. Evidence that hits replicated
at other time points was based on associations with a lower
threshold p-value of P> 1 � 10�7 on the basis that these results
are supported by their combination with other evidence from
time points through the life course.

Replication in independent cohorts
Replication analyses were conducted using SKAT to evaluate
the association between sets of variants and DNA methylation
using the same 450k probe ID. Variants which were not eligible
or available within the replication cohorts were not included in
replication analyses.

Leave-one-out analysis
We firstly generated box and whisker plots for the top 10 hits of
our analysis to discern whether extreme measures of DNA meth-
ylation were influencing our results. A leave one out analysis was
also undertaken on the top 10 hits to further ensure that our re-
sults were not heavily influenced by potential outliers or individ-
ual effects. The purpose of this analysis was also to illustrate the
combined effect of these sets of variants on methylation.
Variants within regions were first of all pruned using plink soft-
ware (21), followed by re-running our analysis for each mQTL ex-
cept systematically removing individual variants in turn. Results
were plotted with –log10 P-values on the y-axis and the variant
removed on the x-axis. Plots were annotated with red lines to
show the observed P-value when all variants were analysed (prior
to pruning). A blue line was also added to show the P-value
threshold used in our study (i.e. P< 1.0 x 10� 14).

Whole genome sequence evaluation
To evaluate whether overlapping rare variants in the probe se-
quence was incorporating bias into our analysis, we took a sub-
set of individuals from the discovery analysis who had whole
genome sequence (WGS) data from the UK10K project (22). This
was due to the fact that Naeem et al. had potentially not evalu-
ated these variants in their study when looking at overlapping
SNPs (17). Using the top 10 hits identified in our study, corre-
sponding probe locations were identified to verify whether there
was an overlapping variants in the WGS data. When this was
the case, a conditional analysis was undertaken using individ-
uals enrolled in both the ARIES project and UK10K. This analysis
involved repeating the collapsed mQTL analysis as before ex-
cept including the overlapping variant in the probe sequence as
a covariate in the model. An attenuation in P-value would indi-
cate that our analysis may be influenced by the overlapping
rare variant in probe sequence.

Conditional analysis for regions with a single variant mQTL
For CpG island regions where an mQTL was identified in the
previously undertaken single variant analysis, we undertook
conditional analyses to evaluate whether there was an indepen-
dent effect from regions of low frequency and rare variants at
these loci. All CpG island regions not included in the previous
analysis were eligible. mQTL results from the single variant
analysis had been previously analysed with GCTA (49) to iden-
tify independent loci associated with each methylation probe.

Low frequency variants (MAF� 5%) were collapsed as before
within CpG islands and their flanking shore regions. Variants
which were in high linkage disequilibrium (LD) with the mQTL
(defined as D’� 0.8) were removed for these regions. r2 values
for LD were not used as the range of r2 is dependent on allele
frequencies, which could potentially be very different between
a common SNP and rare genetic variants. Regions with at least
two variants remaining were analysed using SKAT with the cor-
responding probe, which was associated with the single variant
mQTL at this site. The SNP responsible for the mQTL was in-
cluded as a covariate in the model. Analyses were run using two
MAF cutoffs of 5% and 1% as before for the collapsed regions of
low frequency variants. P-values lower than 1�10�14 were ana-
lysed a further time but including a covariate matrix consisting
of all SNPs responsible for an mQTL effect at this locus. This
was to ensure results were not tagging a different mQTL signal
not accounted for in the initial analysis. Analyses were under-
taken using all time points in ARIES. All statistical analyses
were undertaken using R statistical software (54).

Supplementary Material
Supplementary Material is available at HMG online.
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