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Abstract

The development of a substance or inhibitor-based treatment strategy for the prevention of

aortic valve stenosis is a challenge and a main focus of medical research in this area. One

strategy may be to use the tankyrase inhibitor XAV-939, which leads to Axin stabilisation

and subsequent destruction of the β-catenin complex and dephosphorylation of β-catenin.

The dephosphorylated active form of β-catenin (non-phospho-β-catenin) then promotes

nuclear transcription that leads to osteogenesis. The aims of the present study were to

develop an experimental system for inducing in vitro calcification of human aortic valvular

interstitial cells (VICs) to investigate the potential anti-calcific effect of XAV-939 and to ana-

lyse expression of the Wnt signalling proteins and Sox9, a chondrogenesis regulator, in this

model. Calcification of human VIC cultures was induced by cultivation in an osteogenic

medium and the effect of co-incubation with 1μM XAV-939 was monitored. Calcification was

quantified when mineral deposits were visible in culture and was histologically verified by

von Kossa or Alizarin red staining and by IR-spectroscopy. Protein expression of alkaline

phosphatase, Axin, β-catenin and Sox9 were quantified by western blotting. In 58% of the

VIC preparations, calcification was induced in an osteogenic culture medium and was

accompanied by upregulation of alkaline phosphatase. The calcification induction was pre-

vented by the XAV-939 co-treatment and the alkaline phosphatase upregulation was sup-

pressed. As expected, Axin was upregulated, but the levels of active non-phospho-β-

catenin were also enhanced. Sox9 was induced during XAV-939 treatment but apparently

not as a result of downregulation of β-catenin signalling. XAV-939 was therefore able to pre-

vent calcification of human VIC cultures, and XAV-939 treatment was accompanied by upre-

gulation of active non-phospho-β-catenin. Although XAV-939 does not downregulate active

β-catenin, treatment with XAV-939 results in Sox9 upregulation that may prevent the calcifi-

cation process.
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Introduction

In developed countries, calcific aortic valve (AV) stenosis occurs in 1.7% of the population

older than 65 years [1–4]. Development of a substance or inhibitor-based treatment or preven-

tion strategy for this disorder is therefore a main research focus and a challenge for medical

scientists [4, 5]. Calcific AV stenosis shares similar risk factors with aortic sclerosis, but its dis-

ease patterns differ; consequently, the hypothesis that aortic stenosis (AS) treatment with sub-

stances such as statins also affects calcific AV stenosis has not been confirmed [4, 6]. However,

the acceptance of calcific aortic valve disease (CAVD) as an actively regulated cellular process

[7] suggests that drugs that modulate these types of cellular regulations may be promising can-

didates for CAVD treatment [4].

The cell-driven or cell-affecting processes related to CAVD include lipid infiltration,

inflammation, the endothelial-to-mesenchymal transition, fibrosis and osteogenesis [1, 8]. Of

particular interest to the present study was the finding that an osteoblast-like lineage may orig-

inate from valvular interstitial cells (VIC) [4, 8, 9]. This VIC population is responsible for the

maintenance of the extracellular matrix (ECM] in the valve cusp tissue and consists of various

subpopulations, including osteoblastic VICs [10]. Assuming that osteoblastic VICs are indeed

responsible for the processes of neo-osteogenesis, differentiation of VIC preparations into the

osteoblastic status should be possible in vitro. Media formulations that are used for differentia-

tion of mesenchymal stem cells, such as those containing ascorbic acid phosphate, dexametha-

sone, and β-glycerophosphate, have been tested previously [11]. Ascorbic acid induces the

secretion of type I collagen and β-glycerophosphate is the source for phosphate in hydroxylap-

atite, whereas dexamethasone induces Runx2 expression (e.g. by β-catenin–mediated tran-

scriptional activation) [12].

The signalling pathways involved in AV osteogenic processes are Notch, bone morphoge-

netic protein and Wnt/β-catenin signalling [9]. The Wnt/β-catenin pathway, in particular, is

considered relevant for osteoblastic differentiation for CAVD at the molecular level [13–16],

as western blotting and RT-PCR analyses have confirmed the upregulation of β-catenin in cal-

cified aortic valves and in bone in the stenotic aortic valve [17]. Oxidized low density lipopro-

tein leads to AV calcification in vitro and in vivo and LRP5/Wnt signal and β-catenin are

related with cardiovascular calcification [14, 15, 17–19]. The myofibroblastic differentiation

processes of VICs have also been related to the Wnt/β-catenin signalling that depends on

matrix stiffness and TGF-β1 [20]. Stimulation of porcine VICs by oxidised low density lipo-

protein also induces β-catenin expression, leading to the conclusion that Wnt/β-catenin sig-

nalling plays a key role in osteoblastic VIC differentiation, thereby contributing to CAVD [14].

Similar results were published by Gao et al., who demonstrated an involvement of the Wnt/β-

catenin signalling pathway in osteoblastic VIC differentiation monitored by western blotting

and/or RT-PCR detection of extracellular matrix proteins and respective gene markers [21].

Porcine VICs also showed upregulation of Wnt3a and β-catenin expression in response to

treatment with angiotensin II, leading to the assumption that angiotensin II also induces AV

calcification [22].

Fang et al. linked the Wnt/β-catenin pathway to Sox9, a master regulator of chondrogenic

lineage, and revealed that β-catenin limits the expression and nuclear localisation of Sox9 in

cultured chicken aortic valves and in adult mice aortic valve nodules [13, 16, 23]. Sox9 binds

and represses transactivation of the osteogenic glycoprotein Spp1, and a reduced Sox9 func-

tion has been defined as a basis for calcific valvular disease [24, 25]. Activation of Wnt signal-

ling induces osteoblast differentiation but suppresses chondrocyte differentiation of

mesenchymal stem cells, and Sox9 expression is increased after genetic inactivation of β-cate-

nin [26, 27]. Reduction in Wnt/β-catenin signalling by treatment of cultured chicken aortic
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valves with the tankyrase inhibitor XAV-939 resulted in higher expression and nuclear locali-

sation of Sox9 [16].

XAV-939 inhibits the Wnt/β-catenin signalling pathway by stabilising Axin [28], a scaffold-

ing protein. Axin is one concentration-limiting factor for β-catenin degradation as it anchors

proteins involved in the degradation complex [28, 29]. The stabilisation of Axin therefore

reduces the Sox9 activity induced by β-catenin signalling and the formation of chondrogenic

ECM proteins—and thereby, chondrogenesis—resulting in a disorder resembling myxoma-

tous valve disease [16]. Indeed, the dysregulation of Wnt/β-catenin signalling has also been

correlated with progressive myxomatous valve disease [30]. The observation of an increased

Sox9 mRNA expression in the degenerative mitral valve and calcified aortic valve, with the

highest amounts in the cartilage phenotype of diseased mitral valves, has led to the assumption

that bone differentiation in degenerative valve lesions results, on the one hand, in a cartilage

phenotype in mitral valves and, on the other hand, in a bone phenotype in aortic valves [17].

This assumption is supported by histological investigations showing downregulation of Sox9

in human calcified AVs near the regions of calcification and localisation of the remaining Sox9

in these areas in the cytoplasm as an inactive form [31, 32].

In addition to Wnt/β-catenin signalling, the Notch pathway has been implicated in regula-

tion of Sox9, although Sox9 does not seem to be a direct Notch target [33]. Notch and Sox9

were downregulated in porcine VICs in spontaneously calcifying cultures, whereas expression

of osteogenic markers was increased, and the loss of Notch signalling has been postulated to

contribute to aortic valve calcification via a Sox9-dependent mechanism [33]. Co-cultured

endothelial cells have the ability to protect VICs from calcification by sustaining the Sox9

nuclear localisation [31]. Therefore, a drug-based intervention that can stabilise Sox9 phos-

phorylation and nuclear localisation is suggested [31].

The aim of the present project was to analyse the potential anti-calcific effect of XAV-939

and the expression of Axin, β-catenin and Sox9 in human VIC cultures in terms of potential

regulatory mechanisms for osteogenic differentiation via Wnt/β-catenin signalling versus Sox9

driven chondrogenesis. Calcification was induced in vitro in human VIC cultures by incuba-

tion with a combination of ascorbic acid phosphate, dexamethasone and β-glycerophosphate

and the mineral deposits were characterised.

Materials and methods

Patient materials

Nineteen aortic valves were used to isolate VICs for cell culture after the written informed con-

sent form was signed by patients (no minor patients). The study was approved by the ethics

committee of the Dresden University (Ethikkomission an der TU Dresden, registration number
EK429102015). The valves were replaced with prostheses in the daily routine of cardiac sur-

gery. Thirteen patients were male and six were female (average age 65.2 ± 11.8 years). Three of

the 19 valves prepared for the present study were bicuspid and 16 were tricuspid.

Cell culture

Human VICs were isolated as described previously [34]. After enzymatic removal of the endo-

thelial cell layer with a mixture of collagenase (Serva, Collagenase NB8 Broad Range 0.3 PZ U/

ml) and dispase II (Sigma; 0.81 U/mg), the cusps were minced with scalpels and further

digested with collagenase. The released cells were filtered, the collagenase was inactivated and

the cells were collected by centrifugation, and counted. The resulting VIC populations were

plated on collagen type 1 (BD) coated culture plastic and cultured in DMEM (10% foetal calf

serum supplementation) in a humidified atmosphere at 8% CO2 until used for in vitro
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induction of calcification. No CD31 positive cells were detected in three independent cell prep-

arations analysed by immunofluorescence staining, and 83.2 ± 8.3% of the cells strongly

expressed αSMA (not shown). Calcification was induced by seeding 2000 human VICs/cm2

(passages 1–6) in 6-well plates (not collagen coated). After 72 hours, the culture medium was

replaced with ADG medium (ADGM; 50 μM Ascorbic acid phosphate, 10 nM Dexametha-

sone, 10 mM β-Glycerophosphate). ADGM and ADGM including XAV-939 were freshly pre-

pared weekly and replaced every 2–3 days until mineral precipitations were visible (the

maximum incubation time was 35 days without passaging). Control cells were co-cultured in

DMEM. As soon as mineralisation was visible in the ADGM-culture, the experiment was

stopped and the end points were analysed. XAV-939 was solubilised in DMSO and freshly

diluted to a final concentration of 1 μM in culture medium. Due to the high dilution factor

(1:6000), DMSO was not added to the DMEM control wells. Two plates were prepared in par-

allel for calcium quantification and to isolate protein extracts using RIPA buffer. Impact of

XAV-939 inhibitor treatment on cell viability of human VICs was investigated by MTT-assay

(CellTiter-Blue Cell Viability Assay, Promega) after 72h treatment at concentrations of 10, 1

and 0.1 μM revealing (n = 4). To perform MTT-assay cells were seeded at a density of 2000

cells per well of a 96-well-plate. After 72h XAV-939 containing media were added and replaced

after additional 24h. MTT-assay was performed after 72h of inhibitor incubation according to

the manufacturer’s instructions in a 96-well format.

Histological staining

The calcified cell layer in histological setups was analysed by washing the 6-well plates contain-

ing the ADGM induced cell monolayers and the DMEM controls twice with DPBS (Dulbecco’s

phosphate-buffered saline), adding 400 μl DPBS and scraping and separating the cell layers

from the wells. The separated cell material was transferred to a reaction tube and centrifuged

at 200 g for 10 min to precipitate the material. The pellet was fixed in 4% buffered formalin

solution. Samples were paraffin embedded and sliced. Movat Pentachrom staining was per-

formed according to the manufacturer’s (Morphisto) instructions. Calcification was visualised

by staining the slices with von Kossa and Alizarin red stain according to standard methods. As

a control, sliced specimens were decalcified after rehydration by overnight incubation in

Osteosoft solution. Images were acquired using a Slide Scanner (Axio ScanZ.1 by ZEISS) or

Zeiss Observer Z.1.

Infrared spectroscopy

One induced cell culture preparation was used for initial investigation of the precipitates via

Fourier Transformed Infrared (FT-IR) spectroscopy. The cell culture well was washed twice

with DPBS and the cells were carefully scraped from culture plastics and centrifuged at 300 g.

The resulting pellet was directly transferred to embedding media and frozen at -80˚C. Cryosec-

tions with a thickness of 20 μm were transferred to a CaF2 object slide. Sections of cell culture

pellet sample were analysed and compared to a formaldehyde-fixed, calcified human AV

sample.

IR spectroscopy images were collected in transmission mode using a Vertex 70 FT-IR

spectrometer coupled with a Hyperion 3000 infrared microscope (both from Bruker Optik

GmbH, Ettlingen, Germany). The imaging detector was a Santa Barbara focal plane MCT 64 x

64 array detector. The 15× Cassegrainian objective with a numerical aperture of 0.4 imaged a

sample area of approx. 175 × 175 μm2. The compositions of individual infrared images were

captured, subject to the size of the area investigated. Background spectroscopy images were

recorded from the pure CaF2 object slide before the tissue sections were investigated. For all

XAV-939 prevents VIC culture calcification
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measurements, 100 interferograms (scans) were co-added. The interferograms were Fourier

transformed applying Happ-Genzel apodisation and a zero filling factor of 1. Spectra at a reso-

lution of 6 cm-1 of the sample image were rationed against the spectra of the background

image and transformed into absorbance values.

The spectral data were evaluated using the Matlab Package (Version 7, Math Works Inc.

Natick, MA, USA). Only the so-called fingerprint region between 950 and 1800 cm-1 was con-

sidered for data volume minimisation. Data pre-processing involves a removal of outliers, a

baseline correction and a normalisation of each absorbance value of a spectrum to the integral

absorbance. Outliers are spectra that are obviously not associated with tissue or spectra with a

maximum absorbance value larger than 1.5. The baseline of each spectrum was corrected

using the msbackadj function of the Statistics Toolbox of Matlab. Afterwards, the spectra were

area-normalised to eradicate spectral differences due to sample thickness or variation in the

density of cellulose fibres. K-means cluster analysis of with four clusters was performed with

the k-means function of the Statistics Toolbox.

Protein isolation and quantification

Whole cell protein was isolated from the wells after removal of the medium and washing the cul-

ture twice with DPBS. A 200 μl volume of cold (4˚C) RIPA buffer containing protease inhibitors

and phosphatase inhibitors was added to each well and incubated for 10 min on ice. Cellular

material was scraped, transferred to tubes, sonicated to disrupt the cells and pelleted by centrifuga-

tion. The protein content of the supernatant was determined in a 96-well format using a Pierce

BCA Protein Assay Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions.

PAGE and western blotting

Proteins were separated by 10% SDS-PAGE and transferred onto nitrocellulose membranes

(Roth). The membranes were blocked overnight at 4˚C or for 1.5 h at room temperature (RT)

in TBS or PBS, respectively, containing 0.1% Tween20 and 5% milk powder. After three

washes with buffers supplemented with 0.1% Tween20, the membranes were exposed to

the following antibodies in their respective dilutions: Anti-Alkaline Phosphatase (abcam,

Ab54778, 1:200, TBS), Anti-Axin1 (R&D Systems, AF3287, 1:400, TBS), Anti-β-catenin (BD,

610153, 1:1000, TBS), Anti-Non-Phospho (Ser33/37/Thr41) β-catenin (Cell Signaling, #4270,

1:1000, PBS), Anti-Sox9 (abcam, Ab185230, 1:1000, TBS) and Anti-GAPDH (control, Anti-

bodies-online, ABIN1107320, 1:2000, TBS). Primary antibodies were incubated for 1 h at RT

or overnight at 4˚C. Membranes were washed, incubated with secondary anti-mouse (Cell Sig-

nalling, 7076P2, 1:3000), anti-rabbit (Cell Signalling, 7074S, 1:3000) or anti-goat (R&D Sys-

tems, HAF109, 1:1000) immunoglobulin/HRP (1 h, RT) and treated with western blotting

luminol reagent (Merck) for 1 min. The luminol signal was detected using a PHASE-Detection

camera (PHASE) at defined time points. Semiquantitative analyses of expression levels relative

to GAPDH were performed with Image Studio Lite software (https://www.licor.com/bio/

products/software/image_studio_lite), with expression in DMEM control wells set as 100%.

Immunofluorescence staining

Human VIC cultures were seeded on glass slides at a density of 3 × 104 cells per slide. ADGM,

DMEM-XAV-939 and ADGM-XAV-939 were added after 72 h in conventional culture. After

14 days of incubation in the different media, the slides were washed twice with DPBS and fixed

in 4˚C acetone for 10 minutes. Cells were permeabilised with PBS containing 0.2% TritonX100

for 10 minutes and blocked in PBS containing 1%BSA for 30 minutes. Sox9 antibody was

diluted 1:1000 in PBS/BSA, added to the cells and incubated for 1 h at RT. As a control, an

XAV-939 prevents VIC culture calcification
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isotype monoclonal rabbit antibody IgG (abcam, Ab125938) was used at an equivalent concen-

tration. After washing of the slides, a secondary donkey Anti-Rabbit IgG 488 (1:500, abcam,

Ab150073) antibody in PBS/BSA was incubated for 1 h at RT. The cells were DAPI stained

and washed with PBS twice and then embedded in fluorescent mounting medium (Fluoro-

mount G, Invitrogen). Staining was evaluated and images were acquired using a Zeiss

Observer Z.1 Apotome fluorescence microscope. Fluorescent nuclei were counted in relation

to DAPI-stained nuclei and the percentages of Sox9-positive nuclei were evaluated.

Calcium quantification

The calcium content in the induced cell culture wells was determined by replacing the

medium, washing the dish twice with calcium free DPBS and adding 1 ml 0.1 M nitric acid.

The sample was incubated at RT overnight and calcium ions were quantified using a Spektro-

quant Calcium-Test Kit (Merck KGaA, measuring range 0.2–4.0 mg/l [5–100 μmol/l] Ca, SD

of the method ± 0.032 mg/l [0.8 μmol/l] Ca), according to the manufacturer’s instructions and

after relevant dilutions.

The calcium content was related to total protein by removing the nitric acid solution, wash-

ing the wells twice with DPBS, adding 500 μl of a 0.05 M NaOH/0.1% SDS solution per well

and incubating overnight at RT. Protein concentration was determined as described above.

For better comparability, the results were calculated in units of mol/(kg protein).

Statistical analysis

The Wilcoxon matched pairs test was used to test statistical significance of calcium content of

DMEM vs ADGM cell culture samples.

A two tailed paired t-test was used to test alkaline phosphatase expression levels in the

ADGM vs DMEM conditions, and a Wilcoxon matched pairs test was used to compare

DMEM-XAV-939 vs ADGM-XAV-939. The statistical significance of SOX9 nuclear localisa-

tion was tested with a paired t-test.

One-way-ANOVA and the Newman Keuls multiple comparison test were applied to Axin1,

β-catenin and SOX9 western blot data and to quantify the calcium content in the experiments

with the four arms: DMEM, ADGM, DMEM-XAV-939 and ADGM-XAV-939.

Analyses were performed using Graph Pad Prism 5 software (GraphPad Software, Inc.).

Data are presented as mean ± SD. Significant differences are indicated by asterisks.

Results

Induction of calcification

Nineteen individual human VIC cultures were used to study calcification processes induced

by culture in ADGM. The ADGM-induced cultures showed a light to brownish precipitate

after different culture times from 14 to 33 days (Fig 1A, three individual examples). No calcifi-

cation was observed in the DMEM culture. In 11 (58%) of the 19 analysed preparations, an

enrichment of calcium was evident. The calcium content was calculated in relation to the pro-

tein content. Individual VIC cultures that showed significantly higher calcium contents in

ADGM wells in comparison to DMEM were defined as induced and were implemented in

subsequent substance testing experiments. Calculation of the results of all eleven induced VIC

cultures analysed herein revealed a significant enrichment from 0.3 ± 0.2 mol/kg protein in the

DMEM controls to 2.2 ± 2.5 mol/kg protein (p<0.05; Fig 1B) in the ADGM-induced cells. The

ADGM cultures showed a high biological variability that is reflected in the calcium content

and in the time needed for induction.

XAV-939 prevents VIC culture calcification
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Two of the inducible VIC preparations were isolated from valves from female patients and

nine from male individuals. The cell preparations that did not calcify resulted from aortic

valve tissue from four female and four male patients. Nine and seven of the aortic valves the

inducible vs. non-inducible VIC preparations resulted from were tricuspid, respectively. There

was no statistically significant relationship of these patient parameters to the calcification

potential.

Histological analysis of ADGM-induced VIC cultures, when compared to a homogeneous

ECM (Fig 2A, Movat Pentachrom stain), showed calcification that gave intense Alizarin red

and von Kossa staining (Fig 2B & 2C). Incubation of sections overnight with Osteosoft-solu-

tion (for decalcification) eliminated the von Kossa signal (Fig 2D). Respective control stainings

of a DMEM-cultured VIC pellet are shown in S2 Fig and revealed no calcific mineral.

A calcified VIC cell culture was prepared for IR-spectroscopy analysis by scraping the mate-

rial, pelleting the cells by centrifugation and cryo-sectioning. A patient’s AV was analysed in

parallel for comparison of the spectra. Fig 3A shows a histological section of this human AV

and Fig 3B shows the cluster analysis results for the spectral data set of a parallel section. The

corresponding centroid spectra are presented in Fig 3C. The cluster map reveals two different

areas: the tissue is mainly represented by blue and black pixels, whereas the calcific phase is

indicated by green and red pixels. The centroid spectrum of the blue and black pixels shows

the typical spectral features of tissue with strong amide I, II and III bands at 1654, 1544 cm-1

and 1237 cm-1, respectively, and increased carbonyl stretching mode of phospholipid esters at

1744 cm-1 [35–37]. Other bands located at 1402 and 1457 cm-1 were assigned to CHx groups of

lipids [35]. Spectra visualised by red and green pixels were dominated by a strong signal of

hydroxylapatite phosphate groups between 1000 and 1150 cm-1 [35, 36] with less intense

bands resulting from the tissue of the specimen (amide I, II and III and phospholipid esters).

Histological analysis after von Kossa staining of the cell pellet revealed a positive calcifica-

tion signal. Respective cluster analysis of this sample is shown in Fig 3E, and refers back to Fig

3B. Centroid spectra (Fig 3F) exhibit a similar pattern like spectra shown in Fig 3C. The calcific

phase is represented by red clusters, while black pixels indicate noncalcified tissue. The cen-

troid spectra of blue and green clusters show both proteins and mineralisation, so these areas

are interpreted as a conglomerate of cellular organic material and mineralisation. Therefore,

the calcification of the cell culture pellet sample shown via von Kossa staining was verified as

calcium hydroxylapatite by the mineral IR-spectroscopy data.

Impact of XAV-939 treatment on in vitro VIC calcification

A negative effect of XAV-939 treatment (10, 1, 0.1 μM) on MTT-based viability of VICs was

not detected (S1 Fig). The impact of XAV-939 treatment on the induction of calcification in

VIC cultures was investigated using seven individual VIC preparations. In vitro calcification

was induced from 0.2 ± 0.1 mol/kg protein in the DMEM controls to 3.3 ± 3.0 mol/kg protein

(p<0.05) after culturing in ADGM. When XAV-939 was added to the ADGM culture wells,

no calcification was apparent (Fig 4A) and the calcium content was 0.3 ± 0.1 mol/kg protein,

or comparable to DMEM control and DMEM-XAV-939 levels (0.4 ± 0.2 mol/kg protein; Fig

4B). Therefore, the XAV-939 treatment significantly inhibited the calcification process in VIC

cultures. Expression of alkaline phosphatase was significantly upregulated in ADGM-induced

Fig 1. Induction of Calcification in VIC cultures in vitro. A) Microscopic visualisation of standard VIC cultures in

DMEM, showing a light to brownish calcification precipitate after induction in ADGM. Three different human VIC

preparations are shown. B) Quantification of calcium ions in control (DMEM) vs ADGM-induced cultures normalised

to total protein content reveals a significant increase (n = 11).

https://doi.org/10.1371/journal.pone.0208774.g001
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VIC cultures, whereas almost no alkaline phosphatase expression was detected in DMEM cul-

tures. No significant ADGM-induced upregulation was noted when cells were incubated in

ADGM-XAV-939 when compared to the DMEM-XAV-939 control (Fig 5).

Expression of Axin1, β-catenin and Sox9

Upregulation of β-catenin and Sox9 expression is involved in osteoblast and/or chondrocyte

differentiation. Inhibition of tankyrase by XAV-939 stabilises Axin1, which is one member of

the β-catenin destruction complex. The expression levels of Axin1, β-catenin and Sox9 were

analysed by western blotting of protein lysates of VIC standard cultures and compared to

ADGM-induced calcified cells and cells co-incubated with XAV-939.

As expected, Axin1 was stabilised in VIC cultures after co-incubation with XAV-939 (Fig

6A & 6B). A significantly higher Axin1 signal of 294.7 ± 121.5% was detected in VICs treated

with ADGM-XAV-939 when compared to the DMEM control (p<0.05; Fig 6A). Cultures

treated with DMEM-XAV-939 showed a nearly 2-fold upregulation of Axin1 expression

(198.4 ± 43.2%). ADGM treatment alone did not induce Axin1 expression. The results did not

support the hypothesis of overexpression of β-catenin in calcification-induced VICs, as the

total protein expression did not differ significantly (Fig 6A & 6C). In addition, expression of

the non-phospho-β-catenin (the active form), at 54.9 ± 0.3%, was significantly lower in cul-

tures that exhibited calcification precipitates when compared to ADGM-induced cultures that

showed high expression levels after the addition of XAV-939 (314.6 ± 147.9%; p<0.001), even

though XAV-939 should promote β-catenin phosphorylation and degradation by stabilising

Axin (Fig 6A–6D). Sox9 expression was significantly higher, at 398.4 ± 74.0% (DMEM-XAV-

939; p<0.001) and 224.2 ± 161.3% (ADGM-XAV-939), in cultures treated with XAV-939 (Fig

6A & 6E). The DMEM-XAV-939 condition showed the highest expression levels and was, in

turn, significantly (p<0.05) reduced in the ADGM-XAV-939 condition, and it exhibited the

lowest expression in the arms without XAV-939 treatment.

Immunofluorescence staining of Sox9

Human VICs cultured on glass slides in DMEM, ADGM, DMEM-XAV-939 and ADGM-

XAV-939 were stained for Sox9 expression in an immunofluorescence setup. Evaluation of

Sox9 nuclear localisation revealed a rate of 32.1 ± 19.3% in VICs cultured in DMEM and a sig-

nificant reduction to 11.2 ± 11.1% in the ADGM condition (Fig 7A & 7B). Incubation of VIC

cells in DMEM-XAV-939 control gave a rate of 40.7 ± 8.8%, but this difference was not statisti-

cally significant when compared with the ADGM-XAV-939 condition (26.6 ± 6.2%; Fig 7B).

Discussion

The tankyrase inhibitor XAV-939 is able to prevent in vitro induction of calcification in

human VIC culture preparations. As expected, XAV-939 treatment resulted in the stabilisation

of Axin, a member of β-catenin degradation complex [28]; therefore, XAV-939 functioned as

an inhibitor of the Wnt/β-catenin signalling pathway. This reduced β-catenin signalling, in

turn, was expected to lead to the induction of Sox9 [16]; however, the XAV-939–treated

Fig 2. Histological analysis of VIC culture pellet after ADGM induction. (lower picture represents a higher

magnification of a portion of the complete pellet specimen) A) Homogenous extracellular matrix distribution

visualised by Movat Pentachrom stain. Cell nuclei are coloured dark red. B) Alizarin red staining confirmed

calcification of in vitro cell culture samples.C) Von Kossa positive calcification signals in the induced VIC cell culture

pellet are eliminated by treatment of the histological section with Osteosoft solution. The sections were HE stained; cell

nuclei are coloured blue.

https://doi.org/10.1371/journal.pone.0208774.g002
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samples showed a lower expression of the active form of β-catenin in the calcifying VICs, indi-

cating that β-catenin activity is not the relevant biological process in this cell system. Instead,

β-catenin signalling is active in the DMEM control and is induced after treatment with XAV-

Fig 3. IR spectroscopy—Results of infrared spectra k-means cluster analysis. A) von Kossa staining of a human aortic

valve section reveals positive calcification signals in the mineralised areas; B) Map of k-means cluster analysis; C)

Corresponding centroid spectra. White pixels indicate areas without tissue and were removed from the data set. D) to F)

Von Kossa staining and corresponding IR analyses of pelleted calcified cell cultures compared to A) to C). Both samples

exhibit black von Kossa staining signals and similarities in their centroid spectra.

https://doi.org/10.1371/journal.pone.0208774.g003

Fig 4. Additional treatment of VIC cultures with XAV 939 prevents in vitro calcification during ADGM induction. A) No mineral precipitate is visible if VIC

cultures are co-incubated with XAV 939 in ADGM, shown here for two examples of human VIC preparations. B) XAV 939 treatment reduces the calcium concentration

in ADGM-induced cultures to levels comparable to control DMEM cultures. The calcium levels were significantly higher in the ADGM-induced cultures than in the

other conditions (n = 7).

https://doi.org/10.1371/journal.pone.0208774.g004
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939 in the DMEM and even more strongly in the ADGM condition. The phosphorylation sta-

tus of Axin is important for functionality, and one explanation for the lack of an effect on the

non-phospho-β-catenin level may be a different post-translational modification (e.g. the phos-

phorylation of the protein [29]), but this needs further investigation in future studies. The

expression of Axin1 is not elevated in the ADGM condition.

Fig 5. Expression of alkaline phosphatase in ADGM–and XAV-939–treated VICs. Alkaline phosphatase is significantly upregulated in ADGM-induced cell cultures

compared to the DMEM control. This induction was not statistically significant when DMEM and ADGM cultures were additionally treated with XAV-939 (n = 5).

https://doi.org/10.1371/journal.pone.0208774.g005
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The Sox9 protein expression is upregulated when cultures are incubated with XAV-939 in

the DMEM and ADGM conditions, but this Sox9 protein upregulation does not correlate with

a reduced expression of the non-phospho-β-catenin. The induction of Sox9 expression in the

DMEM-XAV-939 condition vs the DMEM control, where non-phospho-β-catenin is

expressed and where Wnt signalling seems to be active, is of particular interest. The total pro-

tein level indicates a significant reduction in the rate of Sox9 nuclear localisation detected by

immunofluorescence in the ADGM-induced calcified samples. The addition of XAV-939 to

the ADGM samples abrogated this reduction when compared to the DMEM-XAV-939 con-

trol. As expected, the higher SOX9 activity resulted in no induction of calcification. The rela-

tionship to Wnt/β-catenin signalling in this context and the phosphorylation status of Sox9

needs further investigation, as the phosphorylated protein form is active and localised in the

cell nucleus [38].

XAV-939 is one member of a large set of small-molecule inhibitors of the Wnt/β-catenin

pathway [28, 39, 40]. Targeting of this pathway in clinical or experimental settings and the

applicability of the inhibitors have several limitations, so ongoing drug design is focused on

identifying additional specific inhibitors that have fewer side effects [39, 41–43]. Members and

proteins of the Wnt/β-catenin signalling or Notch signalling pathways may be new targets for

drug development to prevent the progression of AV stenosis, since these signalling pathways

are believed to be involved in osteogenesis in human AV disease [4, 9, 17, 33, 44]. Apart from

the aim to find clinically relevant substances, drug design and innovation focusing on small

inhibitor molecules can be tested in in vitro settings in basic research studies to define mecha-

nistically important processes.

The model system analysed in the present study was in vitro cultured human VICs showing

induced calcification with ADGM. Only 58% of the VIC preparations showed an induction of

calcification during an incubation time of up to 35 days. Cell preparations are heterogeneous,

consisting of various subpopulations, so the in vitro calcification processes are expected to dif-

fer. The rate of calcification induction can depend on individual culture preparations and their

responsiveness to ADGM, as well as the time in culture. In addition aspects like gender of

patients the VICs originate from and bi-vs. tricuspidal valve development have to be consid-

ered in studies investigating a larger sample set.

Calcified AV exhibit an increased prevalence of cells positive for smooth muscle cell (SMC)

markers [45]. SMCs of vascular origin (VSMCs) are able to calcify in vitro [46–48] and are

responsible for vascular calcification [47]. Other vascular osteo-progenitors originate from

immature circulating bone marrow subpopulations [49]. Determining the frequency and ori-

gin of SMCs and bone marrow subpopulations in human aortic valves and the contribution of

these cells to in vitro calcification processes will require further culture experiments.

Limitations of the present study include the use of human VICs isolated from diseased

human AV tissue and the heterogeneity of the isolated cell population. However, the use of

human VICs instead of cells of porcine, bovine or ovine origin isolated from very young indi-

viduals may be advantageous, as most of the mechanistic studies on VICs have been performed

on cellular material from other species [11, 16, 50, 51]. Indeed, the use of human AV tissue cell

Fig 6. Western blot analyses of ADGM-induced and XAV-939–treated cultures. A) Western blot analysis of the

Wnt signalling proteins Axin1, β-catenin (total and non-phospho-protein) and Sox9. B) Axin1 is significantly

upregulated in vitro in XAV-939–treated VICs in DMEM and ADGM (n = 3). C) Total β-catenin expression does not

differ in the media conditions and does not depend on XAV-939 treatment (n = 5). D) Non phospho β-catenin is

upregulated in XAV-939–treated conditions (significant upregulation in ADGM with XAV 939) and downregulated in

ADGM induced VICs (n = 5). E) Sox9 is significantly upregulated in VIC cells co-incubated in DMEM with XAV-939,

whereas this expression is reduced in VIC cells co-incubated in ADGM with XAV-939 (n = 4).

https://doi.org/10.1371/journal.pone.0208774.g006
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preparations in the present study may be one reason for some results that contradict previously

reports. For example, the calcification of nodules and osteogenic differentiation in porcine

VIC cultures has been critically discussed, and no evidence has supported the calcification of

porcine VIC cultures after 21 days in induction medium containing ascorbic acid, dexametha-

sone and β-glycerophosphate. Instead, the cells expressed a collagenous ECM and were acti-

vated towards a myofibroblastic phenotype [50]. By contrast, the human VIC preparations

used in the present study showed clear calcification in the culture plates in response to

ADGM, and this was confirmed by photometric detection of calcium ions in quantitative anal-

ysis, byAlizarin red and von Kossa staining of fixed cell culture pellets and initially by IR

spectroscopy.

Conclusions

Both active β-catenin and Sox9 are downregulated in calcifying VICs and upregulated in VICs

co-treated with XAV-939. Therefore, discovery of the regulatory molecular processes of this

human VIC model will require evaluation of alternative regulatory models (e.g. Notch signal-

ling) as a next step. In addition, a need to identify the actual cell culture subpopulations that

are responsible for the calcification process is envisioned. XAV-939 is able to prevent the in
vitro calcification of VICs induced by ADGM and is therefore a substance of interest, on the

one hand, for the investigation of relevant molecular pathways involved in osteogenesis and,

on the other hand, as a small molecule inhibitor that can be implemented in in vitro and in
vivo analyses for further drug development.

Supporting information

S1 Fig. MTT-based cell viability of VICs treated with 10, 1 and 0.1 μM XAV-939 for 72h.

MTT-assay cell viability was not statistically significant altered after XAV-939 inhibitor incu-

bation of VICs at different concentrations and an incubation time of 72h.

(TIF)

S2 Fig. Histological analysis of the cellular pellet of a human VIC culture in DMEM with-

out induction of calcification. Equivalent to Fig 2, A) shows a section stained with Movats

Pentachrom B) Alizarin red and C) a combined von Kossa and HE staining, revealing no cal-

cific mineralization in this condition.

(TIF)

S3 Fig. Datasets of the study according to Figure number.

(PDF)
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