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Abstract

Text mining in the biomedical sciences is rapidly transitioning from small-scale evalu-

ation to large-scale application. In this article, we argue that text-mining technologies

have become essential tools in real-world biomedical research. We describe four large

scale applications of text mining, as showcased during a recent panel discussion at the

BioCreative V Challenge Workshop. We draw on these applications as case studies to

characterize common requirements for successfully applying text-mining techniques to

practical biocuration needs. We note that system ‘accuracy’ remains a challenge and

identify several additional common difficulties and potential research directions includ-

ing (i) the ‘scalability’ issue due to the increasing need of mining information from mil-

lions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining

systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty

of applying trained systems to text genres that are not seen previously during develop-

ment. We then describe related efforts within the text-mining community, with a special

focus on the BioCreative series of challenge workshops. We believe that focusing on the

near-term challenges identified in this work will amplify the opportunities afforded by the

continued adoption of text-mining tools. Finally, in order to sustain the curation ecosys-

tem and have text-mining systems adopted for practical benefits, we call for increased
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collaboration between text-mining researchers and various stakeholders, including re-

searchers, publishers and biocurators.

Introduction

The unprecedented advances in high-throughput technology

and tools to support bioscience have led to a boom in biolo-

gical and biomedical science research and an accompanying

growth of the scientific literature. Access to the wealth of

knowledge embedded in the literature is critical for enabling

continued scientific advancements and breakthroughs. For

this reason, several efforts over the last decade have focused

on improving knowledge reusability through improved stor-

age, representation and curation. These efforts include both

public literature resources (e.g. PubMed and PubMed

Central/Europe PMC) and biological knowledge bases (e.g.

UniProt (1), NCBI Database Resources (2). Figure 1 illustrates

the interconnection between literature services and biological

databases, and their importance in biological research. As can

be seen, researchers rely on literature services to keep up with

the state of the art on topics of their interest, to generate novel

hypotheses, and as a reference for developing research strat-

egies. In addition, today’s curated databases are critical in bio-

medical research by being a firsthand tool for researchers to

investigate their hypothesis or research results (3).

Biological knowledge bases rely heavily on expert cur-

ation, however, and scaling to accommodate the growth of

the scientific literature has been a continued challenge.

Automatically annotating biological entities such as genes/

protein and diseases (4, 5) and other scientific artifacts in

biomedical literature, such as investigation techniques or

the dataset used (6) is useful for improving the scalability

of biocuration services. Surveys regarding the role of text

mining for assisting literature curation were performed

during the International Biocuration Conference and

Workshop (Berlin, 2009) and the BioCreative 2012

Workshop (Washington, DC) (7, 8). The 2012 report indi-

cates that more databases have adopted text mining into

their curation workflows in some form than in 2009.

A number of studies have indicated improved curation

productivity with the assistance of text mining. In Table 1,

we present a subset of studies benchmarking the quantita-

tive significance of text-mining systems in database cur-

ation (9–13). We also refer the reader to the Interactive

Annotation Task (IAT) at BioCreatives III–V (14–17),

which investigated some aspects of usability and product-

ivity of the text-mining systems for biocuration.

Given the earlier successes and increasing cost/limited re-

sources in manual curation, we argue that computational

approaches such as text mining are essential in the future to

provide researchers and medical professionals efficient,

comprehensive and up-to-date literature services to manage

this growth according to customizable criteria such as clin-

ical relevancy or specific genes or species. Since most of the

discoveries and breakthroughs are first made available to

the public through scholarly publications, the emphasis of

this position article is with regard to text-mining applica-

tions in literature search and curation. Specifically, the four

real-world applications discussed are (i) Literature search

(Europe PMC), (ii) Data search (SourceData), (iii) BEL data-

base curation and (iv) VIROME database curation.

In this article, we first discuss the two applications

related to literature services, Europe PMC and

SourceData, explaining both their value to the bioscience

community and how text mining is essential for their con-

tinued progress. We next discuss two recent efforts sup-

porting biological databases, BEL and VIROME, which

curate information related to biological cause–effect rela-

tionships and microbiomes, respectively. Finally, we sum-

marize the opportunities for text mining in such

applications and the multiple challenges that hamper its

immediate adoption in these applications. We also provide

our understanding of a few strategies to facilitate an

increased adoption of text mining in such applications.

Real world large scale applications

Europe PMC (Johanna McEntyre, EMBL-EBI)

Europe PMC (https://europepmc.org/) is a database of ab-

stracts and full text articles (5). Partnering with PMC from

the National Library of Medicine USA and PMC Canada
Figure 1. Interconnection between literature services and biological

databases.
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as a PMC International node, it contains �30 million ab-

stracts (including PubMed) and over 3.6 million full text

articles from the life sciences. In addition to serving general

life science researchers who use Europe PMC to search the

literature and access full text articles, Europe PMC also

seeks to serve the specialized subset of users who are data-

base curators. Database curators are professional literature

readers, filterers, evaluators and extractors who work with

the purpose of adding scientific value and context to public

data resources.

Manual literature curation has resulted in many bio-

informatics resources of excellent quality. It is clear, how-

ever, that some supportive computational approaches will

be required in order for curation to scale to the accelerat-

ing pace of the biomedical literature while maintaining sci-

entific quality. Since curators often require a wide variety

of highly specific information, providing text-mining tools

to fill each need may be a complex and never-ending task.

However, text-mined outputs useful for curators are also

likely to be useful for others in the broader scientific com-

munity; integrating text mining into Europe PMC there-

fore also opens the possibility for occasional users to

contribute to community curation efforts and provide feed-

back on text-mining results.

Europe PMC is committed to enabling text mining.

Currently, it provides features such as ‘Highlight terms’ to

identify core biological entities such as genes/proteins and

organisms within the article’s abstract view; the entities are

also linked to relevant databases. A similar feature is pro-

vided for full-text article views. Europe PMC is also being

developed as a platform for third-party text-mining algo-

rithms, allowing the output of these algorithms to be dis-

played in full text articles shown on the Europe PMC

website.

In the future, outputs from the text-mining community

could further semantically enrich Europe PMC content by

including the annotation of additional entities, such as mu-

tations, and/or relationships between various entities., such

as genes/proteins and diseases. Search and browse features

built on top of these annotations—e.g. references to other

articles studying the same relationships (or, perhaps,

contradictory relationships)—will help readers to better

judge the article in light of related publications.

SourceData (Thomas Lemberger, EMBO and

Ioannis Xenarios, SIB)

Hypothesis-driven research in molecular and cell biology

primarily generates data from small-scale experiments. In

scientific publications, such data are visually depicted in

figures or tables. However the original data behind the fig-

ures—the ‘source data’—are almost never available in

structured format that would make them findable and

reusable.

SourceData (http://sourcedata.embo.org/) (18) is build-

ing tools to allow researchers and publishers to generate

machine-readable descriptions of data during the publica-

tion process and also to make this data searchable. To fa-

cilitate generating structured experimental descriptions,

SourceData has developed an online tool for computer-

assisted manual curation of figures and figure legends by

data editors. The intention is to integrate a curation step

into the publishing workflow to annotate figures of before

article publication. Authors then verify and approve the

curated information through a validation interface. The re-

sult is a machine-readable representation of the data (de-

scriptive metadata) based on the information routinely

provided by authors in the text of figure legends, thus re-

specting the traditional workflow adopted by scientists.

SourceData have also developed a search interface that

allows users to search for specific experimental evidence

and the articles where these data have been reported. This

search function is incorporated into the ‘SourceData

SmartFigure’ viewer, which can easily be embedded in on-

line publications. The SmartFigure application allows a

specific figure panel to be linked with figures presenting

similar data published elsewhere and therefore makes it

possible for users to traverse the web of connected data by

following these links across articles. Finally, programmatic

access to the SourceData database is provided to the re-

search community through a public API.

Integration of text mining with manual curation in the

context of publishing seems to be a promising direction, as

Table 1. A selection of studies demonstrating the benefit of text mining assistance for curation.

Citations Database Curation Task TM System Results

(9) Wormbase Cellular-component curation Textpresso 8-fold increase in curation efficiency

(10) dictyBase Cellular-component curation Textpresso 2.5-fold increase in curation efficiency

(10) TAIR Cellular-component curation Textpresso 10-fold decrease in time for curation

(11) TAIR Genes PubTator 45% increase in productivity

(12) PIR PPI involving protein phosphorylation eFIP 2.5-fold increase curation efficiency

(13) Flybase Genes Tagtog 2-fold decrease in curation time
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it will improve the efficiency and speed of the metadata ex-

traction process and it will allow supervision of the auto-

mated results by both data editors and authors. In this

context, text-mining methods will be useful for the auto-

mated semantic enrichment of figure legends or of the cor-

responding referring statements in the full text and also for

identifying entity relationships that represent tested experi-

mental hypotheses. Text mining is also envisioned to play

a complementary role by linking curated figures with inter-

pretative statements made in the article or with reagents

listed in ‘Materials and Methods’ section. Finally, text-

mining techniques developed for computer science publica-

tions (19, 20) might be useful to automatically prioritize a

pool of candidate publications for further extraction of de-

tailed experimental data and metadata.

OpenBEL: computable knowledge bases of

cause–effect relationships (Natalie Catlett,

Selventa)

Biological Expression Language (BEL) is a knowledge rep-

resentation developed by Selventa to capture biological

cause-and-effect relationships from the scientific literature

in a format suitable for computation. BEL and its associ-

ated software platform are an open source project (www.

openbel.org). BEL knowledge bases have been used to sup-

port inference from molecular profiling data (21–23) and

to construct of network models representing specific biolo-

gical processes (24). These approaches support precision

medicine by illuminating the molecular mechanisms of dis-

ease, drug mechanisms of action, and supporting patient

stratification.

BEL is designed to represent experimental observations

in molecular biology, providing specific representations of

various biological measurements including RNAs, pro-

teins, post-translationally modified proteins, and protein

activities, as well as biological processes and pathologies.

This granular representation facilitates mapping of biolo-

gical measurements to BEL networks to drive interpret-

ation of molecular profiling data. BEL also represents the

context for these experimental observations, such as the

cell line or tissue used for the experiment, as well as a lit-

erature citation, allowing the creation of BEL networks

that accurately represent the experiment and its context.

Over the last decade, Selventa has built a knowledge

base comprised of >500 000 BEL statements primarily

through manual curation. Many of these statements re-

sulted from targeted curation efforts to support projects in

various disease areas. This approach requires a significant

effort from trained scientists to build a comprehensive

knowledge base and keep it current.

Text mining promises to greatly improve the efficiency

of building BEL knowledge bases. Accurate entity identifi-

cation from the literature is critical to generating BEL

knowledge bases useful for inference or building models.

Another computational aspect important for automation is

relation identification. Recently, Fluck and colleagues de-

veloped BELIEF, a text-mining work flow to improve the

efficiency of BEL curation (25). BELIEF includes a UIMA-

based text-mining workflow (with several state-of-the-art

natural language processing, named entity recognition

(NER) and relationship extraction tools) to facilitate a

semi-automatic curation pipeline. Use of BELIEF was

shown to significantly reduce human curation effort.

VIROME and building a knowledge base for

microbiomes (Shawn Polson, University of

Delaware)

Microbial communities and viral assemblages have been

found to be both numerous and important drivers of biolo-

gical processes globally. Recent research has linked micro-

biomes, microbes co-existing with a host, to many normal

and pathological processes such as co-metabolism of food

sources, exclusion of pathogens, fostering of host immune

response, obesity, susceptibility to cancer and even mental

disorders (26–31). Research aimed at unraveling the com-

plex community-scale dynamics and functions of microbial

communities, and the even more numerous viruses which

play important roles in regulating and driving genetic diver-

sity among them, are of paramount importance. Our ability

to examine these systems was once limited by factors includ-

ing the inability to cultivate the vast majority in a laboratory

setting, but the advent of increasingly cost-effective plat-

forms for deep sequencing of marker genes (e.g. 16S rRNA)

and metagenomes in the past several years have finally

opened the door for wide-spread research in this field.

These methods involve generation of raw sequence data

elucidating the taxonomic or functional composition of the

community at a specific geographic location, time, and en-

vironmental condition. Typically a study will include mul-

tiple samples varying across some spatial, temporal, or

environmental variable allowing for testing of one or more

specific hypotheses. The global nature of such data, how-

ever, means that its utility could extend far beyond the spe-

cific hypotheses it was collected to address. The results of

such studies are typically published in peer-reviewed jour-

nals with deposition of only the raw data to public

repositories such as the NCBI Sequence read archive.

Other fields have seen the utility of publishing the analysed

results of sequence-based studies (e.g. GEO for gene ex-

pression data). Some online tools such as VIROME (32)

and MG-RAST (33) do provide a route for the analysis
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results themselves to be made public. Recent work by

VIROME (http://virome.dbi.udel.edu/) and others are

working to ensure that such results are accompanied by

standardized metadata to make them useful when con-

sidered in alternate contexts, but the ability to look for

trends across projects remains very limited. Leveraging mi-

crobial ecology results garnered from disparate projects

could prove transformative for the field. Agreements are

lacking, however, to populate centralized repositories with

analysed data in a manner that would enable the creation

of comprehensive microbial ecology resources, similar to

what UniProt (1) and the Protein Information Resource

(34), among others, provide for proteins. Development of

such resources would enable large-scale observations and

hypothesis testing, such as to assess the range of conditions

under which a given microbe (or microbial protein) has

been observed, thus providing key insights into its role, or

assessing synergistic relationships by determining the con-

sistency of co-occurrence for two or more microbes.

Text mining should play a key role in future micro-

biome studies by providing standalone tools to search for

specific microbial relationships in the literature and popu-

lating databases designed to provide comprehensive views

of such global data. Microbes almost always live in mixed

communities, and thus cooperation and competition are

key features; however, detecting such microbial dependen-

cies is difficult and time-consuming. Similarly, defining the

environmental parameters under which certain microbes

or guilds of microbes exist can be very informative in

understanding their roles. Single studies are rarely compre-

hensive enough to elucidate such trends, however. Text-

mining tools may enable a comprehensive understanding

of microbiomes by focusing on the NER of specific micro-

bial entities, the extraction of biological conclusions (e.g.

organism x can do y, but only in the presence of z), meta-

data extraction (description of time, place, and conditions

of samples at collection), and methodological details of the

original sample. The ENVIRONMENTS and EXTRACT

tools presented at BioCreative V (35, 36), are examples of

such tools, with emerging capability to extract environ-

mental context and microbial taxonomy from published

articles and map them to ontological standards such as

Environmental Ontology (37).

Text-mining needs in large scale applications

The text-mining needs in aforementioned applications can

be grouped into three primary tasks: NER, relation extrac-

tion (RE) and information visualization. NER involves

automatically labeling bio-entities such as dataset name

(SourceData), diseases, genes, proteins (BEL, Europe

PMC) or microbial proteins (VIROME). Since NER is

foundational to most text-mining applications, the avail-

ability of accurate application-specific NER tools is critical

(38, 39). RE introduces the next higher level of knowledge

discovery by automatically extracting relationships be-

tween the entities identified by NER. Such relationships

may describe cause–effect relations (BEL) or microbe–en-

vironment relations (VIROME), and relationships may

also involve metadata (such as spatio-temporal variables)

to curate complex higher order relations. The final task is

visualization of the text mined results. Some applications

require visuals—summaries (or visual tags), links to other

online databases (EuropePMC) and metadata highlight

within text (SourceData)—to enhance knowledge represen-

tation. Text mining can help in selecting the most relevant

outputs from large scale text-mined results, as not all text-

mined outputs need be displayed even if they are correctly

extracted. Although text-mining roles may be classified

broadly into three tasks, the specific entities, relations and

representation required for each application may be highly

specific.

Challenges and opportunities in text mining

These domain applications above suggest several areas that

remain challenging, namely ‘accuracy’, ‘scalability’, ‘inter-

operability’ and ‘reusability’. These areas represent future

opportunities for text mining to address the real world

needs of large scale applications.

Accuracy

Although text-mining systems are rapidly transitioning to

real world use, imperfect accuracy remains a limiting fac-

tor. Workflows incorporating text-mining systems must

design processes that compensate for imperfect output.

Although the importance of these considerations tapers as

the output quality approaches that of human annotators,

there are several limitations with the evaluations typically

performed in the text-mining community. First, the evalu-

ation most commonly performed is intrinsic, that is, it

compares the output of the system to gold standard anno-

tations performed by human annotators. Although such an

evaluation provides several desirable properties, such as

being quantifiable and providing a high degree of objectiv-

ity, it does miss some important considerations. Notably, it

provides no feedback on whether the quality of the output

is sufficient to support processes downstream in the work-

flow. Thus, while intrinsic evaluation of the system is im-

portant, the system must also be evaluated extrinsically,

i.e. in place in the workflow.

Database, Vol. 2016, Article ID baw161 Page 5 of 10

http://virome.dbi.udel.edu/
Deleted Text: z
Deleted Text: a comprehensive views
Deleted Text: ,
Deleted Text:  
Deleted Text: named entity recognition
Deleted Text: papers 
Deleted Text: (EnvO) 
Deleted Text:  
Deleted Text: TEXT MINING NEEDS IN LARGE SCALE APPLICATIONS
Deleted Text:  
Deleted Text: named entity recognition
Deleted Text: Named entity recognition (
Deleted Text: )
Deleted Text:  
Deleted Text: Relation extraction (
Deleted Text: )
Deleted Text: -
Deleted Text: -
Deleted Text:  &hx2013; 
Deleted Text: ,
Deleted Text:  &hx2013; 
Deleted Text: While 
Deleted Text:  
Deleted Text: CHALLENGES AND OPPORTUNITIES IN TEXT MINING
Deleted Text: ,
Deleted Text:  While 
Deleted Text:  
Deleted Text:  
Deleted Text: While 
Deleted Text:  
Deleted Text: While 
Deleted Text: that is
Deleted Text: ,


Interoperability

Because system accuracy is critical and must be evaluated

extrinsically in the workflow, each system evaluated must

be fully integrated into the workflow. Thus, the difficulty

in integrating the system must be kept to a minimum.

Unfortunately, many factors reduce system interoperabil-

ity, such as operating system dependencies and incompati-

bilities between input and output formats (40).

Interoperability could be addressed in several different

ways. For instance, UIMA (41) is a software architecture

created by IBM in 2003 to provide uniform data format-

ting standards for different teams working on NLP pro-

jects. Although it uses a common analysis system (CAS),

the ability to use different semantic tag sets creates an

interoperability solution (42). Tools written in a system-

independent language such as Java or Python do not re-

quire a specific operating system. Format incompatibilities

can be addressed by creating a standard data format. The

recent BioC project is such an example, which has created

an interoperable data format that is both straightforward

and sufficiently expressive to represent a wide variety of

text-mining tasks (43, 44). Another solution may be web

services, which hides all configuration and deployment de-

tails from the user by providing an API that can be ac-

cessed over the Internet, requiring no system installation or

maintenance (45, 46). Despite these attempts, integrating

text mining into mature database workflows remains diffi-

cult due to the complexities of curation workflow and

existing infrastructure.

Scalability

A defining characteristic of large-scale text-mining applica-

tions is the requirement to scale to millions of documents.

PubMed, e.g. contains over 25 million abstracts—at the

relatively high rate of 100 abstracts per second, it therefore

requires nearly 3 days of computational time to process;

processing an equivalent amount of full text articles re-

quires an order of magnitude longer. Text-mining imple-

mentations are therefore frequently paired with a

database, allowing the text to be preprocessed and the re-

sults cached and indexed. Although this allows the text-

mining results to be provided on demand for text available

beforehand, this approach is insufficient for text that must

be processed in real time. Moreover, this approach is also

inconvenient for updates to the text-mining system, as all

the cached results must be reprocessed. One approach to

address scalability is the application of cluster computing:

processing multiple documents in parallel on multiple

hardware systems. Returning to our PubMed example, a

cluster of 10 systems—each processing at the rate of 100

abstracts per second—is sufficient to reduce the processing

time to under 7 h, a job which can be completed overnight.

Reusability

Text-mining systems are commonly applied to text some-

what different than the text used to train and evaluate

them, making generalization—the ability to handle text

previously unseen—very important. As an example, ab-

stracts describing rare genetic diseases will contain signifi-

cantly different information than those describing

treatments for tropical infectious diseases, even though

both will contain disease entities. A particular concern is

the ability of the system to handle not only abstracts, but

also full text documents (47–52). However, systems for

dealing with many of the various nuances (such as figure

captions, data in tables, information in supplementary

materials, and various text cleaning issues) of full text are

still not fully in place. Thus, a large improvement in the ro-

bustness of a system against shifts in the textual domain

may be significantly more useful for real world applica-

tions than incremental improvements in system accuracy.

Future roles of researchers, publishers and
curators

Bridging the gap between text-mining research and its ap-

plication in real world databases requires a collaborative

effort from the various stakeholders involved in advancing

biomedical sciences. In this section, we provide a few per-

spectives which researchers, publishers and curators can

use to advance biomedical sciences through text mining.

Research community

Community run challenges in biomedical text mining such

as BioCreative can play a major role in realizing the poten-

tial of large scale text-mining applications, both by assess-

ing the state of the art and also helping advance the field

(53). The aim of conducting these challenges, in general, is

to promote interdisciplinary collaboration, evaluate and

advance the NLP techniques to facilitate biological re-

search. Thus, these challenges are conducted as shared

tasks where research teams from across the globe partici-

pate in fulfilling the goals of specified text-mining tasks. A

myriad of such challenges have been organized over the

years following the success of CASP in 1994 (54, 55) on

protein structure prediction; Huang et al. (2016) (53) pro-

vides a comprehensive overview of several challenges con-

ducted within the last decade.

In recent years, the community has introduced chal-

lenges that focus on bridging the gap between biomedical
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text-mining research and new application domains. For ex-

ample, since 2010, BioCreative has organized workshops

at the annual meetings of the International Society for

Biocuration (http://biocuration.org/) with a focus on better

understanding biocuration workflows (8) and promoting

the development and deployment of biomedical text-min-

ing tools into production curation pipelines. Several of

these have been successfully integrated into existing cur-

ation workflows (e.g. 4, 13).

Nevertheless, there are several difficulties which must

be resolved before community challenges can realize the

potential of large scale text-mining applications. The fore-

most of these difficulties is that challenge tasks are often

simplified or abstracted versions of the real-world prob-

lems. For example, although biocurators routinely use the

full text of an article (56, 57), challenge tasks often only

utilize the abstract due to difficulties in accessing full text

articles and processing full text. A consequence of this sim-

plification of the real-world problem is that even systems

that perform well on challenge tasks yield significantly

lower results when evaluated in practical real-world set-

tings. For example, previous BioCreative Gene

Normalization challenges have shown that the task per-

formance dropped significantly when tested on full texts

(58) instead of abstracts (59). These difficulties can be ad-

dressed by designing challenge tasks that focus on the

unique problems presented by real world applications.

The BioCreative Collaborative Biocurator Assistant

Task (BioC) and the BioCreative Interactive Text-Mining

Task (IAT) serve as examples of such focused efforts. The

BioC task centered on creating a text-mining system to

support BioGRID curators by developing BioC-compatible

text-mining modules complementing each other and inte-

grated into one system. The IAT task involved biocurators

in testing text-mining systems. In a similar vein, we de-

scribe below a few ideas that can be realized as challenge

tasks in BioC workshops in the near term to help realize

the opportunities of text-mining research in real-world ap-

plications more directly.

i. Creating a wide variety of manually curated bench-

marks datasets for various text-mining problems.

These benchmarks datasets are critical for text-mining

researchers to train, test and compare their algorithms

and also for organizations to determine the best fit for

their large scale applications. These benchmarks

should come from various sources including biomed-

ical literature (both abstract and full text), clinical tri-

als, clinical notes and Electronic Medical Records.

ii. Identifying metrics to measure critical system qualities

in addition to accuracy. As application needs differ, so

do their evaluation criteria for selecting text-mining

tools. Identifying or creating metrics addressing per-

formance aspects beyond accuracy, such as scalability,

usability, and cost-of-adoption (such as database man-

agement and front-end design) will greatly help both

researchers and application developers to identify text-

mining tools that best fit their performance dimen-

sions. In this direction, BioCreative-IAT task has

included both performance and usability metrics in the

evaluation of the text-mining systems by curators,

which were also adopted in the BioC task. These met-

rics should be extended to include scalability and cost-

of-adoption.

iii. Like BioC’s focus on BioGRID, challenge tasks can be

designed to focus on individual large scale applications

such as SourceData, BEL and VIROME. Involving the

data indexers and curators in the task design step will

enrich the utility of the challenge task for real-world

use. Parameters such as evaluation criteria can be de-

signed specifically for the individual application.

Moreover, the data bottleneck such as full text access

and processing can be addressed with help of literature

services such as Europe PMC.

Publishers’ role

The SourceData project provides a good example of how

publishers could actively encourage innovative knowledge

curation and representation. As described in the

SourceData section, the publishers collaborate with re-

searchers to generate machine-readable descriptions of

datasets during the publication process and also to make

this data searchable. In addition to the role of text-mining

expressed earlier, as the databases grow, text-mining sys-

tems can be employed in the future to provide automatic

recommendations of machine-readable tags or descriptions

for the datasets. Similar to SourceData project’s initiative

to enrich articles during in-publication or pre-publications

phase, the publishers’ role can be to enrich articles in pre-

publication phase by employing text-mining systems.

In the future, the curation step may not wait until after

publication, as is the current practice. A possibility is to

move the curation step ‘upstream’ i.e. capturing knowledge

at the time of peer review and prior to publication. Such an

initiative would require development of very high quality

and sustainable text-mining systems, and possibly require a

greater involvement of the article authors in validating

some of the text-mined results.

Curators’ role

It is central to keep the human curators/experts in the loop

in any newly proposed text-mining-based curation
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ecosystem. Curators are critical for defining text-mining

requirements, providing annotation guidelines and stand-

ards, and providing training data for the initial system de-

velopment and evaluation. Curators should be involved in

evaluating the text-mined results and decide their fitness

for curation. Curators should help system developers itera-

tively improve the text-mining algorithms and make any

necessary system customizations for their specific database

curation needs. This would be the ideal way to incorporate

text mining into curation workflows.

Conclusions

In this work, we presented four large scale applications of

text mining in the biological and life sciences, as show-

cased during a recent panel at BioCreative V. We used

these applications as case studies in the challenges encoun-

tered in adopting text-mining solutions into realistic tasks

and discussed several areas of opportunity for text mining

to support real world services in the near term. Finally, we

presented a few actionable steps that the BioCreative com-

munity can take to bridge the gap between text-mining re-

search and real world biomedical services.
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