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Abstract: In the last decade, research studies on parking planning mainly focused on path planning
rather than trajectory planning. The results of trajectory planning are more instructive for a practical
parking process. Therefore, this paper proposes a trajectory planning method in which the optimal
autonomous valet parking (AVP) trajectory is obtained by solving an optimal control problem.
Additionally, a vehicle kinematics model is established with the consideration of dynamic obstacle
avoidance and terminal constraints. Then the parking trajectory planning problem is modeled
as an optimal control problem, while the parking time and driving distance are set as the cost
function. The homotopic method is used for the expansion of obstacle boundaries, and the Gauss
pseudospectral method (GPM) is utilized to discretize this optimal control problem into a nonlinear
programming (NLP) problem. In order to solve this NLP problem, sequential quadratic programming
is applied. Considering that the GPM is insensitive to the initial guess, an online calculation method
of vertical parking trajectory is proposed. In this approach, the offline vertical parking trajectory,
which is calculated and stored in advance, is taken as the initial guess of the online calculation.
The selection of an appropriate initial guess is based on the actual starting position of parking. A small
parking lot is selected as the verification scenario of the AVP. In the validation of the algorithm,
the parking trajectory planning is divided into two phases, which are simulated and analyzed.
Simulation results show that the proposed algorithm is efficient in solving a parking trajectory
planning problem. The online calculation time of the vertical parking trajectory is less than 2 s,
which meets the real-time requirement.

Keywords: autonomous parking; trajectory planning; homotopic method; optimal control

1. Introduction

With the development of an intelligent transportation system (ITS), parking technology has gone
through three stages: semi-autonomous parking, autonomous parking, and autonomous valet parking
(AVP) [1]. The semi-autonomous parking system and autonomous parking system are used to help
drivers park safely. Moreover, a shorter parking time can effectively reduce the negative impact of a
parking process on road traffic. In addition, the last-mile transportation of autonomous driving can be
achieved with an AVP system since users can send instructions through terminal devices to park or
retrieve their cars [2]. In this context, parking technology is an indispensable part of the autonomous
driving system.

Among the key technologies of AVP, researchers focus on the platforms, sensor setups, perception,
environment model, maps, and motion planning [3]. As the basis for the realization of AVP,
environmental perception is mainly realized by a fusion of ultrasonic radars and cameras [4].
On this basis, a parking guidance system (PGS) based on visual recognition is built, and environment
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information is shared between the vehicle and the infrastructure system [5]. Furthermore, the tracking
control is utilized to move the vehicle along the planned target path by the lateral and longitudinal
motion controls [6,7].

Considering that the effects of environment perception and tracking control mainly depend
on the accuracy of the sensors, path planning plays an important role in the entire system as a
decision-making part. Thus, vehicle path planning is a research hotspot in the intelligent AVP
technology. In the early days, curves composed of straight lines and arc joints, like Dubins curve
and Reeds–Shepp curve, were used to solve planning problems by setting the shortest path as the
goal [8,9]. Additionally, the geometric construction method of a straight line combined with arc joints
has been widely used in the path planning of parallel parking [10]. However, the curvature of the path
is discontinuous despite that the path can be easily obtained by this method. Therefore, methods such
as clothoid curve, B-spline, and polynomial curve are applied to optimize the curvature of the path,
but these methods are difficult to apply in path planning with a complicated constraint model [11–13].

In subsequent development, the path planning algorithms of motion planning are mainly
divided into the following four categories: graph-search, sample-based, interpolation, and numerical
optimization [14]. Considering the simplicity of practical application, graph-search methods are more
efficient than traditional path planning strategies [15]. For example, classical graph-search algorithms
like the Dijkstra and A* algorithms are both widely used to search the shortest path [16–18]. Moreover,
compared with the Dijkstra algorithm, heuristic guidance is combined with the A* algorithm to reduce
search work. However, they are not efficient enough to obtain the shortest path in a complicated
environment. On the contrary, both the Probabilistic Roadmap Method(PRM) and Rapid-exploration
Random Tree(RRT), which are based on random sampling points for planning the best path in a space,
can effectively deal with a path planning problem with complicated constraints [19,20]. The above
methods are all effective in global planning. However, for local path planning, the artificial potential
field (AFK) for obtaining the path along the direction of the field drop is more suitable [21].

Compared with the traditional algorithms mentioned above, heuristic algorithms (e.g., machine
learning, neural network, fuzzy control, genetic algorithm, particle swarm optimization, and colony
algorithm [22–27]) are more widely applied in solving path planning problems. In a complex
dynamic environment, bio-inspired planning algorithms are effective for collision-free planning [28,29].
Additionally, in an actual urban environment, a motion planning method based on a layered strategy
is more suitable for the application of autonomous driving [30]. Moreover, scholars tend to combine
traditional algorithms with heuristic algorithms to obtain better planning results. For example,
the model predictive control method is used for real-time path planning [31]. Furthermore, the path
planning problem is described as an optimal control problem based on optimal control theory [32–34].

In general, the key to developing AVP technology is the cooperation between trajectory planning
and parking management systems [35]. Problems such as complex environment models and low
computational efficiency are common in existing trajectory planning methods. To solve these problems,
a method that obtains the optimal trajectory of AVP by solving the optimal control problem is proposed.
The vehicle kinematics model, obstacle avoidance constraints, and endpoint constraints are established.
The shortest overall parking time and travel distance are set as the cost function of the optimal control
problem, which are established to describe the parking trajectory planning problem. On this basis, the
contribution of this paper has two main components: (i) A homotopic method is utilized to transform
the obstacle avoidance constraint in each iteration, and the optimal solution is set as the initial guess of
the next new problem. The purpose of this step is to increase the success rate of offline planning with
less cost. (ii) An online calculation method of vertical parking trajectory is proposed, where the starting
points are decided in the initial area of vertical parking to build a matrix. Additionally, the parking
trajectory of each starting point is obtained by offline calculation and stored. To improve the real-time
performance of online calculation, in the vertical parking phase, the appropriate trajectory data are
selected as the initial guess of online calculation according to the actual starting position of parking.
Then, the Gauss pseudospectral method (GPM) is used to obtain the vertical parking trajectory.
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A small parking lot is selected as the scenario of AVP, and the parking trajectory planning is
separated into two phases. In this context, the trajectories of the two phases are simulated and analyzed.
On this basis, the vertical parking trajectory is calculated online to verify the effectiveness of the
proposed algorithm.

The remainder of the paper is organized as follows. The AVP scenario and the optimal control
problem for parking, including kinematics models and various constraints, are described in Section 2.
The optimal control problem is discretized as the nonlinear programming (NLP) problem through
the GPM, and the solution strategy of the NLP problem through the homotopic method is described
in Section 3. The simulation results and discussion of parking trajectory are in Section 4, and an
online planning method of vertical parking is proposed. Finally, the conclusion and future works are
discussed in Section 5.

2. Trajectory Optimal Control Problem of AVP

2.1. AVP Scenario

In this paper, a small parking lot is selected as the scenario for verifying the algorithm.
There is a U-shaped road in the parking lot, and the parking spaces on both sides of the road
are vertical (see Figure 1a). Denoted by positions A, B, and C are the parking entrance, initial vertical
parking position, and parking completion position, respectively. Based on the common parking
process of a human driver, the parking process is divided into two phases: (i) The search for a vacant
parking space, where the driver starts to seek a vacant parking space when entering the parking lot.
Then the vehicle is moved to an initial parking area after finding a parking space. (ii) The vertical
parking phase, where the vehicle moves backwards from the initial parking area until it is completely
in the parking space. To facilitate parking trajectory planning, a 3D perspective of the parking space is
set to top view (see Figure 1b). The initial vertical parking area and parking space are represented by
the green dotted frame and the red solid frame, respectively, and the paths of the two phases are A–B
and B–C.
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Figure 1. Parking lot schematic map: (a) parking lot in 3D view, (b) parking lot in 2D view.

Assuming that the parking lot is built with an infrastructure system, the vehicle can communicate
with the system by Vehicle to Infrastructure (V2I) technology [36]. Moreover, vacant parking spaces
can be detected by the system and allocated to vehicles entering the parking lot. In this context,
the vehicle can be guided to the initial vertical parking area according to the system information.
However, the guidance information provided by the system is not complete. Vehicle sensors, such as
ultrasonic sensors, are needed to detect the environment for the accuracy of information around the
vacant parking space. Besides, the parking trajectory in the vertical parking phase is obtained according
to the initial parking position and the position relative to the vacant parking space. The trajectories of
these two phases can be obtained in the following two means. One is that the trajectory is calculated by
the server of the infrastructure system and sent to the vehicle, which is controlled to track the trajectory.
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Another is that the vehicle obtains part of the guidance information from the facility system, and then
combines it with its own perception information for calculation. Also, the vehicle is controlled to track
the obtained trajectory.

2.2. Kinematics Model

According to Ackerman steering, all wheels are in a state of rolling, and the vehicle is not affected
by lateral force during the parking process. Thus, the slip of the wheel is neglected, and the steering axis
of the front wheel intersects the axis of the rear wheel. On this basis, a kinematics model of a vehicle in
autonomous parking is built as shown in Figure 2, where R(x, y) denotes the center of the rear axle;
v refers to the speed of the center of the rear axle; O stands for the center of the instantaneous turning
of the vehicle; f and r denote the front suspension and rear suspension of the vehicle, respectively;
d stands for the width of the vehicle; L is the wheelbase of the vehicle; ϕ stands for the equivalent front
wheel swing angle; and θ refers to heading angle. Furthermore, A, B, C, and D are the four vertices of
the vehicle body.
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According to the vehicle kinematics model, kinematics differential equations can be obtained
as follows: 

.
x = v(t)· cosθ(t)
.
y = v(t)· sinθ(t)
.
v = a(t)
.
a = j(t)
.
θ = v(t)· tanϕ(t)/L
.
ϕ = ω(t)

, t ∈
[
t0,t f

]
(1)

where a and j refer to vehicle acceleration and jerk of the vehicle, ω denotes the angular velocity of the
front wheel pendulum, and t0 and t f stand for initial time and final time, respectively.

According to the geometric relationship, the coordinate values of A, B, C, and D can be obtained
by the center point of the rear axle R(x, y) and are as follows:

[Ax(t), Ay(t)] =
(
x(t) + (L + f ) cosθ(t) − d

2 sinθ(t), y(t) + (L + f ) sinθ(t) + d
2 cosθ(t)

)
[Bx(t), By(t)] =

(
x(t) + (L + f ) cosθ(t) + d

2 sinθ(t), y(t) + (L + f ) sinθ(t) − d
2 cosθ(t)

)
[Cx(t), Cy(t)] =

(
x(t) − r cosθ(t) + d

2 sinθ(t), y− r sinθ(t) − d
2 cosθ(t)

)
[Dx(t), Dy(t)] =

(
x(t) − r cosθ(t) − d

2 sinθ(t), y− r sinθ(t) + d
2 cosθ(t)

) (2)
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2.3. Physical Constraints

Considering safety and crew comfort, some state variables and control variables of the system are
constrained as follows: 

∣∣∣v(t)∣∣∣ ≤ vmax∣∣∣a(t)∣∣∣ ≤ amax∣∣∣ j(t)∣∣∣ ≤ jerkmax∣∣∣ϕ(t)∣∣∣ ≤ ϕmax∣∣∣ω(t)∣∣∣ ≤ ωmax

, t ∈
[
t0,t f

]
(3)

where vmax stands for the maximum speed with amax for the maximum acceleration, jerkmax denotes
maximum acceleration change rate, ϕmax denotes the maximum front wheel swing angle, and ωmax

is the maximum front wheel swing angle speed. Another purpose of constraining these variables
is to make the planned trajectory as smooth as possible so that it will be relatively easier for each
vehicle execution system (such as steering system, power system, braking system) to implement
trajectory tracking.

2.4. Avoid Collision Constraints

There is no collision allowed while the vehicle is parked. To this end, collision between vehicles
and dynamic or static obstacles (e.g., other vehicles, pedestrians, road boundaries) must be considered.
The vehicle contour is assumed to be rectangular. Considering the detection accuracy of on-board
sensors and the detection blind area in practice, the four-circle model is selected to describe the vehicle
contour in this paper, which is shown in Figure 3, where O1, O2, O3, and O4 denote the center of four
vehicles. The geometric relationship is described as follows:

L1 = L5 = 1
8 (r + L + f )

L2 = L3 = L4 = 1
4 (r + L + f )

Rv =
√

L2
1 + (d/2)2

(4)

where L1 stands for the distance from circle center O1 to the rear of the vehicle, and L5 stands for
the distance from circle center O4 to the front of the vehicle. Furthermore, L2, L3, and L4 refer to the
distance between O1O2, O2O3, and O3O4, respectively. Rv denotes the radius of the outer circle.
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From the above geometric relationships and the center point of the rear axle R(x, y), the positions
of four centers are described as follows:

[O1x(t), O1y(t)] = (x(t) − (r− L1) cosθ(t), y(t) − (r− L1) sinθ(t))
[O2x(t), O2y(t)] = (x(t) + (L1 + L2 − r) cosθ(t), y(t) + (L1 + L2 − r) sinθ(t))
[O3x(t), O3y(t)] = (x(t) + (L + f − 3L5) cosθ(t), y(t) + (L + f − 3L5) sinθ(t))
[O4x(t), O4y(t)] = (x(t) + (L + f − L5) cosθ(t), y(t) + (L + f − L5) sinθ(t))

, t ∈
[
t0,t f

]
(5)

Similarly, the contours of obstacles are described by multiple circumferential circles (see Figure 3).
As shown in Figure 4, if the shapes of the obstacles are similar to a small square, such as pedestrians
and trash cans, they can be described by a single circle for convenience. Therefore, the collision-free
conditions between vehicles and obstacles can be described by the avoidance of the overlap between
the circle of the vehicle contour and that of the obstacle contour. The strict mathematical description of
security is shown in Equation (6):

(Oix(t) −Ox(t))2 + (Oiy(t) −Oy(t))2
≥ (Rv + Ro)

2 (6)

where O and Ro denote the center and radius of the circumferential circle of the contour of the
obstacle, respectively.Sensors 2020, 20, x FOR PEER REVIEW 7 of 20 
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Otherwise, collision between a vehicle and road boundaries has to be considered. The movement
of the vehicle is in an area bordered by a road boundary, where Ls and Ws denote the length and width
of the road, respectively (see Figure 4). Hence, in the course of the movement, the four vertices of
the vehicle, A, B, C, and D, all fall in the area expressed as follows:{

[Ax(t), Bx(t), Cx(t), Dx(t)] ∈ (0, Ls)

[Ay(t), By(t), Cy(t), Dy(t)] ∈ (0, Ws)
(7)

2.5. Terminal Conditions

The satisfaction of the above constraints ensures a collision-free motion of the vehicle from the
starting moment t0 to the ending moment t f . Moreover, the terminal constraint of the vehicle at t0

and t f is supposed to be taken into consideration. In this paper, the initial state and the end state of

the vehicle are stationary, that is, v(t0) = 0, v
(
t f

)
= 0. Other states like acceleration at t0 are selected

depending on different scenarios. The four vertices of the vehicle must be inside the parking space
at t f . In addition, it is stipulated that the body of the vehicle should be parallel to the parking space as
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shown in Figure 5, where P(x, y) is the upper-left vertex of the vertical parking space. The terminal
constraints at t f are as follows:

Px <
[
Ax

(
t f

)
, Bx

(
t f

)
, Cx

(
t f

)
, Dx

(
t f

)]
< Px + Lp

−Wp <
[
Ay

(
t f

)
, By

(
t f

)
, Cy

(
t f

)
, Dy

(
t f

)]
< Py

θ
(
t f

)
= π/2

(8)

where Lp and Wp denote the length and width of the parking space, respectively.
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2.6. Trajectory Planning Optimal Control Problem

In this work, the minimum sum of t f and the driving distance are set as the cost function.
Combined with the kinematics model, the collision avoidance constraints, the above-mentioned
endpoint constraints, and the optimal control problem of autonomous parking trajectory planning are
depicted as follows:

J = min
(
ω1·t f +ω2·

∫ t f

t0

v(t)dt
)

s.t.


Di f f erential equations o f vehicle dynamics in Eq.(1)
Physical Constraints in Eq.(3)
Avoid collision constrains in Eqs.(4)(5)(6)(7)
Terminal constrains in Eq.(8)

(9)

where ω1 and ω2 are the weight of t f and the driving distance, respectively. When ω1 = 1 and ω2 = 0,
only the optimal t f is considered in the cost function. In contrast, when ω1 = 0 and ω2 = 1, only the
shortest driving distance is considered in the cost function. Furthermore, ω1 and ω2 are set to be 0.5.

3. Homotopic Method for Solving Optimal Control Problem

In Section 3, a unified trajectory optimization framework for the parking problem is presented.
The GPM is utilized to discretize the above optimal control problem into a nonlinear programming
problem for solving [37]. Here, the location of the collocation point is determined at first,
and the state variables and control variables are discretized into unknown parameters at the
collocation points. Then, Lagrange interpolation polynomials are constructed from these collocation
points to determine the continuous state variables and control variables. By deriving the above
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Lagrange interpolation polynomials, the parking kinematics equation is transformed into algebraic
equations at the collocation points, and the integral part of the cost function is discretized by the Gauss
integral. Compared with the traditional collocation method and direct shooting method, the GPM,
a kind of global collocation method, has better solving accuracy and convergence speed [38,39].
However, for nonsmooth problems, the convergence speed of the GPM is slower. To this end,
a homotopic method is used to change the boundary of the obstacle avoidance constraint in the
optimal control problem, and the solution of the last optimal control problem is used as the initial
value of the next solution. The detailed framework is described as follows:

Step 1. Time domain transformation
The time domain of parking trajectory planning t ∈

[
t0, t f

]
is transformed into a time domain of

the GPM in [−1,1]:

τ =
2t− t f − t0

t f − t0
, τ ∈ [−1, 1] (10)

Step 2. Discretization of variables
Lagrange interpolation and Gauss quadrature equations are used to discretize the optimal control

problem at a series of Legendre–Gauss (LG) points. The discrete points of the GPM include N+1 points
composed of NLG points and τ0 = −1. State variables and control variables are approximated at each
configuration point as follows:

x(τ) ≈ X(τ) =
N∑

i=0
Li(τ)·X(τi) (11)

µ(τ) ≈ U(τ) =
N∑

i=0

Li(τ)·U(τi) (12)

where x and µ stand for state variables and control variables, respectively. X and U refer to discrete
variables, and Li(τ) denotes Lagrange interpolation basis functions.

Step 3. Transformation of state equation and constraint equation
After the derivation of Equation (11), the obtained derivative of a state variable at collocation

point τ = τk can be approximated as follows:

.
x(τk) ≈

.
X(τk) =

N∑
i=0

.
Li(τk)·X(τi) =

N∑
i=0

Dk,i·X(τi) (13)

where D denotes a differential state matrix, which represents the differential value of the Lagrange
interpolation basis function at each collocation point. Through Equation (13), a state equation can be
transformed into equality constraints, as follows:

N∑
i=0

Dk,i·X(τi) −
t f − t0

2
f (X(τk), U(τk), τk) = 0 (14)

The obstacle avoidance constraints and endpoint constraints in parking trajectories are also
discretized at the collocation points. The obtained equality constraints are as follows:

C(X(τk), U(τk), τk) ≤ 0 (15)

E
(
X(τ0), τ0,X

(
τ f

)
, τ f

)
= 0 (16)

where C and E denote the obstacle avoidance constraint and endpoint constraint, respectively.
Step 4. Transformation of cost function



Sensors 2020, 20, 6435 9 of 19

The integral term in the cost function can be approximated by the Gauss integral method. In this
way, the cost function is transformed as follows:

J = Φ
(
X(t0), t0, X

(
t f

)
, t f

)
+

t f − t0

2

N∑
i=0

ωiG(X(τi), U(τi), τi) (17)

where ωi stands for the integral weight.
Step 5. The homotopic transformation of constraint equation
The optimal control problem of parking trajectory planning becomes unsmooth with the increase of

environment complexity, which makes it difficult to solve the original problem by directly using the GPM.
Thus, this paper proposes a homotopic method to improve the smoothness of the original problem.
In the proposed method, the bounds of obstacle avoidance constraints in the original problem are
taken as homotopic parameters to make the original problem of parking trajectory planning smoother.
In this way, the unsmooth original problem is directly solved without changing the form of the original
problem. In addition, the optimal solution is used as the initial value of the next calculation. To this end,
Equation (15) is transformed as follows:

C(X(τk), U(τk), τk) ≤ Hc (18)

where Hc denotes the homotopic parameter vector. To improve the convergence of the generated
new problem, Hc is added, releasing the constraint boundaries. Therefore, when Hc evolves into 0,
the problem becomes the original problem. Equation (18) can also be transformed as follows:

C(X(τk), U(τk), τk) −Hc ≤ 0 (19)

It is worth noting that Equation (19) has the same form as Equation (15). Therefore, the solution of
the original problem can be obtained by constant iteration with a homotopic method. Moreover, the
result of the last optimal control problem is taken as a better initial value, which reduces the difficulty
of the next solution. As a result, the convergence speed of the solution is effectively improved.

After the five steps above, the optimal control problem of parking trajectory planning is transformed
into a discrete NLP problem by the GPM, and SNOPT is adopted as the software package in this paper.
The overall flowchart of the proposed GPM-based methodology is demonstrated in Figure 6.Sensors 2020, 20, x FOR PEER REVIEW 10 of 20 
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4. Simulation Results and Discussion

The trajectory planning of AVP is separated into two phases. Two obtained optimal trajectories of
corresponding phases are spliced into a complete trajectory of the whole AVP. The code is executed on
a laptop running Windows 7 with an Intel(R) Core(TM) i5-3210M 2.50 GHz processor and 8 GB RAM,
written in MATLAB. The vehicle parameters and physical constraints used in the simulation are shown
in Table 1.

Table 1. Vehicle parameters and physical constraints.

Parameter Description Value

L Wheelbase 2.560 m
f Front overhang 0.902 m
r Rear overhang 0.883 m
d Width 1.765 m

vmax Maximum speed 3.0 m/s
amax Maximum acceleration 0.75 m/s2

jerkmax Maximum acceleration rate of change 0.3 m/s3

ϕmax Maximum front wheel swing angle 0.56 rad
ωmax Maximum front wheel swing angular velocity 0.56 rad/s

4.1. Trajectory of Parking Space Searching Phase

In the first phase of the parking process, the vehicle moves from the entrance of the parking lot to
the initial area of vertical parking. In this phase, it is assumed that there are no other dynamic obstacles,
such as vehicles and pedestrians, but only some constraints of road boundary and parking space.
The position of the vehicle at the entrance and the initial area of vertical parking are defined as follows:

[Rx(t0), Ry(t0)] = (25.5, 17.5)
24 ≤ Ax

(
t f

)
, Bx

(
t f

)
, Cx

(
t f

)
, Dx

(
t f

)
≤ 29

0.5 ≤ Ay
(
t f

)
, By

(
t f

)
, Cy

(
t f

)
, Dy

(
t f

)
≤ 4

(20)

According to the above-mentioned algorithm, the trajectory planning problem of the first phase
is solved without constraints, and the trajectory of the vehicle (see Figure 7a) is a circular arc.
The termination condition is that all the vertices of the vehicle fall in the initial parking area.
In this context, the vehicle reaches the top, rather than the middle, of the initial parking area to
optimize the cost function, which is shown in Figure 7a. It is also found out that the trajectory intersects
with the parking spaces in the middle of the parking lot, instead of those at the bottom or top of the
parking lot. Therefore, by using the above-mentioned homotopic algorithm, the constraints of the
middle parking spaces are gradually approximated to the constraints of the original optimal control
problem. Then vehicle trajectories from the entrance to the initial area of parking are obtained by
iterative solution, which are shown in Figure 7b,c.
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Figure 7. Trajectory planning in the parking space searching phase: (a) depicts the vehicle trajectory
from the entrance of the parking lot to the initial area of vertical parking; (b,c) depict the vehicle
trajectory under partial and complete constraints, respectively.

4.2. Trajectory in Vertical Parking Phase

In the second phase of the parking process, the convenience of passengers in getting on and off has
to be considered. To this end, the minimum width of the space on both sides of the vehicle when the
parking ends is set to 0.3. Therefore, the minimum parking length min Lp is set to 2.3, and the parking
width Wp is set to 5.0. Additionally, based on the range of the initial parking area, the road width Ws is
set to 4.5 (see Figure 5). For the convenience of calculation, the upper-left vertex of the vertical parking
space is set as the origin of the coordinate system, that is, [Px, Py] = (0, 0). Furthermore, the coordinate
of the central point of the rear axle at the starting position is [Rx(t0), Ry(t0)] = (5, 1.5). In addition,
the termination condition of parking completion is required to meet the constraints in Equation (8),
and the equation of Ry

(
t f

)
= Lp/2 to ensure that the vehicle is in the middle of the parking space at

the ending moment.



Sensors 2020, 20, 6435 12 of 19

According to the above-mentioned homotopic algorithm, the parking space Lp gradually decreases
from 3.5 to the minimum value. In other words, the homotopic parameter Hc = [3.5 : λ : 2.3], where the
step length λ = 0.02. Hence, the problem is solved with 61 times of iteration, and there is only a
difference of Lp between each iteration process. Then, four vertical parking processes with different Lp
values are selected for analysis and discussion. The values of Lp in Cases 1–4 are set as 3.50, 3.12, 2.72,
and 2.30, respectively. The optimized trajectory, control variables, and state variables are illustrated in
Figures 8–15.

First of all, all vehicles can complete vertical parking and meet the above-mentioned termination
constraints in Cases 1–4, which means that the vehicle is in the middle of the parking space when
the parking ends. The control variables all present the feature of the bang–bang control (see Figure 9,
Figure 11, Figure 13, and Figure 15) because time is required to be optimal in cost function. That is to
say that the state variables are continuous and smooth despite that the control variables are oscillated.

As shown in Figures 8 and 10, the trajectories in Cases 1 and 2 are similar. The adjustment of the
vehicle occurs outside the parking space rather than inside, even if the parking space is relatively larger
in Cases 1 and 2. This phenomenon is similar to our daily manual vertical parking process because the
narrow parking space is not conducive to the adjustment of the vehicle posture.
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Figure 9. Optimized control and state variables in Case 1.

As shown in Figures 10–15, parking time t f shows a growing trend with the gradual decrease
of Lp. Furthermore, the t f of Case 4 is the longest, and the reason is obvious. It is because of the narrow
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parking space resulting in six times of direction changes in Case 4, compared with only four times in
Cases 1–3.
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Figure 10. Optimized trajectories for Case 2 and t f = 24.1324 s.
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Figure 11. Optimized control and state variables in Case 2.
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Figure 12. Optimized trajectories for Case 3 and t f = 24.4173 s.
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Figure 15. Optimized control and state variables in Case 4.

The traditional GPM takes a long time to directly solve the optimal parking problem, and even
ends with nonconvergence when the parking space is narrow. Thus, this paper adopts a homotopic
method to select a rational initial guess, which can solve this problem effectively. As depicted in
Figure 16, the iteration time is less than 1 s in more than 90% of the cases. And the longest calculation
time does not exceed 2 s. Longer iteration times occur at the beginning and end of the calculation for
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two reasons: (i) In the first iteration, the constraint is set to the calculation for the first time, and the
increase of the constraint condition leads to the extension of the calculation time. (ii) At the end of the
iteration, the rear space is narrow, so the process of trajectory optimization becomes difficult.
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Figure 16. Computation time for each iteration with Lp from 3.5 to 2.3 m.

4.3. Online Computing Method for Vertical Parking Trajectory Planning

The offline calculation method of vertical parking trajectory planning is illustrated above. In the
process of approaching the original optimal control problem by homotopic parameters, the overall
calculation time is long even if the time cost of each iteration is short. At this time, real-time requirements
will not be met. Thus, an online planning method of parking trajectory is proposed. Let us assume
that the trajectories calculated by each iteration in the second phase are stored as a table. If the starting
position and parking space size in practice are the same as in any case stored, the trajectory can
be obtained directly from the stored trajectories by looking up the tables without any calculation.
However, these ideal situations barely happen in practical applications. Considering this problem,
the stored trajectory is used as an initial guess rather than an actual trajectory. The complete process is
as follows: First, a parking space is found, and the vehicle is parked in its initial area. In this context,
an optimal control problem for parking trajectory planning is formed. Then, the most similar set of
trajectories is found from the stored data based on actual parking space size and the starting position,
and used as the initial guess of the actual optimal control problem, which is solved by the GPM.
The advantage is that the solving speed can be effectively improved by the proposed method. This is
because the corresponding original problem of the found trajectory is similar to the current problem,
which makes this trajectory similar to the current solution, being a good initial guess.

To verify the above method, a working condition with Lp = 2.5, [Rx(t0), Ry(t0)] = (5, 1.5) is assumed,
and its parking trajectory, used as the initial guess of the subsequent optimal control problem, is stored
in the data table. Cases 5 and 6 are set up according to the distance from the actual parking starting
position to point R. In each case, there are four vehicles whose start locations R’(x, y) are in the circles
that take R(x, y) of the initial guess as the center and 0.2 and 0.5 as radii (as shown in Table 2). The GPM
is also taken to solve the new optimal control problem for vertical parking trajectory planning.

Table 2. Actual parking start position.

ID
Case 5 Case 6

R
′

x(t0) R
′

y(t0) R
′

x(t0) R
′

y(t0)

Vehicle 1 5.0 1.7 5.0 2.0
Vehicle 2 5.2 1.5 5.5 1.5
Vehicle 3 5.0 1.3 5.0 1.0
Vehicle 4 4.8 1.5 4.5 1.5
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As shown in Figure 17a,b, the new optimal control problems in Cases 5–6 can be solved quickly,
and the solving speed of Vehicle 4 is the quickest, followed by that of Vehicle 2. For Vehicles 2
and 4, the vertical positions are the same as those in the initial guess, that is, R′y(t0) = Ry(t0),
despite differences in the horizontal position. Therefore, their trajectories at the beginning phase of
the parking are closer to the optimal ones. In contrast, the vertical positions of Vehicles 1 and 3 are
different from those in the initial guess despite the same horizontal positions, which leads to a large
deviation of the trajectories at the beginning phase. Therefore, the calculation time increases.
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Figure 17. Optimal trajectory and calculation time obtained by online calculation of vertical parking.
As depicted in Figure 17 (a) and (b), the starting points of vertical parking are in circles, taking the
starting point of the initial guess as the center and 0.2 and 0.5 as radii.

In Case 5, the maximal calculation time of all the vehicles is 1.87 s, which is acceptable in
real-time parking applications. However, in Case 6, the calculation time of Vehicles 1 and 3 is more
than 3 s. Comparing Case 5 and Case 6, it can be noted that the large deviation, especially horizontal
deviation, of vehicle trajectory from the initial guess leads to a greater impact on calculation time.
Therefore, the calculation time of the optimal control problem increases. In contrast, the deviation of
the horizontal position has less effect on the calculation speed.

To verify the effectiveness and real-time performance of the proposed homotopic strategy,
the calculation results of the two initialization methods are selected for comparison. The CPU time and
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tf of Cases 1–4 are recorded, and fail means nonconvergence in the calculation process. As presented in
Table 3, the simulation costs of the proposed homotopic strategy are much lower than those of the
other two strategies. Especially in conditions with small space (Cases 3 and 4), the calculation costs of
the incremental strategy and the spatiotemporal decomposition strategy increase significantly, and the
calculation may fail. We cite the following reasons to explain the excellent real-time performance of
the proposed strategy: In the iterative solution process, only the width of the parking space changes
according to the calculation step. Thus, optimal control problems of two adjacent calculations are very
similar. In the homotopic strategy, the optimal solution of the previous calculation is used as the initial
guess for each solution. And the calculation is guided by a high-quality initial guess. It is worth noting
that since there is no initial guess stored when solving the problem of Case 1, the calculation time is
slightly longer than that of other cases. This result is consistent with the conclusion in Figure 16.

Table 3. Comparison of the performances of distinct strategies.

Incremental
Strategy [40]

Spatiotemporal
Decomposition [41]

Homotopic
Strategy

CPU Time tf CPU Time tf CPU Time tf

Case 1 47.2232 22.4859 41.9217 25.5481 4.4415 23.9753
Case 2 42.9378 37.6651 65.5836 27.6475 0.7151 24.1324
Case 3 87.6384 fail 89.3382 28.8263 1.0877 24.4173
Case 4 115.4827 fail 92.7271 31.0379 1.4082 31.1608

As a summary, the processes of the online calculation of vertical parking trajectory are as follows: (i)
A matrix, whose size is Rm×n, is formed with starting points selected in the initial area of vertical parking.
The optimal parking trajectories of these starting points are obtained by an offline method and stored.
(ii) The starting point with the minimum deviation from the actual location is obtained by looking
up the table of stored data. Note that the vertical deviation minimum takes higher priority than the
horizontal one. Finally, the trajectory with the minimum deviation is taken as the initial guess of the
optimal control problem. This optimal control problem is solved by the GPM, and an optimal trajectory
of the actual parking is obtained.

5. Conclusions

In this paper, a method that combines the GPM and homotopic method to solve the optimal control
problem is proposed for the trajectory planning of AVP. An optimal control problem is determined
to describe the optimization problem of parking trajectory. Then the GPM is used to transform this
optimal control problem into a nonlinear programming problem, which can be solved by sequence
quadratic programming. The difficulty of solving is handled by a homotopic method, which adjusts the
constraint boundary. The original problem is approached by iteration where the last solution result is
taken as the initial value of the next solution. AVP trajectory planning is divided into two phases, and an
online calculation method for the vertical parking phase is proposed. Furthermore, simulation results
indicate that the proposed method can effectively improve the calculation speed and convergence of
the solution. In the vertical parking phase, the online calculation time of trajectory planning is less
than 2 s, which meets the real-time requirement.

In our future works, various sizes of parking scenarios will be taken into account.
Furthermore, we will study the effective solving of the multivehicle coordinated trajectory of connected
and automated vehicles in a parking lot.
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