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Abstract
Soybean (Glycine max [L.] Merr.) production is susceptible to biotic and abi-

otic stresses, exacerbated by extreme weather events. Water limiting stress, that

is, drought, emerges as a significant risk for soybean production, underscoring the

need for advancements in stress monitoring for crop breeding and production. This

project combined multi-modal information to identify the most effective and effi-

cient automated methods to study drought response. We investigated a set of diverse

soybean accessions using multiple sensors in a time series high-throughput pheno-

typing manner to: (1) develop a pipeline for rapid classification of soybean drought

stress symptoms, and (2) investigate methods for early detection of drought stress.

We utilized high-throughput time-series phenotyping using unmanned aerial vehi-

cles and sensors in conjunction with machine learning analytics, which offered a swift

and efficient means of phenotyping. The visible bands were most effective in clas-

sifying the severity of canopy wilting stress after symptom emergence. Non-visual

bands in the near-infrared region and short-wave infrared region contribute to the dif-

ferentiation of susceptible and tolerant soybean accessions prior to visual symptom

development. We report pre-visual detection of soybean wilting using a combination

of different vegetation indices and spectral bands, especially in the red-edge. These

results can contribute to early stress detection methodologies and rapid classification

of drought responses for breeding and production applications.
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1 INTRODUCTION

Biotic and abiotic stresses, exacerbated by weather events,

can lead to billions of dollars in U.S. crop insurance pay-

ments, economic loss for farmers, and increased consumer

prices (Dice & Rodziewicz, 2020). The impact of drought

on major grain crops can be severe; therefore, its pat-

terns are traced globally in relation to yield loss (Santini

et al., 2022). Across different species, yield loss attributed

to drought has been investigated. These losses in soybean

range from 28% to 74% depending on various factors such

as the temperature and timing of drought (Jumrani & Bha-

tia, 2018). Furthermore, a recent study of the magnitude,

frequency, duration, and timing of droughts has shown that

North America is at high risk for reduced soybean (Glycine
max [L.] Merr.) yield associated with drought (Santini et al.,

2022).

In the 1980s, landrace PI 416937, from Japan, was observed

to wilt more slowly in the field compared to modern culti-

vars and had a lower yield penalty under water deficit stress

(Sloane et al., 1990). Further studies reported that increased

root mass, volume, and density, larger leaf area, higher nod-

ule count, maintained turgor pressure, aluminum tolerance,

water conservation strategies, and limited transpiration rate,

among other traits, could confer the slow wilting phenotype

(Carter & Rufty, 1992; Fletcher et al., 2007; Hudak & Patter-

son, 1995; Pantalone et al., 1996; Valliyodan et al., 2017; Ye

et al., 2020). Slow wilting lines have also shown lower yield

reductions under drought stressed conditions (Pathan et al.,

2014; Sloane et al., 1990; Ye et al., 2020). These lines have

contributed to breeding progress, as their progenies showed

higher-yield under drought conditions (Carter & Rufty, 1992;

Zhou et al., 2020). Canopy wilting has become a measure of

drought tolerance in soybean breeding efforts because of the

association between the slow wilting phenotype and higher

seed yield (Pathan et al., 2014; Ye et al., 2020). Further-

more, it has been found that soybean growth stage during

drought stress affects the response to drought stress, making

growth stage an important factor to consider in drought studies

(Kpoghomou et al., 1990). Ideally, breeders could simultane-

ously evaluate cultivars and breeding lines for seed yield and

growth stage under drought stressed and well-watered envi-

ronments to fully understand drought response in tested lines.

However, in situations where drought-prone land is limited,

or in early generations when seed quantity is too limited to

plant multi-environment trials, the use of proxy traits, such

as canopy wilting, can be utilized for screening and selec-

tion of lines with potential drought tolerance until full-sized

yield trials are possible later in the breeding pipeline. For

example, Zhou et al. (2021) used canopy wilting, maturity

group, and various traits extracted from RGB and multispec-

tral imagery data to predict soybean yield of breeding lines

under drought conditions.

Core Ideas
∙ Sensors, wavebands, and vegetation indices are

evaluated for importance in phenotyping canopy

wilting in soybean.

∙ Aerial versus ground based sensing study shows

necessity of balancing speed of data collection and

field of view.

∙ Random forest classification can be applied to sup-

port selection decisions in plant breeding program.

∙ Multispectral UAV data enables pre-visual early

detection of canopy wilting drought stress in

soybean.

Several challenges emerge in phenotyping for canopy wilt-

ing in breeding and crop production scenarios. Traditional

methods require an expert to visually rate canopy wilting

severity. Several methods and scales exist for this visual clas-

sification in soybean, including the commonly cited scale

from 0 to 100 (0 = no wilting, 20 = slight wilting and leaf

rolling at the top of the canopy, 40 = severe leaf rolling at

the top of the canopy and moderate leaf wilting throughout

the canopy and loss of petiole turgidity, 60 = severe wilt-

ing throughout the canopy and loss of petiole turgidity, 80 =
severe petiole wilting and dead leaves scattered throughout

the canopy, and 100 = plant death (Chamarthi et al., 2021;

King et al., 2009; Kaler et al., 2017), and the equivalent 0

(no wilting) to 5 (plant death) scale (Charlson et al., 2009).

Additional methods include a 1–5 scale (1 = no wilting, 2 =
few top leaves showed wilting, 3 = half of the leaves showed

wilting, 4 = severe wilting 75% of the leaves showed wilt-

ing, and 5 = severely wilted) followed by dividing scores into

two categories of slow wilting = average wilting score ≤2.5

or fast wilting = average wilting score ≥2.5 used in cases

rated on the 1–5 scale (Ye et al., 2020; Zhou et al., 2020).

While integral to breeding programs and crop production, sev-

eral limitations emerge with visual ratings. Visual ratings can

be prone to inter- and intra-rater variation, provide no early

warning for farmers equipped with irrigation systems, and are

time-consuming to collect. Furthermore, breeding programs

evaluate thousands of test lines at multiple locations each

year (Vieira & Chen, 2021). Canopy wilting is affected by

temporally variable environmental conditions such as increas-

ing temperature and solar radiation, leading to increasingly

severe wilting symptoms as the day progresses. Therefore, it is

essential that rapid, automated methods for drought screening

be implemented in breeding programs to facilitate selection

with increased speed and accuracy (Singh et al., 2021a; Singh

et al., 2021). The immense scale of breeding programs neces-

sitates rapid phenotyping to decrease time and labor costs, and

appropriate statistical analysis that can handle complex data.
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Sensors on unmanned aerial vehicles (UAVs) offer

improved speed and spectral resolution beyond human vision

with high applicability in breeding programs (Guo et al.,

2021; Herr et al., 2023). A comprehensive array of sensors,

including RGB, multispectral, hyperspectral, and thermal, are

readily accessible for integration with UAV flights tailored

to many agricultural applications (Herr et al., 2023; Singh

et al., 2021b). The combined speed of collection, spectral

density, and often multicollinearity of high throughput pheno-

typing data can benefit from machine learning (ML) analysis

strategies to detect feature hierarchy and recognize patterns

in multi-modal data to provide data-driven solutions (Singh

et al., 2016, 2018, 2021; Chan et al., 2022). Common ML

objectives in plant stress phenotyping include identification,

classification, quantification, and prediction (ICQP) of plant

stress (Singh et al., 2016). Identification detects the causal

stress, classification groups severity expressions into a finite

number of classes, quantification determines the severity of

stress expression at a finer level such as percent expression,

and prediction combines multiple data sources such as envi-

ronmental parameters and imagery to predict stress onset

(Singh et al., 2016). The ICQP paradigm, via ML/ deep

learning (DL) approaches, has been applied to solve crop

production and breeding issues, including disease identifica-

tion, severity classification (Ghosal et al., 2018; Rairdin et al.,

2022), insect identification (Chiranjeevi et al., 2023), and has

even be applied to below ground traits (Carley et al., 2023).

Limited research is available studying UAV-based methods

for drought-induced canopy wilting assessment in the field,

especially in earlier maturity group soybean. One study used

multiple sensors, including RGB, infrared thermal, and mul-

tispectral cameras mounted on UAV to classify 116 soybean

genotypes into two classes (slow vs. fast wilting soybeans)

utilizing four imagery-based features inputted into a sup-

port vector machine (SVM) algorithm with an accuracy of

0.80 (Zhou et al., 2020). Similar to SVMs, the random forest

(RF) model, an ensemble learning algorithm, also has been

widely used (Singh et al., 2016) and has been successful in

plant stress identification and classification (de Oliveira et al.,

2023). Peanut (Arachis hypogaea) canopy wilting was clas-

sified into six wilt classes using 11 features extracted from

aerial-based RGB imagery and logistic regression achieving

an accuracy of 0.69 (Sarkar et al., 2021). The same data

was used to classify wilting into binary categories of turgid

vs. wilted canopy with an increased accuracy of 0.88. A

few studies in soybean have approached drought phenotyping

by predicting yield under drought stress. Nine features from

multispectral and RGB-based UAV imagery of 116 soybean

genotypes were input into a convolutional neural network to

estimate yield under drought stress with an R2 of 0.78 (Zhou

et al., 2021). To test application in a breeding program, a

follow-up study showed that 38 features from UAV-based

multispectral imagery could be used to classify over 11,000

progeny rows and over 1,000 preliminary yield trial entries

into select vs. non-select classes (Zhou et al., 2022). The

model also selected over 60% of the same selections as a

breeder, while increasing average yield of the selected class

compared to breeder selections (Zhou et al., 2022). This

agreement and improved yield show the promise of UAV

data and model-based selection methods in the breeding

pipeline. Both canopy wilting and yield prediction methods

are valuable and offer unique information to plant breeders.

Likewise, early stress detection plays a pivotal role in crop

production, giving farmers more time to act to alleviate stress.

Early stress detection has shown to be promising in insect, her-

bicide, and disease stress studies utilizing wavelengths beyond

human vision for pre-visual detection of stress. For exam-

ple, a study of pine tree bark beetles showed that RGB data

alone could not detect early infestations, however, red-edge

bands played a significant role in early infection detection

in a time series data set (Yu et al., 2022). In soybean,

artificial neural networks have also been used in the early

detection of herbicide injury, classifying 240 soybean geno-

types into three classes of tolerant, moderate, and susceptible

Dicamba injury responses (Vieira et al., 2022). Pre-visual

detection and quantification of the fungal disease, charcoal rot

(Macrophomina phaseolina), was possible with an accuracy

of 0.97 when using six selected wavebands, including 475.56,

548.91, 652.14, 516.31, 720.05, and 915.64 nm (Nagasub-

ramanian et al., 2018). In a UAV-based study, the early

detection of charcoal rot was successful using Normalized

Difference Red Edge (NDRE) calculated from multispectral

data (Brodbeck et al., 2017). Early drought stress detec-

tion has not been widely studied in soybean. However in

grapevine, one study found that vegetation indices in the red

and near-infrared (NIR) range, such as Normalized Differ-

ence Vegetation Index (NDVI), Atmospherically Resistant

Vegetation Index (ARVI), Enhanced Vegetation Index (EVI),

Soil-Adjusted Vegetation Index (SAVI), and Optimized Soil-

Adjusted Vegetation Index (OSAVI), had a higher correlation

with leaf water potential compared to other indices, while

chlorophyll based indices, especially NDRE, were also highly

correlated with leaf water potential (Tang et al., 2022). The

objectives of this study were to: (1) develop a pipeline for

rapid classification of soybean drought symptoms in early

maturity group soybeans and (2) investigate methods for early

detection of drought stress.

2 MATERIALS AND METHODS

2.1 Field design

Field experiments were conducted in a rain-fed drought

nursery at the Muscatine Island Research Farm in Fruitland,

IA (41˚21′ N, 91˚08′ W) on Fruitfield coarse sand in 2022.

Two-row, 1.52 m plots with 76 cm row spacing and 0.91

m alleys were planted with a seeding density of 33 seeds
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per meter on May 28, 2022. The experimental design was a

randomized complete block design with three replications of

450 MG 0-III lines. Test lines included a 31-member subset

from the SoyNAM panel (Song et al., 2017; Diers et al.,

2018), eight maturity and yield checks, and 411 PI lines

from a mini core collection subset from the USDA Soybean

Germplasm Core Collection representing the diversity of

soybean that can be grown in Iowa. PI lines originate from 28

countries across North America, Europe, Asia, and Africa.

A subset of 12 lines were also planted under pivot irrigation

about 470 m from the rain-fed nursery. Irrigated plots were

planted in a randomized complete block design with three

replications at the same plot size and planting density as in

the rain-fed nursery. These 12 lines included seven lines that

had low wilt score best linear unbiased predictors (BLUPs)

from previous drought trial data from 2020 and 2021, three

lines with high wilt score BLUPs, and two high yielding

check lines.

2.2 Data collection

Daily precipitation (mm), was obtained from Iowa State

University’s Iowa Environmental Mesonet NWS COOP sta-

tion IA5837 (https://mesonet.agron.iastate.edu/request/coop/

fe.phtml), and daily summaries of soil volumetric water con-

tent was obtained from the Iowa Environmental Mesonet

Fruitland, IA station FRUI4 at (https://mesonet.agron.iastate.

edu/agclimate/hist/daily.php). Data was collected across mul-

tiple single-day time points 46 days after planting (DAP), 64

DAP, and 81 DAP in 2022 to investigate stress progression.

Entire replications were phenotyped in the shortest possible

time and the on same day. Visual canopy wilting was recorded

on the equivalent scale of 1–6, quantifying the level of wilt-

ing severity seen in the plant canopy (1 = no wilting, 2 =
slight wilting and rolling in the top of the canopy, 3 = some-

what severe leaf rolling in the top canopy, moderate wilting

of leaves throughout the canopy, some loss of petiole turgid-

ity, 4 = severe wilting of leaves throughout the canopy with

advanced loss of petiole turgidity 5 = petioles severely wilted

and dead leaves throughout much of the canopy, 6 = plant

death (Charlson et al., 2009; King et al., 2009). One individual

collected visual wilt scores from both irrigated and rain-fed

plots between 12:00 and 2:00 p.m. to prevent inter-rater vari-

ability within a replication. The average soybean growth stage

per plot was recorded (Fehr & Caviness, 1977). All sensor

and growth stages data were collected between 10:00 a.m. and

2:00 p.m as shown in Table 1.

2.3 Data processing

Data processing included stitching and orthomosaic gener-

ation from UAV-based images, cropping plot boundaries,

background removal, and feature generation from canopy pix-

els. UAV-based RGB, multispectral, and thermal flight data

were stitched in Pix4D using GPS coordinates of ground

control points in the field. From the resulting orthomosaics,

plot boundaries were demarcated and snipped via Python

code interfacing with ArcGIS (Carroll et al., 2024). Vege-

tation pixels were separated from the soil background, and

mean reflectance was extracted from each sensor via sensor-

dependent pipelines. For RGB images, we separated the

vegetation in the foreground from the soil in the background

using the Hue, Saturation, and Value (HSV) color space. RGB

images were transformed to the HSV color space, and the

pixels with HSV colors between the range of HSV values

from (25, 20, 50) to (80, 255, 255) were kept while the other

pixels were masked. This range, obtained through the inspec-

tion of the peak in the distribution of the HSV values on our

data, thresholded the contours that contain the pixels defined

as vegetation. A similar pipeline was employed for the RGB

bands of the multispectral imagery data and the masks created

were used to crop out the vegetation from each of the ten mul-

tispectral bands. The mean reflectance of all soybean plots

for multispectral imagery and RGB imagery was extracted

for further analysis. Figure 1 is a flowchart showing the

pipeline developed for data processing and analysis. To char-

acterize various vegetation characteristics, vegetation indices

(VIs) were calculated from the multispectral and hyperspec-

tral (ASD) sensors using equations provided in Tables 2 and

S1. These indices are widely used to quantify plant health,

greenness, and other physiological conditions. These VIs also

include water-based indices and indices based on only the

visible (red, green, and blue) bands.

2.4 Data analysis

Data from each sensor was analyzed in two phases. Phase one

targeted monitoring drought stress severity, and phase two tar-

geted early detection of drought stress prior to visual symptom

development. The traditional wilt score rating on a scale of

1–6 was re-grouped into classes that could be applied in a

breeding program for advancement decisions. This led to a

merger of classes 1, 2, and 3 into ‘Select’ and classes 4, 5,

and 6 as ‘Discard’, as shown in Figure 2.

2.4.1 Monitoring of drought stress

For monitoring, we focused on time point 2 (65 DAP) due

to the higher severity of stress observed at this time point.

Complete sensor data were available for 2 replications, or 900

of the 1350 plots. In this data set, the ‘Select’ category con-

sisted of 431 plots and the ‘Discard’ class contained 469 plots.

To explore the performance of wavebands falling within the

visual range of 400–700 nm to mimic human vision as used

by raters, the red, green, and blue bands were selected from

https://mesonet.agron.iastate.edu/request/coop/fe.phtml
https://mesonet.agron.iastate.edu/request/coop/fe.phtml
https://mesonet.agron.iastate.edu/agclimate/hist/daily.php
https://mesonet.agron.iastate.edu/agclimate/hist/daily.php
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T A B L E 1 List of sensors, sensor specifications, and overview of methodology and data points captured in this study.

Sensor
Sensor
specification

Wavelength
range (nm)

Spectral
resolution Altitude Overlap Genotypes Replications

Time
points

Canon T5i digital

SLR camera1

EF-S 18-55 mm

f/3.5-5.6 IS II

400 - 700 R,G,B 1.3 m N/A

450 3 3

ASD FieldSpec 4

Hi-Res2

hyperspectral

reflectance

350 - 2500 1 nm 1 m above

canopy

N/A

DJI Phantom 4

Advanced UAV3

20 MP, 1-inch

CMOS with a

24 mm focal

length

400 - 700 R,G,B 30 m 85%

front,

75% side

Zenmuse X5S +
DJI Inspire UAV3

45 mm 400 - 700 R,G,B 45 m 70%

front,

80% side

Micasense

RedEdge-Mx Dual

camera system4 +
DJI Matrice 600

Pro UAV3

10 band

multispectral

444 - 842 444(28),

475(32),

531(14),

560(27),

650(16),

668(14),

705(10),

717(12),

740(18),

842(57)

30 m 80%

front,

80% side

1Canon USA, Inc., Melville, NY.
2Malvern Panalytical, Malvern, United Kingdom.
3SZ DJI Technology Co., Ltd., Shenzhen, China.
4AgEagle Aerial Systems, Inc., Wichita, KS.
5Teledyne FLIR LLC, Wilsonville, OR.

the multispectral and ASD sensors and were stacked to create

two additional visual range-based sensors.

In this study, random forest (Breiman, 2001) models were

used to classify the drought susceptibility traits for the var-

ious sensors. After tuning, we set the number-of-estimator

parameter of the RF models to 100 to learn the non-linear

classifier. The number-of-estimator parameter was selected to

enhance generalization by capturing diverse patterns across

each sensor while accounting for computational constraints.

The model performance was evaluated using a 10-fold cross-

validation method, where the data is randomly split into

10-folds, and for each training iteration, the RF model was

trained on 9-folds, while the remaining fold was used for

model testing, repeated 10 times. Classification accuracy was

calculated using Equation (1). We used cross-validation as a

conservative estimate of the model accuracy (Joalland et al.,

2018) as it is also valuable for models dealing with limited

sample sizes (James et al., 2023).

Accuracy =
Number of samples classified correctly

Total number of samples
(1)

To identify the most effective sensor for monitoring

drought stress, we trained a RF model using various sets of

sensor data across multiple levels of representation. First, we

trained the model on a classification task aimed at distin-

guishing between ‘Select’ and ‘Discard’ classes using only

the visual range of wavelengths used by human raters. Subse-

quently, we extended the training to include both visible and

non-visible spectral information. And finally, we incorporated

vegetation indices.

Additionally, we evaluated the benefits of integrating data

from multiple sensors by analyzing the performance of com-

bined sensor setups. Given the complexity introduced by the

high dimensionality of the combined sensor data, we formu-

lated a sensor selection problem by implementing a backward

elimination technique at the sensor level. This allowed us to

identify the most advantageous combinations of sensors for

effective drought stress monitoring. Furthermore, we refined

the selection process to the feature level to determine the top

10 features across all sensors that are critical for accurate

monitoring of drought stress.

2.4.2 Early detection

To address the early detection of drought stress, we utilized

data from two of the three time points, framing it as a time

series analysis problem. Since all plots at time point 1 were

initially rated as a wilt score of 1, we reclassified these plots
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Orthomosaic Generation

Plots Boundary generation

Processing

- ArcGIS

- Python

Plot 

Extraction
Crop Plots 

Name Plots

Background (Soil) removal

Extract mean reflectance of 

vegetation 

Use time point 2

Monitoring Early Detection

• Classification based on 

Multiple Representation

• Performance Improvement 

with multiple sensors

• Feature Selection

• Qualitative analysis

• Classification based on 

Multiple Representation

• Performance Improvement 

with multiple sensors

• Feature Selection

Random forest 

model for 

classification

- Python

Use time point 1,2

F I G U R E 1 Flowchart of the methods pipeline and software utilized for data processing and analysis to address monitoring and early detection

goals.

using the ‘Select’ and ‘Discard’ class labels from time point

2 which had the widest range of canopy wilting scores. This

reclassification strategy aligns the early stage time point 1

sensor data with their subsequent time point 2 wilt score clas-

sifications, similar to (Yu et al., 2022). Complete sensor data

were available for 2 replications at time point 1, or 900 of

the 1350 plots. The class counts for the ‘Select’ and ‘Discard’

classes were 406 and 494, respectively.

As with the drought stress monitoring task, a RF model

was employed to assess the class discriminative capability

at various sensor representation levels using the newly re-

classified dataset. Additionally, we extended our analysis to

include multiple sensors, evaluating their collective perfor-

mance in the context of early detection. This approach also

involved identifying the most important sensor combinations

and features, drawing parallels to the techniques used in the

monitoring task for optimizing drought stress detection.

To further investigate performance of the multispectral

data, a Welch’s t-test was employed to examine the spectral

variations in multispectral imagery bands between ‘Select’

and ‘Discard’ plots at each of the three time points. Multi-

spectral imagery was available for all three replications at each

time point resulting in 1350 plots of data analyzed at each

time point. The analysis sought to to identify the time dur-

ing the growing season when the classes exhibited significant

differences in mean reflectance as well as the specific bands

showing significant differences between categories that could

be utilized for early detection of stress.

3 RESULTS

From the week of May 24, 2022 to the week of July 5,

2022, the majority of Muscatine County, Iowa was under
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T A B L E 2 List of vegetation indices (VIs) utilized for drought monitoring and early detection.

Index Name Formula Reference

NDVI Normalized Difference Vegetation Index
𝑝780 − 𝑝670
𝑝780 + 𝑝670

(Rouse et al., 1973)

PRI Photochemical Reflectance Index
𝑝531 − 𝑝570
𝑝531 + 𝑝570

(Gamon et al., 1997)

RARSa Ratio Analysis of Reflectance Spectra A
𝑝675
𝑝700

(Chappelle et al.,

1992)

RARSb Ratio Analysis of Reflectance Spectra B
𝑝675

𝑝650 ⋅ 𝑝700
(Chappelle et al.,

1992)

RARSc Ratio Analysis of Reflectance Spectra C
𝑝760
𝑝500

(Chappelle et al.,

1992)

RDVI Renormalized Difference Vegetation

Index

𝑝800 − 𝑝670√
𝑝800 + 𝑝670

(Roujean & Breon,

1995)

EVI Enhanced Vegetation Index 2.5 ⋅ (𝑝800) − (𝑝670)
(𝑝800) + 6 ⋅ (𝑝670) − 7.5 ⋅ (𝑝𝐵𝐿𝑈𝐸) + 1

(Huete et al., 2002)

GCI Green Chlorophyll Index
(𝑝800)
(𝑝570)

− 1 (Esri, 2024)

MSAVI Modified Soil-Adjusted Vegetation Index
2 ⋅ (𝑝800) + 1 −

√
(2 ⋅ (𝑝800) + 1)2 − 8 ⋅ ((𝑝800) − (𝑝670))

2
(Qi et al., 1994)

NDRE Normalized Difference Red Edge
(𝑝790 − 𝑝720)
(𝑝790 + 𝑝720)

(Sims & Gamon,

2002)

RECI Red-Edge Chlorophyll Index
(𝑝800)
(𝑝740)

− 1 (Esri, 2024)

REV Red-Edge Vegetation Index
(𝑝𝑝740)√

𝑝670
(Xie et al., 2018)

ARI Anthocyanin Reflectance Index
1

𝑝570
− 1

𝑝740
(Gitelson et al., 2009)

NDLI Normalized Lignin Index log
(

1
𝑝1754

)
− log

(
1

𝑝1680

)
(Serrano et al., 2002)

NMDI Normalized Multi-band Drought Index
𝑝860 − (𝑝1640 − 𝑝2130)
𝑝860 + (𝑝1640 − 𝑝2130)

(Wang & Qu, 2007)

NWI Normalized Water Index I*
𝑝970 − 𝑝900
𝑝970 + 𝑝900

(Prasad et al., 2007)

PSRI Plant Senescence Reflectance Index
𝑝680 − 𝑃500

𝑝750
(Merzlyak et al.,

1999)

VREI2 Vogelmanns Red Edge Index 2
𝑝734 − 𝑝747
𝑝715 + 𝑝726

(Vogelmann et al.,

1993)

NDWI Normalized Difference Water Index
𝑝860 − 𝑝1240
𝑝860 + 𝑝1240

(Gao, 1996)

WI Water Index
𝑝900
𝑝970

(Peñuelas et al., 1993)

(Continues)
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T A B L E 2 (Continued)

Index Name Formula Reference

DRI Drought Response Index
𝑝850 − 𝑝2218
𝑝850 + 𝑝1928

(Datt, 1999)

SWIWSI Short wave infrared water stress index
𝑝860 − 𝑝1640
𝑝860 + 𝑝1640

(Fensholt &

Sandholt, 2003)

CWM* Canopy Water Mass Index* * (Winterhalter et al.,

2011)

Y* Reflectance Ratios Y* * (Yu et al., 2000)

*These VIs have accompanying numbered variations which can be found in Table S1.

Visual Visual
Description

Wilt Score 
Rating 

Traditional
Multi-Class Binary

No wilting 1

Tolerant

Select
Light wilting and rolling in 

the top of the canopy
2

Somewhat severe leaf rolling 

in top of canopy, moderate 

wilting of leaves throughout 

the canopy, some loss of 

petiole turgidity

3
Moderately 

Susceptible

Severe wilting of leaves 

throughout the canopy, with 

advanced loss of petiole 

turgidity

4

Susceptible Discard

Petioles severely wilted and 

dead leaves throughout much 

of the canopy

5

Plant death 6

F I G U R E 2 Class categorization of drought stress symptoms in soybean utilized in the analysis. Visual ground-truth data was collected on 450

diverse accessions in water-limited screening nurseries via a traditional wilt score rating scale of 1–6 adapted from previous studies utilizing the

same visual description of classes of the 0–5 and 0–100 scales (Charlson et al., 2009; King et al., 2009). Visual plot scores of 1–6 were re-classified

into a binary setting of ‘Select’ and ‘Discard’ that could be applied in a breeding program.
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F I G U R E 3 Cumulative precipitation (mm) as shown by blue

open circle points and soil volumetric water content (%) from Iowa

Environmental Mesonet as shown by solid red points beginning on the

day of planting (May 28, 2022) and continuing to one day post final

data collection. Time points 1, 2, and 3 are marked by vertical dashed

lines at 46, 64, and 81 days after planting.

D0 abnormally dry conditions according to the United

States Drought Monitor. In the week of July 12, 2022, the

abnormally dry conditions moved southwest and the abnor-

mally dry conditions abated in most of the county. However,

as seen in Figure 3, soil volumetric water content (%) at 30.5

cm decreases rapidly after each rain event due to the rapidly

draining Fruitfield Coarse Sand soil type. Volumetric water

content was 4.3% at time point 1, 2.8% at time point 2, and

3.2% at time point 3. Lower soil volumetric water content,

seen especially at time point 2, corresponds with more severe

wilting scores in the soybean plots. In the rain-fed field, the

average wilt score rating was 1 at time point 1, 3.5 at time

point 2 and 2.8 at time point 3. Taken 7 days after rain, and

after a period of only 10.2 mm of precipitation in the previ-

ous 15 days, the second time point showed the most severe

wilting symptoms of the season and had a volumetric water

content below the permanent wilting point for primarily sand

textured soil (Ratliff et al., 1983). In the irrigated field, no

wilting symptoms were visible at time points 1, 2, or 3. Due

to the close proximity of the two fields, and the lack of dis-

ease or stress in the irrigated field, we concluded that wilting

symptoms in the rain-fed field were due to moisture deficit.

Growth stage ranged from V3 - R2 at time point 1, from V9

- R5 at time point 2, and from R2 - R8 at time point 3. The wilt

scores of plots at R8 were not collected due to final maturity

and were, therefore, not included in the analysis.

3.1 Monitoring of soybean wilt

3.1.1 Classification based on multiple
representation

Table 3 presents the performance outcomes of the RF models

used for classifying canopy wilting severity across multiple

sensor data representations. The evaluation, based on a 10-

fold cross-validation, reveals distinct accuracies for different

data forms. Considering only the RGB representations, which

utilize the spectral wavelengths used by expert raters, the

multispectral sensor, with a ground sampling distance of 2.0

cm/pixel, exhibited superior performance in detecting canopy

wilting severity compared to other sensors. Additionally, in

the spectral representation, where non-visible wavelengths

augment the RGB data, the multispectral sensor surpassed the

handheld ASD sensor with an accuracy of 71.8%. This trend

of higher performance with the multispectral sensor persisted

even in the VIs representation, though accuracy of multispec-

tral VIs was slightly lower than accuracy of multispectral

bands. Most important features selected via RF for monitor-

ing within sensor representations can be found in Tables S2

and S3.

3.1.2 Performance improvement with multiple
sensors

The combinations of multiple sensor data were evaluated

using a RF backward elimination algorithm with cross-

validation at sensor level. The model using all nine sensor

representations (handheld RGB, phantom RGB, inspire RGB,

multispectral RGB, ASD RGB, multispectral, ASD, and

vegetation indices from multispectral and ASD indices) as

predictors (the full model) had an overall classification accu-

racy of 72.8%. The highest accuracy model via backward

elimination used a subset of sensor representations including

handheld RGB, phantom RGB, inspire RGB, multispectral

RGB, multispectral, and vegetation indices from Multispec-

tral and ASD indices with the ASD RGB, and ASD sensor

representations dropped, reached an accuracy of 76.2%. The

confusion matrix for this model is presented in Figure 4.

Details on the step-wise performance and sensors removed

can be found in Table S4.

With the complexity and high dimensionality of combined

sensor data and its impact on performance, it is important to

have an efficient analysis pipeline in place for wilt classifica-

tion. Hence, we determined a set of the most effective features

across the combined data to reduce band correlation, pre-

serve spectral information, and lower the computational costs

of working with multiple sensors. Using the RF backward

elimination algorithm with cross-validation at a feature level,

the performance of the selected combinations of bands was

evaluated based on their classification accuracy. A classifica-

tion using 10 selected features-the multispectral ‘blue-444’,

‘green’, ‘green-531’, ‘red edge’, and ‘RARSa’ features, the

phantom ‘red’, ‘green’, and ‘blue’ features, and the inspire

‘green’, and ‘blue’ features, obtained a classification accu-

racy of 75%, with a 3.7% increment compared to using all

sensor features. This selection predominantly utilizes visible
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T A B L E 3 Monitoring of soybean wilt—Performance of the random forest model for classifying two classes of canopy wilting severity

(’Select’ and ‘Discard’) in response to moisture deficit stress through different sensor representations. Results show mean and standard deviation of

performance across a 10-fold classification, focused on monitoring stress when canopy wilting was visible in the field.

Sensor
Handheld RGB Phantom Inspire Multispectral Handheld ASD

RGBa 0.591 ± 0.045 0.659 ± 0.040 0.621 ± 0.041 0.687 ± 0.043 0.520 ± 0.044

Spectralb 0.718 ± 0.042 0.601 ± 0.042

VIsc 0.710 ± 0.030 0.634 ± 0.049

aRGB: RGB bands were also extracted from the multispectral and handheld ASD sensors.
bSpectral: 10 multispectral UAV bands, 2151 proximal bands.
cVIs: 13 multispectral based VIs, 35 handheld ASD based VIs.

F I G U R E 4 Confusion matrix for the highest accuracy model

obtained via backward elimination. The model utilized a subset of

sensor representations, including handheld RGB, phantom RGB,

inspire RGB, multispectral RGB, multispectral, and vegetation indices

from Multispectral and ASD indices, with the ASD RGB and ASD

sensor representations excluded. The model achieved an accuracy of

76.2%, with class counts of 431 for ‘Select’ and 469 for ‘Discard’.

wavelengths, with an inclusion of near-infrared wavelengths

for calculating the RARSa vegetation index, showcasing a bal-

anced approach between spectral types. To see expanded list

of top 20 selected features see Table S5.

3.2 Early detection of soybean wilt

3.2.1 Qualitative analysis

In the 2022 growing season, multi-temporal data was col-

lected. Field investigations within the first time point (46

DAP) observed no evident wilting symptoms in suscepti-

ble soybean plots. At the second time point (64 DAP), the

soybean leaves and petioles began to showcase wilting symp-

toms in the susceptible plots, which were also evident in

the third time point at 81 DAP. Therefore, the UAV-based

data we explore contains pre- and post-visual canopy wilting

development.

3.2.2 Classification based on multiple
representation

For the early detection of soybean wilting, RF classifica-

tion models were utilized to differentiate between ‘Select’

and ‘Discard’ soybean plots before they were differentiable

to the human eye. As shown in Table 4, the models were

evaluated based on their mean reflectance performance across

various sensor representations, using the same 10-fold cross-

validation method employed in the monitoring studies. In

the RGB spectrum, which mimics the wavelengths used by

expert raters, the Inspire sensor, with a ground sampling dis-

tance of 0.33 cm/pixel, demonstrated superior performance in

classifying the severity of canopy wilting compared to other

sensors. In the spectral representation, which included non-

visible wavelengths in addition to RGB, both the multispectral

sensor and the handheld ASD sensor achieved a classifica-

tion accuracy of approximately 0.58. Further improvement

was observed when spectral data was converted into VIs, with

the multispectral-based VIs achieving the highest accuracy of

0.60. Most important features selected via RF for early detec-

tion within sensor representations can be found in Tables S6

and S7.

3.2.3 Performance improvement with multiple
sensors

The integration of data from multiple sensors was explored

using a RF backward elimination algorithm tailored to sensor-

level cross-validation. The full model, which incorporated all

nine sensor representations (handheld RGB, Phantom RGB,

Inspire RGB, multispectral RGB, ASD RGB, multispectral,

ASD, multispectral VIs and ASD VIs), achieved a classi-

fication accuracy of 59.6%. The reduced model, resulting

from the backward elimination of the ASD sensor represen-

tation while retaining other sensor data, notably improved the

accuracy to 64.1%. Details on the step-wise performance and

sensors removed through backward elimination can be found

in Table S8.
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T A B L E 4 Early detection of soybean wilt - Performance of the random forest model for early detection of canopy wilting severity (’Select’ and

‘Discard’) through different sensor representations. Results show mean and standard deviation of performance across a 10-fold classification aimed

at detecting drought stress before it becomes visually observable.

Sensor
Handheld RGB Phantom Inspire Multispectral Handheld ASD

RGBa 0.563 ± 0.048 0.519 ± 0.043 0.572 ± 0.046 0.527 ± 0.042 0.500 ± 0.048

Spectralb 0.581 ± 0.057 0.580 ± 0.039

VIsc 0.596 ± 0.042 0.587 ± 0.054

aRGB: RGB Bands were extracted from the sensor multispectral and handheld ASD.
bSpectral: 10 multispectral UAV bands, 2151 proximal bands.
cVIs: 13 multispectral based VIs, 35 handheld ASD based VIs.

F I G U R E 5 Confusion matrix for the highest accuracy model

obtained via backward elimination. The model utilized a subset of

features - multispectral ‘red edge-705’, ‘EVI’, Inspire and handheld

‘blue’, and ASD ‘1854nm’, ‘1885nm’, ‘1925nm’, ‘NMDI’, ‘WI’, and

‘NWI-4’. The model achieved an accuracy of 64.3%, with class counts

of 406 for ‘Select’ and 494 for ‘Discard’.

Given the complexity and high dimensionality of com-

bined sensor data, establishing an efficient analysis pipeline

is crucial for optimizing wilt classification. To this end, the

most impactful features across the sensor data were identi-

fied, aiming to minimize band correlation, maintain spectral

integrity, and reduce computational demands. Employing the

RF backward elimination approach at the feature level, the

selected combination of 10 features –including multispec-

tral ‘red edge-705’, ‘EVI’, Inspire and handheld ‘blue’, and

ASD ‘1854nm’, ‘1885nm’, ‘1925nm’, ‘NMDI’, ‘WI’, and

‘NWI-4’–led to a classification accuracy of 64.3%. This rep-

resents an improvement of 5.8% over models using the full

set of sensor features, highlighting the efficacy of strategi-

cally selected features predominantly in the near-infrared and

short-wave infrared region for early detection of stress. The

confusion matrix for this model is presented in Figure 5.

To see an expanded list of the top 20 selected features,

see Table S9.

3.2.4 Spectral-temporal changes

In time point 1, an independent Welch’s two-sample t-test

showed significant differences in the red edge band (𝑝 <

0.1) spectrum between ‘Select’ and ‘Discard’ soybean plots

(Figure 6A), demonstrating the utility of this band in com-

parison to other bands for classifying soybean plots in the

early stages of wilting. For the subsequent time points,

once stress symptoms became visible, the other multispectral

bands showed significant differences (𝑝 < 0.05) (Figures 6B

and 6C). Reflectance intensity declined in both groups for

the green wavebands and remained steady in the red to

infrared wavebands.

4 DISCUSSION

A two-pronged approach to drought phenotyping, including

(1) classification of canopy wilting severity and (2) early

detection of stress, is highly applicable in both breeding

and production environments. In this experiment, three RGB,

one multispectral, one hyperspectral reflectance ASD sen-

sor, and vegetation indices derived from multispectral and

ASD sensors were evaluated for their classification perfor-

mance for two classes (’Select’ and ‘Discard’) that grouped

plots based on their severity level of canopy wilting. The effi-

ciency and accuracy of phenotyping protocols are governed

by several sensor specifications, including speed of collec-

tion, ground sampling distance (GSD), spectral range, and

spectral resolution.

In the classification approach that examines data from the

visible range only (400–700 nm) from each sensor modality,

the aerial based sensors (Inspire, Phantom, and Multispec-

tral) outperforms the ground based sensors (Handheld RGB

and Handheld ASD). Though more work is necessary to con-

firm, two possibilities arise to explain this trend. The aerial

sensors image the full plot area which the ground based sen-

sors are unable to achieve. This larger field of view may

provide a more representative view of the whole plot’s perfor-

mance resulting in improved accuracy. This trend is mirrored
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F I G U R E 6 Mean spectra of ‘Select’ and ‘Discard’ soybean plots of time points (A) Time point 1: 46 DAP, (B) Time point 2: 64 DAP, (C)

Time point 3: 81 DAP, at each band of the Micasense RedEdge MX Dual Camera. The symbol * indicates significant differences, with *, and **

indicating differences at 𝑝 < 0.1, and 𝑝 < 0.05, respectively.

in field plot testing in breeding programs, where traits exam-

ined on small plots tend to have lower accuracy (Singh et al.,

2021c). Furthermore, handheld data collection requires 2.5–3

h for 1350 plots, while a UAV flight requires about 20 min

depending on the sensor specifications. Due to the tempo-

ral variation of wilting in response to temperature and solar

changes throughout the day, longer data collection time dura-

tion can introduce higher variance. In this study, we observe

higher mean variances in the RGB bands of ground based

RGB imagery compared to the RGB bands of the multispec-

tral UAV data. The increase in variation in the handheld

imagery could affect the accuracy of stress severity clas-

sification. In the comparison of sensor representations, the

multispectral spectral bands and multispectral based vegeta-

tion indices showed the highest mean classification accuracy

of 0.718 and 0.710, respectively. Without multispectral bands

in the near-infrared and infrared region, classification accu-

racy decreases to 0.687 highlighting the importance of the red

edge, near-infrared, and infrared regions in improving accu-

racy of stress classification. Therefore, for classification of

drought induced wilting symptoms in this scenario, aerial col-

lection as well as spectral data beyond the visual spectrum

prove to be important.

In addition to stress severity classification, early detec-

tion is important for production scenarios, where farmers

can mitigate drought stress through irrigation, and also in

breeding programs to identify early symptom development

prior to visual wilting in plant canopies. In this study of early

detection of pre-visual soybean canopy wilting due to drought

stress, extended wavelengths beyond human vision are shown

to be highly important because multispectral and hyperspec-

tral spectral bands and indices outperform all RGB-only

representations. In early detection, the multispectral vegeta-

tion indices outperform all other sensor representations with

a classification accuracy of 0.596. This again supports the

usefulness of rapid and full plot phenotyping enabled by UAV
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data collection. In time point 1, prior to visual symptom devel-

opment, susceptible and tolerant canopies differ significantly

in the red-edge multispectral band, showing the importance of

multispectral imaging for early detection prior to visual symp-

tom development. Implementation of early stress detection

strategies would further benefit from the development early

stress signatures of multiple stresses, such as disease or insect

pressure that may be encountered in production and breeding

fields so that correct mitigation strategies can be applied.

Individual features, selected through RF backward elimina-

tion, that are important in both severity monitoring as well as

early detection include the blue waveband from inspire aerial

RGB data. In this study, monitoring stress severity relies on

RGB visual spectral information while early detection relies

more on spectral data outside the visual range, especially in

the short-wave infrared region (SWIR). This study primarily

focused on RGB, NIR, and SWIR ranges, but other studies

have found links between narrow bands for chlorosis measure-

ment due to short-term water stress and use of wider bands

for long-term water stress detection especially in combination

with thermal and evapotranspiration data from canopy, soil,

and air via the crop water stress index and water deficit index,

among others (Moran et al., 1994, 2003). While this study

did not investigate yield, several studies have reported vari-

ous overlapping high-performing features in the prediction of

soybean yield, including red wavelengths 665 nm, and 675 nm

(Yoosefzadeh-Najafabadi et al., 2021), NDVI, canopy color

(Zhou et al., 2021), and multiple features including green, red

edge, MSAVI, and NDRE (Zhou et al., 2022). These stud-

ies further support the utility of RGB, red-edge, NIR bands

while the current study expands on the utility of SWIR for

early detection. These features mentioned above would be

interesting to pursue in future studies investigating simulta-

neous phenotyping of canopy wilting and yield production

under drought to tease out soybean physiological mechanisms

contributing to high yield under drought.

It will also be valuable to investigate the role of soil type and

weather related variables in drought response phenotyping,

as it has shown usefulness in yield estimation and predic-

tion (Chattopadhyay et al., 2023), though many challenges

such as excessive precipitation and need for rain-out shelters

in certain environments can can be costly and labor inten-

sive. Drought studies on large genotypic panels can utilize

deep learning based methodologies using transfer learning

(Chiranjeevi et al., 2021) and image based phenotyping that

has shown finer grained classification of diseases in soy-

bean (Rairdin et al., 2022). With finer grained classifications,

biotic and abiotic stresses can be combined for meta-analysis

(Shook et al., 2021) along with traits such as nodulation and

rooting depth (Zubrod, 2022; Falk et al., 2020) that could

also contribute to alternative mechanisms of drought toler-

ance. This current study utilized high-density spectral and

two-dimensional (2D) data to detect and classify drought

symptoms. However, to further enhance our understanding,

future research could leverage the concept of “canopy fin-

gerprinting” by incorporating three-dimensional (3D) point

cloud data. This innovative approach would enable a com-

prehensive examination of plants response to drought stress

in both spectral and 3D changes such as leaf angle and

altered volumetric distribution (Young et al., 2023; Chi-

ranjeevi et al., 2021). By connecting these multi-modal

data, researchers can lay the groundwork for developing

sophisticated cyber-agricultural systems that seamlessly inte-

grate sensing, modeling, and actuation processes, thereby

enhancing our ability to monitor and respond to dynamic envi-

ronmental conditions in agriculture (Sarkar et al., 2023). Early

detection methods are particularly of use in cyber-agricultural

systems as they promote timely actuation and response.

5 CONCLUSION

Enhancing soybean diversity is imperative, given the current

lack of variation in modern soybean cultivars. Introducing

diverse genetic material and wild landraces into breeding pop-

ulations relies on the ability to make binary selections and

eliminations within a breeding program. Leveraging aerial

imagery, particularly in the visible spectrum, can facilitate

this process. Identifying drought stress at an early stage, even

before visible symptoms manifest, relies heavily on the uti-

lization of spectral bands in the red edge, NIR, and SWIR

regions. This research develops a comprehensive pipeline for

integrating data from multiple sensors to classify and detect

canopy wilting in soybean. This study emphasizes the sig-

nificance of high-speed data collection through UAV based

sensing and the inclusion of both visual and non-visual bands

in achieving accurate detection and severity rating.
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