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Five gene probes carry most of the discriminatory power
of the 70-gene risk model in multiple myeloma
Leukemia (2014) 28, 2410–2413; doi:10.1038/leu.2014.232

The prognostic value of gene expression profiling (GEP) in
multiple myeloma (MM) has been reported by several groups.1–4

We have previously published a 70-gene classifier (GEP70) that
identifies patients with high risk for short progression-free

survival (PFS) and overall survival (OS).1 The GEP70 model was
developed from data on patients enrolled in Total Therapy 2
(TT2).1 Its discriminatory power has been validated in several
published data sets in the transplant, non-transplant and relapse
settings (reviewed in Johnson et al.5). We applied the GEP70
model to 56 previously treated patients with available baseline
GEP information who were enrolled in Total Therapy 6 (TT6), a
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tandem transplant trial the details of which are provided in
Supplementary Methods. The gene expression profiles have
been deposited at the NCBI GEO data repository (http://www.
ncbi.nlm.nih.gov/geo/) under GEO accession number GSE57317.
Sample procurement and processing for GEP, as well as
calculations of the GEP70 risk score, have been reported
previously.1 The estimated 1-year survival was 62% for the
high-risk group and 97% for the low-risk group by GEP70
(Supplementary Figure S1A, Po0.0001). To investigate whether
this striking difference in outcomes was driven by a few genes,
all 70 probe sets of the GEP70 risk model were ranked by their
P-values, based on univariate Cox regression analysis for OS in
TT6 (Supplementary Table S1). The five probe sets with the
smallest P-values (ENO1, FABP5, TRIP13, TAGLN2 and RFC4) were
combined to create a continuous score, using methodology
similar to that used to develop the GEP70 model.1 Because each
of the five probe sets had a positive association with short OS in
TT6, the GEP5 score was simply the mean of log2 transformed
expression levels of the five probe sets. An optimal cutoff for the
new risk score (hereafter referred to as GEP5) was then
established with the running log-rank test, so that patients with
scores higher than the cutoff were deemed to have high-risk
MM and others to have low-risk (Figure 1a), with an estimated
OS at 1 year of 60% and 95%, respectively (1-year PFS 50% and
91%, respectively).
All five genes identified in this study were previously

reported to be involved in cell proliferation and have been
associated with development and survival in different cancers.
ENO1 encodes alpha-enolase. Initiation of translation at an
alternative translation start site results in a shorter isoform that
produces MYC binding protein 1, which acts as a transcriptional
repressor and possibly as a tumor suppressor.6 Overexpression
of FABP5, a member of the family of fatty acid-binding
proteins, was associated with poor survival in triple-negative
breast cancer and with resistance to all-trans retinoic acid in a
preclinical model of pancreatic ductal adenocarcinoma.7,8

TRIP13 encodes a hormone-dependent transcription factor that
interacts with the ligand-binding domain of thyroid hormone
receptors and may play a role in early-stage non-small-cell
lung cancer.9 Association of TAGLN2 overexpression and short
survival, metastasis and disease progression has been shown
for several cancers.10,11 RFC4 encodes the 37-kDa subunit of the
replication factor C protein complex, which, together with the
proliferating cell nuclear antigen, is required for DNA
elongation.12

Because the number of patients treated on TT6 was relatively
small and follow-up short (median follow-up 26.5 months), a
larger data set of 275 uniformly treated patients on TT3a with a
longer follow-up was then used to investigate the new GEP5
score’s applicability to previously untreated myeloma. We
validated the new GEP5 cutoff for patients enrolled in TT3b
(n = 166).13 Gene expression data for TT3a and TT3b have
previously been published and are deposited in the ArrayEx-
press archive (http://www.ebi.ac.uk/arrayexpress) under the
accession number E-TABM-1138. A new optimal cutoff for the
GEP5 model of 10.68 was identified from TT3a using the running
log-rank statistics, which identified significant differences in OS
and PFS for the groups with high- and low-risk disease.
Importantly, these differences are comparable to those obtained
by the GEP70 risk model with its established cutoff1 (Figure 1b
and Supplementary Figure S1B). In the validation cohort (TT3b),
risk distinction using GEP5 was very similar to GEP70 (Figure 1c
and Supplementary Figure S1C) and both were comparable to
results in the TT3a training set. We also applied GEP5 to a
publicly available external data set of previously untreated
patients (HOVON65/GMMG-HD4, n = 288)4 as a second valida-
tion set, where GEP5 also differentiated between a high-risk and

a low-risk population with significantly different survival
(Figure 1d).
In order to address the question whether the five probe sets in

the GEP5 were truly the best choice, we randomly selected 10 000
quintuplets from all the probe sets within the 70 gene model to
create 10 000 continuous scores using the same methodology as
for the GEP5 score. Among the 10 000 random scores tested, only
40 performed better in TT6. Of these 40 only 1 performed better in
the TT3 test set and none was superior to GEP5 in the TT3b
validation set (Supplementary Figure S2 and Supplementary Table S2).
We also examined randomly selected continuous scores in TT6
with probe sets ranging between 1 and 10. Of a total of 42 485
models considered, only 1236 had a smaller P-value than GEP5 in
TT6. Among those 1236 scores, 68 had a smaller P-value when
tested in the TT3a test set and none performed better than GEP5
in the TT3b validation set (Supplementary Figure S3 and
Supplementary Table S3). Although some of these random scores
showed a better correlation with survival in single data sets, none
were consistently better than the GEP5 score across different data
sets. The GEP5 always ranked among the top 2% of all scores in all
data sets analyzed (data not shown).
On multivariate stepwise analysis, the GEP5-defined high-risk

designation was selected as the most adverse variable linked to
inferior PFS, with an estimated hazard ratio of 3.44 (95% CI:
2.02–5.86), whereas the GEP70 model was selected for OS
(Supplementary Table S4). Table 1 summarizes the univariate
survival analysis of the GEP5 and GEP70 models. Cross-tabulation
of GEP70 and GEP5 risk (low vs high) for TT3A, and TT3B showed
an agreement rate between the two models of 0.89, and 0.87,
respectively (Supplementary Table S5).
GEP70 and GEP5 currently require the use of microarray

technology that interrogates the expression levels of more than
47 000 transcripts and variants simultaneously. To assess whether
a more targeted approach, only measuring the expression of a
small number of genes, could reliably predict risk in MM, we
analyzed 48 RNA samples of previously untreated patients on TT3a
and TT3b with available GEP data using the nanoString
nCounter, with a code set consisting of all five genes (ENO1,
FABP5, TAGLN3, TRIP13 and RFC4) of the GEP5 signature and the
housekeeping genes RPL27, RPL30, RPS13, RPS29 and SRP14
(code set sequences are provided in Supplementary Table S6).
Technical and biological normalization were performed using
the nSolver software provided by nanoString. The correlation
between microarray and nanoString-based gene expression for
all five genes was between r = 0.64 and r = 0.87. Using the
normalized nanoString data, we computed a nanoString-based
GEP5 score (nsGEP5) applying the same methodology as for the
microarray-based GEP5. nsGEP5 and GEP5 correlated very well
with r = 0.852 (Supplementary Figure S4A). The receiver operator
curve revealed an area under the curve of 0.897, suggesting
that GEP5 high/low risk can be predicted using nsGEP5
(Supplementary Figure S4B).
In summary, high-risk myeloma remains one of the greatest

therapeutic challenges. The striking difference in survival of
previously treated patients among GEP70 low- and high-risk
groups motivated our search for fewer responsible genes. We
indeed identified a set of five genes that are highly predictive of
survival in multiple independent data sets. The nsGEP5 based
on targeted evaluation of the expression levels of these five
genes using the nanoString technology showed a very good
correlation with GEP5 (based on microarray data). This new
technology could reduce cost and sample requirements and has
the great potential of making gene expression-driven risk
assessment available to a broader patient population. However,
the nsGEP5 will have to be evaluated in an independent
homogeneous set of clinical samples before it can be utilized in
the routine clinical setting. Recently a large-scale proteomics
experiment involving 85 patients with MM identified ENO1,
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Figure 1. GEP5 distinguishes a high- and a low-risk group with significantly different OS and PFS in the TT6 discovery set, the TT3A training
set, and the TT3B and HOVON65/GMMG-HD4 validation sets. Left panels show overall survival, right panels progression-free survival. (a) TT6
discovery set; (b) TT3A training set; (c) TT3B validation set; (d) HOVON65/GMMG-HD4 validation set (Po0.0001, all panels).
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FABP5 and TAGLN2 among a set of 24 proteins that are
associated with short OS.14 This set of 85 patients included 47
who were enrolled in TT3b. The correlation of expression at
both mRNA (via our GEP analyses) and protein levels supports
the biological relevance of the genes included in the GEP5
model. Work is in progress to identify agents that can effectively
target these prognostic genes.
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Phase II study of pomalidomide in high-risk relapsed and
refractory multiple myeloma
Leukemia (2014) 28, 2413–2415; doi:10.1038/leu.2014.248

Pomalidomide (Pom) is an IMiD immunomodulatory agent that
is now FDA approved for treatment of patients who have

received ⩾ 2 prior therapies, including lenalidomide (Len) and
bortezomib (Bor), and have demonstrated disease progression
on or within 60 days of completion of the last line of therapy.1

There are limited data evaluating efficacy of Pom in high-risk
RRMM with prior exposure/refractoriness to Len and how best to

Table 1. Summary of the GEP70 and GEP5 models by P values from
univariate analysis when GEP5 and GEP70 were considered as both
binary and continuous variables

Protocol Outcome
variable

Gene
predictor

P in continuous
Cox analysis

P in binary
log-rank analysis

TT3a OS GEP5 1.76E− 10 3.87E− 05
GEP70 1.65E− 11 2.98E− 10

PFS GEP5 1.14E− 05 0.001044
GEP70 7.75E− 10 2.75E− 08

TT3b OS GEP5 4.17E− 10 5.67E− 06
GEP70 2.11E− 08 1.09E− 06

PFS GEP5 1.72E− 10 3.35E− 07
GEP70 3.50E− 08 1.85E− 05
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