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Ischemia/reperfusion (I/R) injury refers to the functional and structural changes in the
process of blood flow recovery after ischemia. In addition to ischemia, the blood flow
recovery can also lead to very harmful damage, such as the obvious cell swelling and the
irreversible cell necrosis. I/R injury is related with many diseases, including myocardial
I/R injury. Myocardial I/R injury refers to the aggravation of ischemic myocardial tissue
injury due to sudden disorder of blood circulation. Although there are many studies
on myocardial I/R injury, the exact mechanism is not fully understood. Hydrogen sulfide
(H2S), like carbon monoxide and nitric oxide, is an important gas signal molecule. It plays
an important role in many physiological and pathological processes. Recent studies
indicate that H2S can improve myocardial I/R injury, however, its mechanism is not fully
understood, especially the involved signal pathways. In this review, we summarize the
related researches about the role of the signaling pathways involved in the protective
effects of exogenous H2S on myocardial I/R injury, so as to provide theoretical reference
for the future in-depth researches.
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INTRODUCTION

Ischemia/reperfusion (I/R) injury is used to describe the functional and structural damages which
become apparent when the blood flow is restored after a period of ischemia. In addition to the
ischemia, the recovery of blood flow can leads to potentially very harmful effects, such as the
cell necrosis, the notable cell swelling, and the uneven blood flow of all parts of the recovered
tissues (Oliveira et al., 2018; Soares et al., 2019). I/R injury is composed of two important events.
Ischemia, the first important event, is the limitation of the blood supply to the organ, usually due
to an embolus blocking the blood supply of an artery. The second important event is reperfusion,
that is, the restoration of blood flow and reoxygenation in the affected ischemic area, which may
further leads to the excessive tissue deterioration and trigger the destructive inflammatory response
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(Yan et al., 2020; Figure 1). I/R injury plays an important role in
many diseases, such as heart diseases (Deguchi et al., 2020), brain
diseases (Zhong et al., 2012), and liver diseases (Lin et al., 2020).
Myocardial ischemia is a common phenomenon of coronary
heart diseases. Myocardial I/R injury refers to the phenomenon
that the injury of ischemic myocardial tissue becomes more
serious due to the sudden disturbance of blood circulation
(Lindsey et al., 2018). Although the researches on myocardial
ischemia-reperfusion injury has been very extensive (Boag et al.,
2017; Russo et al., 2017; Mokhtari-Zaer et al., 2018), its exact
mechanism has not been fully understood.

Hydrogen sulfide (H2S), which has the smell of rotten
eggs, is a toxic, colorless and corrosive gas. Structurally, it is
a sulfur analog of water molecules and can be oxidized to
elemental sulfur, sulfate (SO4

2−), sulfur dioxide (SO2), and
thiosulfate (S2O3−) (Murphy et al., 2019). H2S was regarded as
an environmental toxin until it was found to be endogenous
(Paul and Snyder, 2018). In recent years, H2S, along with nitric
oxide (NO) and carbon monoxide (CO), is the intracellular
signal transduction molecules. It has been found that the low
concentration of H2S plays an vital role in the physiological
process (Olas, 2015). Three enzymes have been found to catalyze
the production of endogenous H2S: cystathionine β-synthase
(CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate
sulfurtransferase (3MST) (Mustafa et al., 2009; Li et al., 2011;
Wallace and Wang, 2015). CBS catalyzed the β-substitution
of homocysteine with serine to produce L-cystathionine. CSE
catalyzes the elimination of α, γ- cysteine of cystathionine
to produce cystine. Under the catalysis of CBS and CSE,
cysteine can produce H2S through the β eliminate reaction.
Aminotransferase catalyzes cystine to transfer amine to α-
Ketoglutarate to form 3-mercaptopyruvic acid (3-MP). The sulfur
of 3-MP was catalyzes by 3-MST to convert into H2S (Wang
et al., 2020; Figure 2). It has been reported that H2S plays
an important biological role in many human systems, such
as respiratory system, cardiovascular system, endocrine system,
nervous system, immune system, and gastrointestinal system
(Gotor et al., 2019). In recent years, there are many studies
on the effects of H2S on myocardial I/R injury. However, its
mechanism is not fully clear, especially the involved signal
pathways. Therefore, we summarize the relevant researches about
the above aspects to provide theoretical references for the future
in-depth researches.

THE ROLE OF JAK2/STAT3 SIGNALING
PATHWAY INVOLVED IN THE
PROTECTIVE EFFECT OF EXOGENOUS
H2S ON MYOCARDIAL I/R INJURY

The Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling pathway is activated by a variety of
interferons and cytokines, and widely involved in the tumor
signal transduction. JAK is activated by the bingding of cytokines
to its specific receptors of the cell membrane, which induces
STAT phosphorylation. The phosphorylated STAT binds to the

specific DNA elements and promotes the gene transcription
(Murray, 2007). The JAK/STAT signaling pathway has been
reported to be invoved in the innate and adaptive immunity,
cells proliferation, tissues growth, angiogenesis and protease
expression, and angiogenesis (Kiu and Nicholson, 2012; Yu
et al., 2014). The JAK2/STAT3 signaling pathway has been
demonstrated to play an important role in many kinds of
heart diseases (Geng et al., 2019; Zhang J. et al., 2020),
including myocardial I/R injury (Yin et al., 2020; Zhang
Y. et al., 2020, however, the relevant mechanisms are not
fully understood. Heng Fei Luan and colleagues found that
NaHS (a donor of H2S) postconditioning attenuated the rat
myocardial I/R injury by improving systemic hemodynamics,
reducing myocardial infarct size and inhibiting cardiomyocyte
apoptosis. While AG-490, a JAK2 inhibitor, abolished the
cardioprotective effect of exogenous H2S. The in depth researches
showed that NaHS postconditioning increased the expression
of p-STAT3 and bcl-2, and decreased bax expression in the
rat heart with I/R injury, while AG-490 counteracted these
changes. Therefore, it can be deduced that H2S postconditioning
protected the rat hearts against I/R injury through JAK2/STAT3
signaling pathway (Luan et al., 2012). Rapamycin, an autophagy
activator, has been reported to attenuate myocardial I/R injury
by opening mitochondrial KATP channel (Das et al., 2012),
suggesting KATP channel is vital in myocardial I/R injury.
Exogenous H2S can improve myocardial injury through opening
KATP channel (Ji et al., 2008; Sun et al., 2015; Zhong
et al., 2010), therefore, the relationship between JAK2/STAT3
signaling pathway and KATP channel in the protective effects
of H2S on myocardial I/R injury is worthy of further study.
Studies revealed that STAT3 played the cardioprotection role
through scavenging oxidants (Lei et al., 2019). Therefore,
whether exogenous H2S can alleviate myocardial I/R injury by
eliminating oxidants through JAK2/STAT3 signaling pathway
remains to be studied.

THE ROLE OF Nrf2 SIGNALING
PATHWAY INVOLVED IN THE
PROTECTIVE EFFECT OF EXOGENOUS
H2S ON MYOCARDIAL I/R INJURY

Nrf2 [nuclear factor (erythroid-derived 2)-like 2] is a
transcription factor and is inhibited by interacting with the
redox sensitive protein Kelch-like ECH-associated protein 1
(Keap1). Nrf2 is the main regulator of a group of antioxidant
response elements containing cell protective genes induced in
the stress response. It has been reported that H2S improves
diabetes-accelerated atherosclerosis by suppressing oxidative
stress via Keap1 sulfhydrylation at Cys151 to activate Nrf2
signaling (Xie et al., 2016). H2S also alleviates doxorubicin-
induced myocardial fibrosis through inhibiting oxidative stress
and apoptosis via Keap1-Nrf2 (Li Y. et al., 2021). Extracellular
signal-regulated kinase (ERK), also known as MAPK, plays vital
role in the proliferation, differentiation, and survival (Rai et al.,
2019). It has been reported that H2S protects H9C2 cardiac
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FIGURE 1 | The sketch of the process of ischemia-reperfusion injury. Ischemia leads to cell necrocytosis. Reperfusion induces a large amount of Ca2+ influx to lead
Ca2+ overload which causes the cell injury. Reperfusion also induces the production of excessive oxygen free radicals, promotes the accumulation of
pro-inflammatory factors such as neutrophils, and finally aggravates cell injury.

cells against high glucose-induced injury via p38 MAPK and
ERK1/2 pathways (Xu et al., 2013). So far, there are few reports
on H2S improving myocardial I/R injury by activating Nrf2.
The results of Peake et al. (2013) showed that the activities of
three H2S producing enzymes (CBS, CSE, and 3-MST) in the
heart of diabetic mice were reduced. The levels of free H2S
and sulfane sulfur also were notably decreased in the heart
and the blood of diabetic mice. Treatment with H2S in the
form of sodium sulfide (Na2S) 24 h before myocardial ischemia
(Na2S precondition) or 7 days before myocardial ischemia
(Na2S 7d precondition) could notably reduce rat diabetic
myocardial I/R injury by decreasing infarct size. Moreover,
the myocardial protective effect of Na2S 7d precondition
was better than that of Na2S PC. Pretreatment with Na2S
decreased the oxidative stress and the apoptosis induced by
myocardial I/R injury through reducing lipid peroxidation
levels and cleaved caspase-3, respectively, suggesting that Na2S
improve rat myocardial I/R injury by inhibiting oxidative stress
and the apoptosis. The mechanism researches revealed that
Na2S pretreatment activated Nrf2 signaling in rat diabetic
myocardium with I/R injury, while diabetes impaired Nrf2
signaling. NQO1 and HO-1 are important antioxidants. Na2S
7d PC increased the expression of NQO1 and heme oxygenase-1
(HO-1) by promoting Nrf2 binding to the promoter of NQO1
and HO-1. Bach1, a known HO-1 transcription inhibitor,
which impeded the Nrf2 binding to HO-1 promoter. The in
depth researches showed that Na2S 7d PC could upregulate
HO-1 expression by promoting the ERK1/2-dependent removal
of Bach1 from the nucleus. Collectively, exogenous H2S
improved diabetic myocardial I/R injury by upregulating the
expression of NQO1 and HO-1 through activating Nrf2 signaling

FIGURE 2 | The summary of the production of endogenous H2S. CBS,
cystathionine-beta-synthase; CSE, cystathionine-gamma-lyase; 3-MST,
3-mercaptopyruvate thiotransferase; 3-MP, 3-mercaptopyruvate; CAT,
cysteine aminotransferase.

pathway in an ERK-dependent manner, which needs to be
further confirmed with the inhibitor of Nrf2 signaling pathway
(Peake et al., 2013). At present, there are few studies on the
simultaneous activation of Nrf2 and ERK by H2S. Therefore, it
is necessary to further study the mechanism of H2S activation
of Nrf2/ERK. Increasing the level of H2S in cardiomyocytes
is a potential strategy to reduce myocardial I/R injury in the
setting of diabetes.
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TABLE 1 | The summary of exogenous hydrogen sulfide improvements of myocardial I/R injury.

The protective mode of myocardial
ischemia-reperfusion (I/R) injury

The mechanism of H2S protection against
myocardial I/R injury

Experimental model The mode of H2S action
on myocardium

Exogenous H2S improves myocardial
I/R injury through JAK2/STAT3 signaling
pathway

Activating the JAK2/STAT3 signaling pathway Rat myocardial I/R injury model Postconditioning

Exogenous H2S protectes diabetic
mouse myocardial I/R injury through
activating Nrf2 signaling pathway in an
ERK-dependent manner

Activating the Nrf2/ERK signaling pathway Rat myocardial I/R injury model Preconditioning

Exogenous H2S alleviates myocardial
I/R injury in rats by activating
SIRT1/PGC-1α signaling pathway

Activating the SIRT1/PGC-1α signaling pathway Rat myocardial I/R injury model Postconditioning

Exogenous H2S alleviated myocardial
I/R injury by inhibiting autophagy
through activating PI3K/SGK1/GSK3β

signaling pathway

Inhibiting autophagy through activating
PI3K/SGK1/GSK3β signaling pathway

The model of the neonatal rat
cardiomyocytes exposed to
hypoxia/reoxygenation

Preconditioning

Exogenous H2S alleviates myocardial
I/R injury through inhibiting JNK
signaling pathway

Inhibiting JNK signaling pathway Rat myocardial I/R injury model Postconditioning

THE ROLE OF Sirt1/PGC-1α SIGNALING
PATHWAY INVOLVED IN THE
PROTECTIVE EFFECT OF EXOGENOUS
H2S ON MYOCARDIAL I/R INJURY

The silent information regulator of transcription 1 (SIRT1) is a
highly conserved NAD+-dependent protein deacetylase, which
deacetylates downstream peroxisome proliferator-activated
receptor-γ co-activator-1α (PGC-1α) to promote its activity (Li
et al., 2016; Wang et al., 2018). The SIRT1/PGC-1α signaling
pathway has been demonstrated to participate in the regulation
of many pathological processes related to cell survival, oxidative
stress, intestinal homeostasis, and anti-aging (Hasegawa et al.,
2008; Li et al., 2014; Wei et al., 2014). There are growing evidences
that SIRT1/PGC-1α signaling pathway is involved in myocardial
I/R injury (Tang et al., 2019; Tian et al., 2019; Wang et al., 2019),
however, the related mechanism is not fully clear. The results of
Ming Zhu Hu and colleagues showed that H2S postconditioning
alleviated the rat hearts I/R injury by improving hemodynamic
parameters, reducing the myocardial ischemia size, inhibiting
the myocardial enzyme release, increasing ATP and superoxide
dismutase (SOD) levels, and decreasing malondialdehyde (MDA)
level. Exogenous H2S also upregulated the expression of SIRT1
and PGC-1α in the rat heart with I/R injury. EX-527, a selective
SIRT1 inhibitor, reversed the above changes induced by H2S,
suggesting that SIRT1/PGC-1α signaling pathway mediated the
protective effect of exogenous H2S on myocardial I/R injury (Hu
et al., 2016). The entry of SIRT1 into the nucleus is necessary for
its cytoprotective effects against oxidative stress (Tanno et al.,
2010), which may be invoved in the protective effect of H2S on
myocardial I/R injury. The in depth research showed that in
rat cardiomyocyte, I/R induced SIRT1 out of the nucleus and
this was reversed by exogenous H2S, which was the mechanism
of exogenous H2S activation of SIRT1/PGC-1α signaling
pathway. Collectively, Exogenous H2S improves myocardial I/R
injury in rats by activating SIRT1/PGC-1α signaling pathway

(Hu et al., 2016). Studies have shown that high levels of NAD+,
peroxisome proliferator activated receptor (PPAR), FOXO family
transcription factors, and ubiquitination can regulate SIRT1
activity (Brunet et al., 2004; Kalliora et al., 2019; Chen et al., 2020;
Yu et al., 2020). Therefore, whether exogenous H2S can regulate
SIRT1/PGC-1α signaling pathway by the above substances
needs further study.

THE ROLE OF PI3K/SGK1/GSK3β

SIGNALING PATHWAY INVOLVED IN THE
PROTECTIVE EFFECT OF EXOGENOUS
H2S ON MYOCARDIAL I/R INJURY

Phosphatidylinositol-3-kinase (PI3K) is a group of plasma
membrane associated lipid kinases, which consists of three
subunits (Donahue et al., 2012). It is involved in regulating
proliferation, cell growth, and survival (Lee et al., 2011).
The serum and glucocorticoid induced kinase-1 (SGK1) is a
serine/threonine kinase widely expressed downstream of PI3K.
SGK1 is ubiquitously expressed in various cell types (Lang et al.,
2006, 2009). GSK3β is a vital downstream target of SGK1 and has
been reported to alleviate myocardium I/R injury by regulating
autophagy (Aoyama et al., 2005; Zhai et al., 2011). Jiang et al.
(2016) found that the expression of t-PI3K, p-PI3K, t-SGK1,
and p-SGK1 were decreased, the p-GSK3β expression was
increased in cardiomyocyte exposed to hypoxia/reoxygenation
(H/R), which were reversed by exogenous H2S, suggesting that
exogenous H2S activated PI3K/SGK1/GSK3β signaling pathway
in cardiomyocyte with H/R injury. The H/R treatment of
rat cardiomyocytes reduced cell viability, and aggravated cell
injury by increasing LDH releasing, which were reversed by
exogenous H2S. Further researches showed that autophagy was
notably increased in cardiomyocytes exposed to H/R, which
was reversed by exogenous H2S. The inhibition of PI3K with
LY294002 (a PI3K inhibitor) or knocking down SGK1 with SGK1
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siRNA promoted autophagy and inhibited the anti-autophagy,
and cardioprotective effects of exogenous H2S. While blocking
GSK3β by tws119 (a GSK3β inhibitor) has the opposite effect.
Collectively, it can be induced that exogenous H2S alleviated
myocardial I/R injury by inhibiting autophagy through activating
PI3K/SGK1/GSK3β signaling pathway (Jiang et al., 2016). The
relationship between H2S and PI3K/SGK1/GSK3β signaling
pathway, as well as the relationship between autophagy and
PI3K/SGK1/GSK3β signaling pathway, has been rarely studied,
which need further study.

THE ROLE OF JNK SIGNALING
PATHWAY INVOLVED IN THE
PROTECTIVE EFFECT OF EXOGENOUS
H2S ON MYOCARDIAL I/R INJURY

The c-Jun N-terminal kinases (JNKs) is a member of the
mitogen activated protein kinase (MAPK) family and regulate
the cell responses to a variety of exogenous and endogenous
damages, including reactive oxygen species (ROS), radiation,
DNA damage, bacterial antigens, heat, and inflammatory
cytokines. In particular, the JNK signaling regulates many
important physiological processes including metabolism and
tissue homeostasis, cell damage repair and cell death/survival,
and affects the life span of organisms (Tafesh-Edwards and
Eleftherianos, 2020). The JNK signaling pathway is reported to
be involved in myocardial I/R injury (Li A. et al., 2021; Yang
et al., 2019). Li and Xiao (2020) found that the pretreatment with
NaHS increased the left ventricular diastolic pressure (LVDP)
and the maximum rate of pressure rise/fall, and decreased the
left ventricular end-diastolic pressure (LVEDP) in rats with
myocardial I/R injury. In the ischemia rats, the perinuclear space
increased gradually, the arrangement of fibers was disordered,
and the damage of the mitochondrial cristae and membrane was
aggravated, which was reversed by exogenous H2S. The above
suggested that exogenous H2S notably improved myocardial I/R
injury. The in-depth studies showed that in the cardiomyocytes
with I/R jury, exogenous H2S also increased the endogenous
H2S level and induced the activity of CSE, SOD and GSH-
Px, inhibited the activity of SOD, and reduced the level of
phosphorylated JNK2. This indicated that exogenous H2S may
alleviate myocardial I/R injury through antioxidant and JNK
signaling pathway (Li and Xiao, 2020), which need to be furthely
conformed with the inhibitor of JNK signaling pathway. In
addition, JNK signaling pathway is closely related to the oxidative
stress (Yang et al., 2017; Chen et al., 2018; Xu et al., 2020),
so whether exogenous H2S can improve myocardial I/R injury
by inhibiting oxidative stress through JNK signaling pathway is
worthy of further study.

CONCLUSION

In this review, we summerized the signaling pathways involved in
the protective effect of exogenous H2S on myocardial I/R injury
as follows: (1) exogenous H2S postconditioning improves the rat

myocardial I/R injury through JAK2/STAT3 signaling pathway;
(2) exogenous H2S protected diabetic mouse myocardial I/R
injury through activating Nrf2 signaling pathway in an ERK-
dependent manner; (3) exogenous H2S alleviates myocardial
I/R injury in rats by activating SIRT1/PGC-1α signaling
pathway; (4) exogenous H2S alleviated myocardial I/R injury
by inhibiting autophagy through activating PI3K/SGK1/GSK3β

signaling pathway; and (5) exogenous H2S alleviates myocardial
I/R injury through inhibiting JNK signaling pathway (Table 1).

Hydrogen sulfide is now regarded as the third kind
of signal gas transmitter after NO and CO. It has a
wide range of physiological and pathophysiological functions,
including vasodilation, induction of angiogenesis, regulation
of inflammatory response, regulation of glucose homeostasis,
and regulation of neuronal activity. However, its role has not
been fully studied. The mechanism of H2S in the process of
myocardial I/R injury remains to be further elucidated. For
example, in addition to the signal pathways mentioned in
this manuscript, is there any other signal pathway involved in
the above effects? Can high concentration of H2S aggravate
myocardial I/R injury through the specific signaling pathways?
In addition, the studies indicate that the cardioprotective effect of
H2S is related to gender. Estrogen can regulates the production
and release of H2S in cardiovascular cells to increase cell
proliferation, cell migration, and vasodilation, which exert its
cardiovascular protective effects (Teoh et al., 2020). The above
related signal pathway mechanism needs to be clarified. H2S
can improve myocardial inflammation in diabetic mice by
inhibiting NLRP3 inflammasome (Jia et al., 2020), I/R can
cause inflammatory injury of tissue (Zhou et al., 2014), so
whether H2S can improve myocardial I/R injury by inhibiting
NLRP3 inflammasome and the related signaling pathways
deserve further study.

With the in-depth study of the signal pathway of H2S in the
process of myocardial I/R injury, the use of H2S donor in the
treatment of myocardial ischemia-reperfusion injury will become
a very promising therapeutic strategy.
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