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Neutrophil extracellular traps (NETs) are increasingly recognized to play a role in the
pathogenesis of viral infections, including dengue. NETs can be formed NADPH oxidase
(NOX)-dependently or NOX-independently. NOX-independent NETs can be induced by
activated platelets and are very potent in activating the endothelium. Platelet activation
with thrombocytopenia and endothelial dysfunction are prominent features of dengue
virus infection. We postulated that dengue infection is associated with NOX-independent
NET formation, which is related to platelet activation, endothelial perturbation and
increased vascular permeability. Using our specific NET assays, we investigated the
time course of NET formation in a cohort of Indonesian dengue patients. We found that
plasma levels of NETs were profoundly elevated and that these NETs were predominantly
NOX-independent NETs. During early recovery phase (7-13 days from fever onset), total
NETs correlated negatively with platelet number and positively with platelet P-selectin
expression, the binding of von Willebrand factor to platelets and levels of Syndecan-1.
Patients with gall bladder wall thickening, an early marker of plasma leakage, had a higher
median level of total NETs. Ex vivo, platelets induced NOX-independent NET formation in a
dengue virus non-structural protein 1 (NS1)-dependent manner. We conclude that NOX-
independent NET formation is enhanced in dengue, which is most likely mediated by NS1
and activated platelets.

Keywords: neutrophil extracellular traps, NET formation, NADPH-oxidase independent, platelets, dengue,
plasma leakage
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INTRODUCTION

Dengue is the most important arboviral infection worldwide,
occurring in more than 125 countries (1). Dengue is usually a
non-severe illness, but life-threatening complications can occur.
The most important complications are a transient vascular
permeability syndrome and bleeding (2). The pathogenesis of
these complications is still incompletely understood.

Neutrophil extracellular traps (NETs) are web-like chromatin
structures released by neutrophils upon exposure to both
infectious or non-infectious stimuli. These web-like chromatin
structures are decorated with histones and anti-microbial peptides,
such as myeloperoxidase (MPO), neutrophil elastase (NE) and
cathepsin G (CatG) (3). The primary function of NETs is to
capture, immobilize and kill pathogens within the host. However,
they can inadvertently result in endothelial and tissue damage,
inflammation and increased vascular permeability (4, 5).

NET formation was originally thought to predominantly play
a role in the clearance of bacterial infections, but more recent
evidence suggest that it is also a feature of some viral infections,
including dengue (6–11). However, in dengue virus (DENV)
infection, the underlying mechanism of increased NET
formation and the association with its complications remain
incompletely understood.

NET formation was initially described as a nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (NOX)-
dependent pathway (3). More recently, also a NOX-independent
pathway was identified (12), in which neutrophils release NETs
through blebbing of nuclear membranes rather than undergoing
cellular lysis (13, 14). Activated platelets are potent activators of
NOX-independent NET formation (15), whereas certain serotypes
of bacterial lipopolysaccharide (LPS) and phorbol 12-myristate 13-
acetate (PMA) induce NOX-dependent NET formation (3, 16).
The coagulation protein von Willebrand factor (VWF) also
induces NET formation (17, 18). Notably, platelet activation and
increased VWF binding to platelets are features of dengue that
contribute to thrombocytopenia (19). We recently developed a
serological assay to discriminate NOX-dependent from NOX-
independent NET formation and showed previously that in
particular NOX-independent NETs are very potent in activating
endothelial cells (16).

We postulate that dengue infection is associated with NOX-
independent NET formation and that this is associated with
platelet activation, endothelial perturbation and vascular
permeability. To this end, we investigated the time course of
NET formation in both children and adults with dengue infection,
determined the contribution of the NOX-independent NET
formation and further explored the associations between NET
formation with platelet number and activation, binding of VWF to
platelets, markers for endothelial perturbation and plasma leakage.
MATERIALS AND METHODS

Patients and Study Design
This study used samples from a prospective observational study
performed inHasan SadikinGeneral Hospital andDr. M. Salamun
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Air Force Hospital, Bandung, West Java, Indonesia. Details of the
study have been described elsewhere (19). In summary, a total
number of 40hospitalized acute dengue patients (both children and
adults) were enrolled together with 10 healthy controls between
January and June 2015. Inclusion criteria were an age of more than
one year old, fever (≥ 37.5°C) with clinical symptoms of dengue,
thrombocytopenia (platelet count <150 x 109/L), and a positive
result of either a dengue NS1 antigen test (PanBio Diagnostics,
Windsor, Australia), in-house dengue virus RT-PCR or IgM anti-
dengue test (PanBio Diagnostics, Windsor, Australia). Blood
samples were drawn during enrolment, hospitalization and
approximately two weeks after discharge. Samples were
aggregated into groups of days since fever onset, whereby day 1-3
approximated the febrile phase, day 4-6 the critical phase, day 7-13
the early recovery phase and day > 13 the convalescent phase.
Plasma leakage was defined by at least an increase in hematocrit of
≥ 20%, or single hematocrit value of >50% for males or >44%
for females, or evidence of ascites, pleural effusion and/or gall-
bladder wall thickening (GBWT) on ultrasonography.

Ethics Statement
The study protocol was approved by the Medical Research Ethics
Committee, Faculty of Medicine, Universitas Padjadjaran, Hasan
Sadikin General Hospital, Bandung, Indonesia (No:04/
UN6.C2.1.2/KEPK/PN/2014). Written informed consents were
obtained before enrollment of subjects and healthy controls. For
children, written informed consents were obtained from parents
or legal representatives. All studies were performed in
accordance to the Declaration of Helsinki.

Laboratory Assays Clinical Study
Citrate plasma samples were obtained from 3.2% citrate-
anticoagulated blood (BD Vacutainer, Becton Dickinson
Biosciences, Franklin Lakes, NJ, USA) centrifuged at 4000 RPM
for 15minutes at room temperature to obtain platelet-poor plasma
(PPP). Samples were stored at -80°C for further analysis. Plasma
VWF levels were measured by VWF : Ag ELISA using an in-house
ELISA, as previously described (19). Syndecan-1 was measured
using a human syndecan-1 (CD138) ELISA kit (Abcam,
Cambridge, UK). Expression of P-selectin (CD62p) as marker
for platelet activation and the binding of VWF to platelets were
measured on citrate-anticoagulated whole blood using flow
cytometry as previously reported (19). A full blood count was
performed using a standard hematology analyzer.

Isolation of Polymorphonuclear
Neutrophils (PMNs)
PMNs were isolated from K2EDTA-anticoagulated whole blood
(Becton Dickinson Biosciences, Franklin Lakes, NJ, USA) using
Lymphoprep™ density gradient centrifugation (Stemcell
Technologies, Vancouver, British Columbia, Canada) as
previously described (20). Briefly, whole blood was diluted (2:1 or
1:1) with sterile 1x phosphate-buffered saline (PBS) and centrifuged
at 800g for 30 minutes to obtain the PMN fraction. Red blood cells
were lysed using sterile distilled-water, and immediately
resuspended with 10X PBS. PMNs were resuspended and
adjusted to 106 cells/mL with pre-warmed Dubecco’s Modified
May 2021 | Volume 12 | Article 629167
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Eagle Medium/Nutrient Mixture F-12 (DMEM-F12) medium
(Thermo Fischer Scientific, Waltham, MA, USA).

Isolation of Washed Platelets (WPs)
Washed platelets (WPs) were isolated from 3.2% citrate-
anticoagulated whole blood (BD Vacutainer, Becton Dickinson
Biosciences, Franklin Lakes, NJ, USA) as previously described (21).
Briefly, citrate-whole blood centrifuged at 156g without a break for
15 minutes to obtain Platelet-Rich Plasma (PRP). PRP was
centrifuged in 330g without a break for 15 minutes with the
addition of 1/10 volume acid-citrate-dextrose (ACD) as
anticoagulant. Pellets were resuspended in pH 6.5 HEPES Tyrode
buffer (HT buffer) and re-centrifuged again in 330gwithout a break
for 15 minutes with the addition of 10ng/mL prostaglandin I2
(PGI2) (CaymanChemical,AnnArbor,MI,USA) to inhibit platelet
activation. Pellets were resuspended in pH 7.2 HT buffer. Prior to
use, washed platelets were rested for 30 minutes.

Ex-vivo NET Formation Assay
PMNs (1x106 cells/mL)were seeded inflat-bottomed 96-well plates
with DMEM/F-12 medium for 1 hour at 37°C until attached. After
1h, cellswerewashedwithpre-warmedPBSandco-culturedwithor
without washed platelets (ratio 1 PMN vs. 50 platelets) in the
presence of the following stimuli: 10µg/mL Dengue virus-2 non-
structural protein-1 (DENV2 NS1, strain Thailand/16681/84;
Native Antigen, Oxford, UK) or 156 µM Thrombin Receptor
Activator Peptide 6 (TRAP-6) (Sigma-Aldrich, Zwijndrecht, The
Netherlands) for 3 hours at 37°C. For induction of NET formation
by patient plasma, 10% plasma was added, together with 20mMD-
Phe-Pro-Arg-CMK (PPACK, Santa Cruz Biotechnology, Dallas,
TX, USA) to inhibit clot formation. Heat-inactivated DENV2
(0.5x107 median tissue culture infectious dose (TCID)/ml) or
mock (medium control) were incubated with PMNs in the
presence or absence of autologous washed platelets. Next,
adherent NETs were digested with 5U/mL micrococcal nuclease
(Worthington Biochemical Corporation, Lakewood, NJ, USA) in
fresh DMEM/F-12 medium for 20 minutes at 37°C. NETs in the
culture supernatant were measured using the assays as
outlined below.

Quantification of NETs
Quantification of NETs in culture supernatants and patient plasma
was performed as previously described (16). In brief, microtiter
plateswere coatedwith anti-DNA (DNA-MPOcomplexes) or anti-
histones (H4K8Ac, K12Ac, K16Ac to detect NOX-independent
NETs) antibodies, blocked with 2% fish gelatin (Sigma-Aldrich,
Schnelldorf, Germany) and incubated with NET-containing
samples. Subsequently, anti-MPO antibody (Biolegend, Koblenz,
Germany) and horseradish peroxidase (HRP)-conjugated
secondary antibody (SoutherBiotech, Birmingham, AL, USA) was
added. The absorbance was measured at 450 nm after addition of
3,3’,5,5’-tetramethylbenzidine substrate and sulfuric acid.

Culture and Preparation of Heat-Inactivated
Dengue Virus
DENV2 (strain New Guinea C) was grown on C6/36 cells in
Leibovitz’s L-15 medium (Thermo Fisher Scientific, Waltham,
Frontiers in Immunology | www.frontiersin.org 3
MA, USA) supplemented with 10% heat-inactivated FBS (Sigma-
Aldrich, Schnelldorf, Germany), 2% tryptose phosphate broth
(Sigma-Aldrich, Schnelldorf, Germany), 1× MEM non-essential
amino acids (Thermo Fisher Scientific, Waltham, MA, USA) and
50 U/mL penicillin-50 µg/mL streptomycin (Thermo Fisher
Scientific, Waltham, MA, USA) at 28°C without CO2. At 6
days post infection the culture supernatant was harvested,
centrifuged for 5 min at 1500 g and filtered through an 0.45
mM low protein binding filter (Sigma-Aldrich, Schnelldorf,
Germany). Afterwards the medium was transferred over an
Amicon Ultra-15 filter with a 100 kDa cutoff (Sigma-Aldrich,
Schnelldorf, Germany), which was washed 3 times using Opti-
MEM supplemented with GlutaMAX (Thermo Fisher Scientific,
Waltham, MA, USA). The concentrated virus on the filter was
diluted back to the original volume using Opti-MEM and the
purified viral aliquots were stored at -80°C. Viral titers were
measured by end-point dilution on BHK-15 cells, using 10 fold
dilutions in 96 well plates and scoring for cytopathic effect at 7
days post infection. BHK-15 cells were cultured in DMEM, high
glucose (Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% heat-inactivated FBS and 50 U/mL
penicillin-50 µg/mL streptomycin. Viral stocks were heat
inactivated for 30 min at 56°C.

Statistical Analyses
Data are presented as median value with interquartile range
(IQR) unless stated otherwise. Within the dengue patients,
differences of parameters in samples from different time points
were compared with the Wilcoxon signed rank test. Differences
between samples from the dengue patients and the healthy
controls were compared with the Mann-Whitney U test.
Spearman’s correlation analysis was used for evaluating
correlations. For ex vivo experiments, we compared differences
of NET formation between unstimulated PMNs and stimulated
PMNs with different stimuli and in the absence/presence of
washed platelets. Differences were analyzed using a one-way
ANOVA test with Bonferroni multiple comparisons post-tests. A
p-value of <0.05 indicated a significant difference. All analyses
were performed using GraphPad Prism 5 (La Jolla, CA, USA)
and visualizations were performed using R-Studio version 1.3 for
Mac (Boston, MA, USA).
RESULTS

Characteristics of Study Participants
A total of 40 hospitalized dengue patients were enrolled together
with 10 adult healthy controls. Characteristics of the participants
were previously reported (19). In short, the dengue patients had a
median (interquartile range; IQR) age of 22 yrs. (17-35 yrs.) and
their duration of fever at presentation was 4 days (3-5 days). Three
patientswere children aged≤14 years old and twelve patients (30%)
were female. Thirty-two (80%) patients were classified as having
dengue hemorrhagic fever (DHF) according to the 1997 WHO
dengue criteria.Medianplatelet number at presentationwas 62 (34-
101) x 109/L andmedian neutrophil count at presentation was 1.12
(0.64 – 1.81) x 109/L. Samples were grouped according to the
May 2021 | Volume 12 | Article 629167
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sampling day since fever onset; day 1–3 (n = 16), day 4–6 day (n =
33), day 7–13 (n = 21) and day >10 days (n = 16).

Circulating NETs in Dengue Patients Are
Predominantly NOX-Independently-Generated
We found that levels of NETs were higher in plasma samples of
dengue patients in the early phases of infection compared to
samples from the later phases and samples of healthy controls
(Figure 1A). Median concentrations of total NETs were 5.5 mg/ml
(3.4 - 8.6mg/ml) at day1-3, 3.9mg/ml (1.9 - 6.1mg/ml) at day4-6, 1.5
mg/ml (0.8 - 2.4mg/ml) at day 7-13 and 0.9mg/ml (0.2 - 2.2mg/ml) at
day > 13. In adult healthy controls, NETswere only detected in 5/10
subjects with a median value of 1.1 mg/ml (0.6 - 1.5 mg/ml). There
were no significant differences in concentrations of total NETs
between males and females and patients below and above 18 years
old (data not shown). Concentrations of total NETs correlated
positively with neutrophil number in the early (day 1-3) phase of
dengue (rs=0.56, p=0.027). Additionally, plasma of dengue patients
at day 1-3 was able to induce NET formation in vitro in isolated
neutrophils, whereas plasma of patients at day>13 and of healthy
controls did not induce NET formation (Figure 1B).

Next, we evaluated whether the increased NETs were NOX-
dependently or NOX-independently generated. Using a
scatterplot quadrant analysis (Figure 1C), samples from the
early phases of dengue (day 1-3 and day 4-6) were generally
positive in both the total NETs and MPO-H4K8Ac, K12Ac,
K16Ac ELISA (NOX-independent NETs), suggesting that NETs
were predominantly NOX-independently generated (16).
Notably, NETs in samples from the later phases of dengue
(day 7-13; day >13) and from healthy controls largely showed
no NETs or fell in the quadrants fitting a NOX-dependent NETs.
Taken together, we show that NETs in dengue patients are
predominantly NOX-independently generated.

Role of Platelets in NOX-Independent
NET Formation
Activated platelets stimulate NOX-independent NET formation
(3, 13). Soluble P-selectin and platelet-derived microparticles
that are generated during platelet activation also induce NOX-
independent NET formation (22, 23). Thrombocytopenia and
platelet activation are features of symptomatic dengue infections
and we postulated that platelets play a substantial role in NOX-
independent NET formation in dengue. We first determined
associations between platelet parameters and total NETs in our
cohort. We observed a significant negative correlation between
platelet number and total NETs on day 7-13 (rs=-0.65, p=0.004),
but not in the earlier phases of dengue (Figure 2A). Platelet P-
selectin expression on the platelet membrane, which is a specific
marker for platelet activation, and the binding of VWF to
platelets showed a strong positive association at day 7-13
(rs=0.75, p=0.001 for P-selectin and rs=0.71, p=0.003 for
VWF), but not at the earlier phases (Figures 2B, C).

Next, to further validate the involvement of platelets in NOX-
independent NET formation, we stimulated primary human
polymorphonuclear neutrophils (PMNs) from healthy volunteers
with dengue virus 2 non-structural protein 1 (DENV2 NS1) in the
presence or absence of autologous washed platelets (WPs). Notably,
Frontiers in Immunology | www.frontiersin.org 4
DENV2 NS1 is known to activate platelets (24). Our data reveal
that the combination of both DENV2 NS1 and activated platelets
are the most potent in inducing NET formation (Figure 3A), in
particular NOX-independent NETs (Figure 3B). Stimulation of
PMNs using heat-killed DENV2 in the presence or absence of
autologous platelets did not induce NET formation (Figure 3C).
This could be due to the heat inactivation, which might jeopardize
dengue virus induced activation of neutrophils.

NETs and Vascular Permeability
We previously showed that NOX-independent NETs have strong
immunostimulatory effects on the endothelium, leading to vascular
leakage in an in vitro assay (16). Notably, a transient endothelial
dysfunctionwith disturbances of the endothelial glycocalyx layer and
plasma leakage are featuresof severedengue (25, 26) andwepostulate
that NETs contribute to this transient vascular permeability
syndrome. We therefore explored associations of plasma NET
concentrations with plasma concentrations of the endothelial
activation marker VWF and the glycocalyx marker syndecan-1.
The glycocalyx is a layer of membrane-attached macromolecules
that covers the luminal surface of endothelial cells andplays akey role
in the endothelial barrier function. Syndecan-1 is a component of the
glycocalyx and shedding of syndecan-1 is used as a surrogatemarker
for glycocalyx damage. Plasma syndecan-1were positively associated
with total NETs on day 7-13 (rs=0.64, p<0.01) (Figure 4A), but not
with plasma VWF (data not shown).

Next, we assessed the associations of total NETs measured in
either acute or critical phase samples with parameters of plasma
leakage. With the exception of a significantly higher concentration
of total NETs in patients with a thickened gall bladder wall, no
significant differences were observed for patients with and without
hemoconcentration, pleural effusion or ascites (Figure 4B).
DISCUSSION

The role of NET formation in dengue infection is increasingly
recognized. Here, we provide novel insights in the NET
formation in dengue patients. NETs can be derived NOX-
dependently or NOX-independently. NOX-dependent NETs
are characterized by cleavage of the histone N-terminal tails,
whereas in NOX-independent NETs, histone N-terminal tails are
preserved (27). Using a NET assay that detect unmodified N-
terminal histone tails on NETs (16), we show that NET
formation in dengue is predominantly NOX-independent.

To the best of our knowledge, only one previous study reported
on the presence of circulating NETs in patients with dengue (10).
Opasawatchai et al. showed that patients with dengue hemorrhagic
fever had elevated levels ofNETs. In addition, these authors showed
that NETs decreased DENV infectivity in an in vitro assay. Their
findings that NET formation in dengue was independent of
peptidylarginine deiminase type 4 (PAD4)-mediated histone H3
hyper-citrullination also supports our present finding that NET
formation in dengue predominantly occurs NOX-independently,
as citrullination is a feature of NOX-dependent NETs.

NOX-independent NET formation is a rapid process in which
neutrophils retain their capacity to phagocytose and degranulate
May 2021 | Volume 12 | Article 629167
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(13). Activation of the NOX-independent pathway requires
co-stimulatory signals from both an antigen and a secondary
signal, such as activated platelets (13, 15). There is consensus that
activatedplateletsmediateNOX-independentNET formation (3, 15,
23, 28). Thrombocytopenia and platelet activation are prominent
features of dengue (24), and we confirmed in our present study that
platelets have the capacity to promote NOX-independent NET
formation in a DENV2 NS1-dependent manner. DENV2 NS1 has
strong immune properties, including the activation of platelets (24).
DENV2NS1 stimulation in the absence of platelets did not result in
NET formation. Interestingly, Sung et al. recently identified the C-
Frontiers in Immunology | www.frontiersin.org 5
type Lectin receptor-2 (CLEC2) platelet receptor as an important
factor of lethal dengue virus infection (11). Activation of CLEC2 by
DENV led to the formation of platelets-derived microparticles,
which promoted the formation of NETs via crosstalk with C-type
Lectin Domain 5A (CLEC5A) and Toll-like receptor 2 (TLR2) on
neutrophils. Other mechanisms have also been implicated in the
activation of platelets in dengue, including cell-free histones (29),
thrombin and mast cell-derived serotonin and tryptase (30). In
addition, platelet activating factor (PAF), which is known to be
increased in dengue (31) and lipopolysaccharide (LPS), which has
been reported to be increased as a result of loss of intestinal integrity
A B

C

FIGURE 1 | Circulating NETs in dengue patients are mainly NOX-independently generated. (A) Time course of total NETs (mg/mL) in plasma of dengue patients
according to day since fever onset and in a group of healthy controls (HC). Depicted are individual data together with a box plot showing median with interquartile
range. Differences in the dengue patients over time were analyzed using the Wilcoxon signed rank test; differences with the HC group were analyzed using Mann-
Whitney U test; *p < 0.05, **p < 0.01, ***p < 0.001. (B) NET formation (ng/ml) after incubation of neutrophils with 10% plasma of dengue patients according to day
since fever onset and of a group of HC. Depicted are individual data of five plasmas per group tested on 3 neutrophil donors, together with a box plot showing
median with interquartile range. Differences with the HC group were analyzed using Mann-Whitney U test;, ***p < 0.001. (C) Scatterplot quadrant analysis to
differentiate NOX-dependent and NOX-independent NET formation on the basis of results of the total NETs (X-axis) and MPO-H4K8Ac, K12Ac, K16Ac assay
(Y-axis). Cut-off points were determined from mean values and standard deviations from HC samples (orange and blue-dotted lines). Samples positive to both
assays were classified as NETs derived NOX-independently, while samples only positive for MPO-DNA were classified as NETs derived from NOX-dependently.
HC, healthy controls; NOX, NADPH-oxidase.
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(32), were both implicated as triggers of NET formation and may,
therefore, also play a role in the pathogenesis of dengue (20, 33).
Finally, because NET formation was already observed early during
dengue in the febrile phase, we cannot exclude that products, like
histones, released during NET formation may contribute to
plasma leakage.

We assessed correlations of total NETs with platelet and
endothelial parameters, but only found significant correlations in
samples taken at day 7-13 of illness, when the patients were
Frontiers in Immunology | www.frontiersin.org 6
generally in the convalescent phase of the infection. In our
opinion, this does not preclude a role for platelets in NET
formation on the one hand, and a role for NETs in vascular
leakage on the other hand. Possible explanations for this seeming
discrepancy include the following. First, the acute phases of dengue
are characterized by major distortions in the intravascular blood
compartment, which may mask possible correlations at this time
point. Second, in hospitalized patients with dengue, platelets are
uniformly affected in the febrile/critical phases with marked
A

B

C

FIGURE 2 | Associations of total NETs with platelet parameters. Depicted are individual data points with the Spearman correlation between total NETs (mg/mL) and
(A) platelet number (x109/L), (B) platelet P-selectin expression (MFI) and (C) binding of von Willebrand factor (VWF) to platelets (MFI). Platelet P-selectin expression
and binding of VWF to platelets were measured by flow cytometry and are expressed as mean fluorescence intensity (MFI).
May 2021 | Volume 12 | Article 629167
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thrombocytopenia and platelet activation. The etiology of
thrombocytopenia is multifactorial and not restricted to platelet
activation. In addition, P-selectin expression on the platelet
membrane may not fully capture the activation status of platelets
at this time point. This is also suggested by the fact that P-selectin
expression at day 7-13 was similar as at day 1-3 and day 4-6. Third,
the platelet effects may be caused by platelet-derivedmicroparticles
or platelet-derived proteins, such as platelet factor-4, that were not
measured in this study (34, 35).

Another important question is whether NET formation during
dengue is beneficial or detrimental for the host (36). On the one
hand, NETs are capable of containing pathogens, thereby
preventing further dissemination within the host. Previously,
NETs were shown to function as viral-traps that actively capture
human immunodeficiency virus viral-like particles (HIV-VLP) (9).
In addition, the myeloperoxidase (MPO) and a-defensin
components of NETs mediate antiviral activity and NETs were
shown to reduce DENV infectivity in vitro (9, 10). NETs may also
have detrimental effects on the endothelium and play a role in
intravascular coagulation and microvascular perfusion defects (16,
37). Endothelial dysfunction with plasma leakage, coagulopathy
and platelet dysfunction are a hallmark of severe dengue infections.
Frontiers in Immunology | www.frontiersin.org 7
Recent data on the role of NETs in the pathogenesis of pulmonary
edema in influenza andCovid-19 highlight the possible detrimental
effects of NETs on the endothelium and coagulation (4, 6, 38). We
found a strong correlation between NET formation and plasma
syndecan-1 at day 7-13 of illness, which further suggests endothelial
glycocalyx perturbation. NETs constituents such as neutrophil
elastase, MPO and histones are cytotoxic towards endothelial cells
(5, 39, 40) and have been linked to kidney injury in hantavirus
infection (8). MPO was also demonstrated to induce syndecan-1
shedding through cationic charge changes (41), whereas whole
NETs might jeopardize endothelial cell tight junctions and induce
reorganization of endothelial cytoskeleton (39, 42). In our present
study, we observed significantly higher levels of NETs in patients
with thickening of the gall bladder wall, but no differences in NETs
between those with and without hemoconcentration or ascites/
pleural effusion. This may seem at odds with an important role for
NOX-independent NETs in severe plasma, despite the fact that we
have previously shown in vitro that NOX-independent NETs are
potent in activating endothelial cells (16). There is a wide spectrum
of manifestations of vascular pathology in dengue and subclinical
plasma leakage is common in patients with even mild disease. In
addition, the pathogenesis of severe plasma leakage that results in
A B

C

FIGURE 3 | Platelets stimulate NOX-independent NET formation in a DENV NS1-dependent manner. Polymorphonuclear neutrophils (PMNs) of healthy volunteers
were co-incubated with autologous platelets in the presence or absence of 10 µg/mL DENV2 NS1 or 156mM platelet agonist TRAP-6. Experiments were performed
in triplicate with 2 donors for each condition. Depicted are the relative values to medium (unstimulated samples) for (A) Total NETs and (B) NOX-independent NETs.
(C) Heat-inactivated DENV2 does not induce NET formation. PMNs isolated from three healthy donors were incubated with 0.5x107 TCID/mL heat-inactivated
DENV2 or medium control (mock) in the presence or absence of autologus washed platelets (Plt). Depicted is the total NET formation (ng/mL). Data are presented as
mean with standard error mean (SEM) and analyzed using repeated measure a one-way ANOVA and Bonferroni’s multiple comparisons test; *p < 0.05, **p < 0.01.
TCID, Tissue culture infectious dose.
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hemoconcentration or ascites/pleural fluid is a complex
multifactorial process, involving an interplay of different host
immune, endothelial and viral factors. In our opinion, this may
explain why severe plasma leakage was not seen in some patients
with higher NETs concentrations.

Nevertheless, we acknowledge that our study does not allow to
draw firm conclusions on the causal role of NETs in the
complications of dengue, and the possible role of platelets in NET
formation. The absence of a correlations between platelet
parameters and NETs in the early phases of dengue may even
argue against such a causative role, as outlined above. In addition,
platelets can attach to different leukocytes in the circulation,
including neutrophils. These complexes can be assessed using
flow cytometry. Previous studies in dengue patients have reported
both increased (43) as well as decreased (44) platelet-neutrophil
complex formation. Unfortunately, in our present study, platelet-
neutrophil complexes were not assessed.

In conclusion our results show thatNETs in dengue patients are
predominantly NOX-independently generated, in which both
DENV2 NS1 and activated platelets may play an important role.
Frontiers in Immunology | www.frontiersin.org 8
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