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ABSTRACT
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division 
(M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been 
demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian 
serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through 
their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progres
sion. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry 
activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by 
which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant 
proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF 
ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle 
with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel 
perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re- 
evaluation on some of its signal components based upon established evidences.
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are clarified in the text

Introduction

Three and an half decades ago, while the receptors 
for insulin and insulin-like growth factors were 
being discovered and found to be part of a then 
growing family of trans-membrane receptor tyrosine 
kinases [1-6], it became clear that most viral onco
genic proteins were indeed constitutive activated 
counterparts of a pre-existing cellular gene product 
(like AKT, RAF and RAS, among others) which also 
encoded for a kinase or another type of signaling 
factor triggering a growth-promoting enzymatic 
activity ultimately hijacking the proliferative 

program of the cell [7]. Since then, it became clear 
that the known biological actions of growth factors 
were intrinsically linked to their activated kinase 
receptors and the intracellular signals triggered by 
them. It took more than three decades to start mak
ing sense of the actors, the hierarchies and the 
mechanistic features of activation of the enzymatic 
signaling network targeted and recruited by specific 
growth factors. It became apparent that such 
cascade(s) of post-translational modifications 
(PTM) driven-by protein phosphorylation were 
translated into the mechanical events governing cell 
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growth and mitosis. When the parallel discoveries 
surrounding the cell division components in 
S. Cerevisiae, Sea Urchin and other cellular models 
started shedding light on the phylogenetically con
served features shared by the mammalian cell cycle 
machinery it was clear that the language used by the 
cell to regulate cell division was based upon sequen
tial targeted phosphorylation events. It was also evi
dent that each cell-cycle phase was driven by 
a defined set of cyclins with their respective kinases 
counteracted by specific phosphatases regulating 
individual checkpoints and transitions [8]. Indeed 
a further key step towards understanding how 
growth factors regulate cell growth and proliferation 
took place when the role of another post- 
translational modification, namely selective protein 
degradation by ubiquitin tagging, was shown to be 
an intrinsic additional mechanism in proliferating 
cells towards affecting the timing for each cell cycle 
phase. Interestingly, it soon become clear that phos
phorylation and ubiquitination are coordinated 
events common to many cellular proteins affecting 
both their function as well as their lifespan. While 
our cumulative knowledge about the structure/func
tion of each gene product involved in cell growth and 
proliferation is still growing, so is also our under
standing of basic growth/ division pathways and 
their redundant/complementary/compensatory cir
cuits under non-physiological circumstances such as 
in the cancer cell. In this context, the biological role 
of the Insulin-like growth factors, as key intrinsic 
components of the cellular program driving growth 
and division, has been further consolidated by 

a number of discoveries which have drastically mod
ified the historical view surrounding this ligand/ 
receptor system. Such scientific work has brought 
to the growing realization of the relevance of specific 
isoforms and paralog variants of known signaling 
molecules towards supporting physiological versus 
cancer-promoting effects [9,10]. The present review 
provides an indispensable summary our current 
knowledge of the Insulin/IGF ligand/receptor signal 
transduction circuitry specifically involved in the 
regulation of growth and cell cycle. Special emphasis 
has been given on the differential mechanistic 
actions mediated by the individual signal transduc
tion components with emphasis to their effect in 
fetal and cancer cells compared to differentiated 
cells and tissues.

Revisiting the role of endocrine, paracrine and 
autocrine actions of the IGF ligands in growth 
and cell cycle regulation

The establishment of the trophic effect of insulin 
growth factors as major cell-, organs- and body- size 
regulators originates both from established experi
mental and clinical observations. While fundamental 
animal studies using gene ablation for each of the IGF 
ligands and receptors have proven the central role for 
the Insulin/IGF family in body growth regulation 
(summarized in Table 1), the evidence of such role 
in humans comes from a plethora of longstanding 
observations in the field of endocrinology which iden
tified clinical conditions per each of the occurrences 
in which at least one of these factors was either patho
logically over-produced or deficient. Specifically, IGF- 
I overproduction during the pre-adult developmental 
stage is responsible for the condition known as 
Acromegaly (“gigantism”). IGF-II over-production 
has been observed in the rare Beckwith-Wiedemann 
syndrome where it has been demonstrated to func
tionally associate with a macrosomic newborn phe
notype (abnormal enlargement of a number of 
internal organs) [11,12]. Insulin can also act as 
a growth factor, although in a self-limiting fashion. 
Its growth-promoting effect can become apparent in 
chronic hyperinsulinemic states, such as seen in obese 
subjects or in metabolically compensated Diabetes 

Table 1. Mode of action of the insulin/IGF ligands.

Physiology Pathology (Cancer) 
* As suggested by scientific cumulative translational and clinical research 

and reviewed in [29] under growth/proliferative physio-pathological 
conditions in mammalians* 
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type 2 patients, in which increased and sustained 
insulin secretion sets in as a compensatory mechan
ism to counteract insulin-resistance, a metabolic hall
mark of these conditions. Another compelling 
example of the ability of sustained insulin levels to 
act as a growth factor relate to fetal overgrowth 
observed in gestational diabetes where excess of 
abdominal fat, a highly insulin-sensitive tissue, can 
be already detected in the fetus of diabetic pregnant 
mothers at 20–24 gestational weeks due to the fetal 
exposure to high circulating insulin levels originated 
by the mother [13]. Opposite clinical disturbances due 
to lack of IGF physiologic growth effects have also 
been described depending upon their defective avail
ability or altered physiologic signals in conditions 
such as prepuberal growth retardation due to low 
circulating levels of IGF1 [14,15]. An important dif
ference between Insulin compared to the related IGF- 
I and IGF-II ligands in terms of direct physiological 
involvement in cell growth and cell cycle regulation 
under physiological requirements stands on the acute 
versus chronic tissue availability. This is linked to 
their biologically diversified secretion type. 
Specifically, the availability of insulin secretion in the 
bloodstream and its clearance are both acute and 
tightly regulated mechanisms ultimately able to 
make insulin blood levels negligible within 30–90 min
utes from the hormonal surge to decrease blood glu
cose and amino acids as a result of food digestion until 
insulin-induced cellular uptake of these nutrients 
removes them from the extracellular environment. 
As for IGF-I blood levels, they do not undergo the 
rapid spike and the acute clearance observed for cir
culating insulin levels but, on the contrary, its secre
tion from the main tissue storage (the liver) is kept 
relatively constant in response to Growth Hormone 
(GH) under a negative feedback mechanism with the 
GH-producing cells of the pituitary gland in order to 
fulfil the somatic growth of the developing body. 
Similarly, but with a different prenatal and post- 
natal type of control, IGF-II retains both metabolic 
and proliferative effects with a growing number of 
evidences suggesting a specific roles (not shared with 
IGF-I) during embryonic growth, neural develop
ment, adult stem cells maintenance and metabolism 
[16–19]. It is worth noticing that, while under phy
siological conditions insulin displays exquisite endo
crine functions and its paracrine and autocrine effects 
are restricted to the pancreatic tissue where it is 

produced. On the contrary, in the adult organism 
IGF-I and IGF-II are produced by stromal and con
nective tissue (fibroblast and derived component) 
allowing them to exert physiological paracrine effects 
as well as contributing to the established serum 
growth factor trophic activity. This IGF-mediated 
endocrine effect is essential for all cells in the body 
towards the development, maturation, and structural 
maintenance of tissues and body organs. Although 
both IGF-I and IGF-II are able to trigger the activa
tion of a specific cell signal in normal and cancer cells 
via activation of their RTK in vitro, it has become 
evident that the majority of solid cancer cell lines 
express and secrete IGF-II [20–26]. In fact, retrospec
tive and current cumulative experimental evidences 
support that while the paracrine actions of IGF-I and 
IGF-II are functional to both physiological and pre- 
cancerous stages, the autocrine IGF-II stimuli 
becomes the predominant IGF loop towards gaining 
and maintenance of the malignant phenotype [27– 
29]. The increased levels of IGF-II secondary to loss of 
heterozygosity (LOH) for its gene parental imprint
ing, by affecting its presence in the tissue microenvir
onment or specific organs, are compatible with the 
overall increased tumorigenic effect described in the 
literature [30]. A remodulated view of the actual role 
of the growth/proliferative-linked effects of Insulin 
and IGFs under the discussed physio-pathological 
contexts is provided in Table 1.

The insulin/IGF receptors system in cell growth 
and proliferation: a retrospective view on the 
changing paradigm

The previous view and understanding of the role 
of IGF-I and IGF-II [31] and their receptorial 
system towards promoting cellular growth and 
proliferation have significantly changed in the 
light of the discoveries of the last two decades 
displaying a more complex network between the 
insulin/IGF ligands and their cellular targets. In 
first place, the old assumption of the functional 
compartmentalization of the insulin receptor and 
IGF1 receptor effects has been fully revisited. 
Basically, throughout the mid-nineties, the gener
ally accepted view was that insulin, through exclu
sive high-affinity binding to its receptor, would 
exert its exquisite metabolic functions while the 
IGF-I receptor would mediate the growth and 
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proliferative effects of both IGF-I and IGF-II [32], 
which were formerly known as Somatomedin-C 
and Somatomedin-A, respectively [33]. Indeed, 
the search for an high-affinity IGF-II transducing 
receptor mediating its growth effects had initially 
brought to the identification of a kinase-less gene 
referred as IGF2 “receptor” (igf2r) [34,35]. Both 
biochemical purification- and sequence/structural 
studies for this transmembrane protein established 
that it does not carry any kinase activity nor 
growth/proliferative-promoting effects like any 
other GF-activated RTK [36,37]. On the contrary, 
as discussed herein this assumed igf2 “receptor” 
has been found to exert TK-independent tumor- 
suppressing functions based on cellular expression 
and LOH studies [38–42]. Nonetheless, the 
demonstration of the ability of IGF-II to bind 
and activate the IGF1R along with IGF-1 [32,43] 
reinforced the general view that the IGF1R recep
tor could be indeed transducing all the IGFs 
growth/proliferative signals and cellular effects. 
This forced exemplification came to light follow
ing a number of basic and translational studies 
contradicting this mechanistic scenario. Indeed, 
a few earlier studies had already shown an increase 
of insulin receptors in cancer tissues and cell lines 
compared to their normal counterparts along with 
the demonstration that the IR overexpression car
ries pro-oncogenic potential [44–46]. However, 
the biological relevance of such findings had been 
underscored due to the assumption that such 
increase in IR content in cancer would purely 
reflect the opportunistic need of cancer cells to 
enhance nutrients uptake to fulfil their increased 
metabolic needs. This concept assigning a pure 
metabolic function to the IR started being chal
lenged by the identification of a number of co- 
existing “atypical” insulin and IGFs receptors in 
the same cancer cells and tissues, supporting the 
possibility that the IGFs could also activate 
unknown variants of insulin- and IGF receptors 
to exert their cellular functions [47–49]. Indeed, 
these observations were not in contrast with 
experimental findings showing IGF-I and IGF-II 
to bear those insulin metabolic (anabolic) effects in 
cultured cancer cells [50] raising the question on 
the biochemical nature and function of such 
receptorial entities in vivo. The answer on the 
nature and composition of such receptors toward 

mediating the IGFs’ growth, proliferative and 
metabolic effects came in the late nineties from 
the identification of the previously referred atypi
cal IGF receptors. Part of such “atypical” activity 
was in fact found to depend on the presence of IR- 
IGF1R hybrids which behave like IGF1Rs but with 
differential IGF1 vs IGF2 stimulated activity based 
upon the involved IR isoforms [10,23,51]. 
However, at the time of these studies a major 
question related to the “atypical” insulin receptor 
with high affinity with IGF-II also supported by 
the in vivo demonstration of a fetal IGF-II-InsR 
growth axis [52] was still left unanswered. Namely, 
what was the nature of such atypical InsR mediat
ing developmental growth and cancer cell prolif
eration so effectively? The discovery that a specific 
IR isoform variant (IR exon11-) displayed 
a previously uncharacterized high affinity for IGF- 
II binding and that such isoform was highly 
expressed in fetal and cancer cells provided the 
long missing IGF-II TK receptor able to diversify 
its biological proliferative effects from those 
exerted via the IGF1R [21,53]. As a result, the IGF- 
II/IR-A autocrine loop is currently a compelling 
new model for understanding the role of IGFs in 
cancer, especially at the light of the commonly 
secreted IGF-II feature in cancer cells [54]. 
Indeed, the apparent mechanistic complexity of 
the insulin/IGF system, which has launched the 
search for molecular determinants to clarify the 
role of its individual components in mediating 
their cellular effects in physiology and disease, 
can now be re-evaluated in the light of their dif
ferent contextual expression in terms of isoform 
content as well as potential involvement in novel 
signaling complexes under specific conditions 
such as those observed under hypoxic states [10]. 
The additional findings that the very same recep
tor variants can mediate ligand-specific effects in 
terms of downstream signaling components 
[25,55,56] further support the importance of the 
contextual expression of IGF ligands, receptors 
and downstream signaling components in indivi
dual cell types and tissues as a determinant to 
understand their role both at the cellular and 
whole body level. Specifically, the observation 
that all IGFs, growth factors and receptors, can 
promote both cell growth and cell division in iso
lated cellular models (although in diversified 
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cellular and physio-pathological contexts) requires 
additional attention when designing modulatory 
pharmacological strategies. In particular, and as 
previously suggested [10], any molecular- 
targeting strategy meant to inhibit the IGF- 
dependent proliferative effect calls for routine pro
filing approaches to pinpoint the co-expressed iso
form variants and signaling circuits in vivo. 
Ultimately, the need to adopt integrated experi
mental approaches based upon omics profiling in 
the field of IGFs and cancer has become a logical 
requirement [57]. The advantage for such profiling 
approach is further supported by the number of 
naturally occurring variants in the IGF family in 
humans [58]. Indeed, the failure of the IGF1R 
single targeting in the clinical setting [59], has 
painstakingly shown the importance of fully 
embracing the molecular complexity and the con
textual physio-pathologic functions of this distinc
tive ligands/receptor family (Figure 1), as an 
opportunity towards developing sounder strategies 
to therapeutically modulate IGF-triggered growth 
and proliferative effects without affecting their 
central physiologic role.

Role of IGF binding- and scavenger proteins in 
IGF ligands/TK receptors-mediated growth and 
proliferation: a case for the adoption of the new 
functional acronym for the igf2/m6p-“receptor”

A broad number of studies have been generated 
over time on the extracellular binders known as 
IGF binding proteins. Interestingly, a surge of 
IGFBP studies has preceded the current under
standing of the IGF ligands and relative TK- 
mediated intracellular signal. In the context of 
the present review we deemed relevant to focus 
on the specific loss-of-function studies potentially 

connecting the IGFBPs to the Insulin/IGF-family 
mediated growth/proliferative effects. Such stu
dies, reviewed elsewhere [60], did not find this 
family of proteins to have an effect on growth 
and proliferation mediated by the IGF ligands/ 
RTK system. Due to the claimed independent 
IGF binding effects of IGFBPs (namely, IGFBP1- 
IGFBP6 along with mac2/IGFBP-7) for which 
opposite or paradoxical effects to IGF- 
neutralization can be found in the literature, we 
will not review such factors for the scope of this 
work. With the same token, among the bona-fide 
IGFBPs based upon presence of an IGF binding 
motif (found in IGFBP 1–6) (reviewed in [61] 
along with other known IGF binders, the ones 
for which we found in vivo loss-of-function stu
dies addressing their potential effect on growth 
are: (a) IGFBP1, (b) IGFBP2, (c) IGFBP3, (d) the 
so called IGF2 “Receptor” (herein referred as 
SpI2-6), and, (e) the IR secreted form.

IGFBP1
Despite some studies have shown a relationship 
between IGFBP1 and IGF1-dependent growth/ 
proliferative effects in its phosphorylated form 
[62], its role as a general modulator of IGF 
growth/proliferative signals remains uncertain 
[63]. This is in part due to the demonstrated 
IGF-1-binding independent actions exerted by 
this protein in cancer along with the inconsistent 
effects observed by IGFBP1 gene ablation in 
a cancer model [64].

IGFBP2
Although a growth limiting effect was observed 
upon IGBP2 gene ablation in zebrafish

[65] following constitutive loss-of-function 
study in mice [66] has revealed a different 

Figure 1. Growth/proliferative-related effects of the Insulin/IGF ligands/receptor system in mammalians*. *ased on predominant 
effects observed in isolated/optimized ex-vivo models or net clinical study end-point.
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biological mode of action for this gene product 
besides its potential IGF-binding interference in 
IGF-mediated growth. These findings along with 
other cellular-based observations showing opposite 
biological effects have raised the question on 
IGFBP2 mechanism of action towards promote 
and/ or inhibiting IGFs proliferative actions [67].

IGFBP3
In the case of IGFBP3 the relationship between its 
mild growth suppressing effect in loss-of-function 
studies in cancer has been reported by a few 
authors [68,69]. However, also for IGFBP3, the 
actual IGF-binding dependent effects compared 
to the IGF-binding independent ones are still 
a matter of open investigation.

SpI2-6 (igf2/m6p-“receptor”)
The role of the igf2/m6p-“receptor” gene product 
to date stands as the major functional IGF-binding 
factor among all studied bona-fide IGF binding 
proteins. Indeed, the overgrowth phenotype 
observed in the Igf2/m6p-“receptor” gene knock
out nude mouse [70] provides to date the most 
remarkable link between a physiological IGF bin
der and IGF-mediated growth. A further demon
stration that such tumor suppressing activity is 
linked exquisitely to the modulation of IGF-II 
levels comes from the evidence that the igf2/ 
m6p-“receptor” genetic ablation in an igf1/igf1r 
double ko mice background is able to rescue the 
igf/igfr-linked growth defect by reconstituting 
IGF2 bioavailability [52,53,71,72]. Based upon 
these established findings, supporting (a) a tumor- 
suppressor role for this transmembrane protein 
upon its ability to effectively interfere with the 
autocrine IGF-II loop active in fetal and cancer 
cells, and (b) in absence of structural/functional 
evidences of this IGF-II binder to trigger a second 
messenger intracellular signal upon ligand interac
tion, besides its internalization/degradation, we 
here propose the more suitable acronym of 
“SpI2-6” (Scavenger Protein for IGF2 & mannose- 
6-phosphate). The new acronym, we believe, better 
fits the experimentally-tested effects observed 
upon its gene ablation in animal studies (reviewed 
herein and summarized in Table 2). Furthermore, 
the acronym of “SpI2-6” rules out the longstand
ing misleading concept that this transmembrane 

protein may actively mediate a signal transduction 
mechanism comparable to that of the tyrosine 
kinase receptors used by IGF-II to trigger its 
growth and proliferative effects in vivo (through 
activation of the IR-A and the IGF1R in their 
homodimeric and heterodimeric combinations).

Secreted InsR
A less canonical bona-fide IGF protein binder with 
yet undefined biological role but demonstrated 
in vitro capability to bind Insulin/IGF ligands 
relates to the finding of a cellular-secreted Insulin 
receptor form [73]. Despite this secreted IR variant 
displays conserved high affinity and Insulin/IGF 
binding ability, its role in modulating Insulin/IGFs 
mitogenic signals in vivo is unknown. We spec
ulate that the IGF-binding activity derived by 
secreted and/or ectoshed receptorial components 
could bear yet undefined biological significance 
under those conditions potentially favored by an 
increase of secreted canonical receptors and/or 
proteolytically-generated IGF-binding moieties 
(including SpI2-6) such as in conditions of general 
or localized tissue over-expression in cancer.

The IGFs-regulated intracellular signaling 
circuitry involved in growth and cell cycle 
regulation: an up-to-date actionable summary

An essential overview of the established signaling 
components involved in the insulin and IGFs- 
regulated pathways underlying their growth and 
mitogenic effects is provided herein with emphasis 
to their phosphorylative network. Although 
a number of additional targets and circuits relate to 
the Insulin/IGF signal (eg in differentiated cells and 
tissues under physiological contexts), these known 
signaling features and targets not related to growth 
and cell cycle-related effects (eg towards migration, 
morphogenesis, vasculogenesis, and differentiation) 
displayed by the same signaling components have 
not been included for the scope of this review. The 
established circuitry for the IGFs-growth/cell cycle 
promoting signal is summarized in Figure 2. The 
effect of loss-of-function of the key IGF signaling 
components on in vivo growth has been conveyed in 
Table 2, whereas their oncogenic versus tumor- 
suppressing actions have been conveyed in Table 3.
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IRS 1/2
IRS1 and IRS2 belong to a family of highly con
served non-enzymatic adaptor proteins (IRS1-4) of 
which the first two have been widely implicated in 
the growth and proliferative effects induced by 
insulin and the IGF ligands (as summarized in 
Table 2). Indeed, the discovery of insulin receptor 
substrate (IRS) 1 with its paralog IRS2 [74,75] and 
the studies following their identification have 
accelerated our understanding of how Insulin 
and IGFs mediate their cell growth and prolifera
tive effects. With few exceptions, the IRS proteins 
are a unique class of adaptors used by the Insulin 
receptor [76], the IGF-IR [77] and by their hetero- 
dimeric hybrid receptors counterparts [56] in 
response to their tyrosine kinase (TK) activation. 
Although two additional paralogs (IRS3 and IRS4) 
have been identified, current evidences suggest 
that their effect on growth and proliferative signals 
is respectively minor for IRS3 (even interfering 
with cell cycle circuitry according to some authors 
[78] or bearing a growth antagonistic effect under 
certain conditions such as in retroviral infections 
in which IRS4 has been found to highjack IRS1/2 
signals [79]. A common feature of all IRS adaptors 
responsible for physically conveying the RTK- 

initiated tyrosine-phosphorylation to downstream 
signal transducers is the presence of the YMXM 
docking motif that is targeted by their upstream 
associated RTK allowing recruitment of other 
adaptor molecules containing a src-homology 
SH2 domain such as Shc and Grb2 [80–83] and 
initiate a phosphorylation-dependent dynamic 
complex formation involving both SH3 containing 
proteins (such as the above cited Grb2, Shc adap
tors and p85, the PI3K regulatory component) 
ultimately leading to the coordinated activation 
of enzymatic proteins with instrumental signaling, 
synthetic and mitotic activities. Among these enzy
matic transducers, to date, a well-characterized 
Lipid kinase (using PIP3 as messenger) [84] 
a number of Serine/Threonine kinases [85–93], 
GTPases, and GTP-GDP exchange factors [94] 
have all been associated to the insulin/IGFs signal 
through the mechanistic and functional involve
ment of the IRS proteins. IRS adaptors have been 
found to be both positively and/or negatively 
modulated by feedback signals targeting them on 
specific Serine/Threonine residues to modulating 
their stability and protein-protein interaction 
[95,96]. Indeed a number of studies have already 
started exposing the specific different roles exerted 

Table 2. Effects of constitutive gene KO for the insulin/IGF-receptors signal components on body/organ size.
Protein (gene)KO/ 
Silencing Species/models Bodysize Effect of gene ablation References

IGF-I (igf1) Mouse, drosophila ✓ Decrease [320,321]
IGF-II (igf2) Mouse, drosophila ✓ Decrease [52,320,321]
IGF-IR (igf1r) Mouse, drosophila ✓ Decrease [320,322]
IR (insr) Mouse, drosophila ✓ Decrease [323,324]
M6PR(igf2r) mouse ✓ Overgrowth [70]
IRS-1 (irs1) Mouse, drosophila ✓ Decrease [99, 325, 

326]
IRS-2 (irs2) Mouse, drosophila ✓ Decrease [326]
H/N/K Ras Mouse ✓ Normal for H/N Ras KOdelayed embryo growth for KRas [327]
PIK3C1A Drosophila, mouse ✓ Decrease [133]
PDK1 Mouse ✓ Decrease [328–330]
AKT1/2/3 Mouse, drosophila ✓ Decrease [147,331]
PTEN Mammalian cells,drosophila ✓n.a* Cell/tissue-specific overgrowth [161,164,332]
TSC1/TSC2 Mouse, drosophila ✓ Overgrowth [166,333]
mTORC1(h-raptor, 

dTOR)
Mouse cells and tissues, 
drosophila

n.a*✓ Decrease [166]

mTORC2 (rictor) Mouse cells and tissues n.a* Decrease [215,334,335]
GSK3β Mouse cells and tissues n.a* Perilethal;GSK3b KORescued pancreatic growth defectcaused 

by IR-/-
[204,205]

4EBP Mouse ✓ Overgrowth not observed due to increased protein 
metabolism

[185,336]

S6K1 Mouse, drosophila ✓ Decrease [279,337]
FOXO1/3α Mouse, drosophila ✓ Foxo1-/- mice die perinatallyFoxo3a KO does not cause 

overgrowth
[320,321]
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by IRS1 and IRS2 towards cell growth, prolifera
tion and other cancer-related effects [97,98]. Our 
understanding of the role of IRS1 and 2 in growth 
and proliferation relies on the loss-of-function 
animal studies associated with growth defects as 
shown by their small phenotype [99–102]. Such 
studies have cumulatively consolidated the general 
view that IRS1 mediates body/organ growth and 
cell size effects predominantly via involvement 
with the IGF-IR/ IRS1/PI3K/ AKT/ mTORC1/ 

Figure 2. The essential circuitry for the Insulin/IGFs system involved in growth and proliferation signal (refer to text and Table IV).

Table 3. Summary of insulin/IGF signal transducers acting as 
oncogenic factors versus tumor suppressors.

Oncogenic Tumor-suppressing

IGF-I/IGF-II* M6PR/Igfr
IGF-1 R PTEN
IR-A GSK3β
PIK3CA(p110) 4EBP
PDK TSC1 (Hamartin)
AKT TSC2 (Tuberin)
RAS FOXO
RAF P21CIP
CyclinD1/D2 P27kip

*Only IGF-II has been confirmed to be broadly overexpressed in cancer 
[29] 
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S6K-related signal. Furthermore, these studies 
have shown that the two IRS adaptors display 
a differential subsets of downstream target kinases, 
such as PDHK1, MAP3K and PKD1 for IRS1, and 
PIN1 and PKCβ for IRS2, where the proliferative/ 
cell-cycle components seem to be affected by both 
IRS proteins in complementary ways. In this con
text, differential interactions and PTMs found in 
IRS1, IR, IGF-IR, respectively [103], the ability of 
IRS1 to sustain prolonged IGF-1 R-mediated acti
vation of AKT-FOXO [96], the reciprocal stability 
effect of IRS2 and FoxO1 [104], and the ability of 
mTORC21 and mTORC2 to differentially regulate 
IRS1 and IRS2 stability [105–107], provide just few 
known examples of the complementary, but dif
ferent, roles played by these two key insulin/IGFs 
signal transducers towards the control of cell 
growth and proliferation. In further support of 
a specific role of IRS1 towards control of cell size 
upon insulin and IGFs receptors activation, some 
studies have demonstrated the ligand-induced 
nuclear translocation and nucleolar localization 
of IRS1 along with PIK3p110a and their ability to 
promote cellular growth by directly activating 
ribosomal DNA transcription via association with 
the Polymerase-I core transcription factor UBF 
[108]. Furthermore, nuclear IRS1 has been found 
to form complexes with small nucleolar RNAs 
[109]. Interestingly, two independent studies con
ducted in different cellular models suggest 

a parallel/alternative activation of ribosomal DNA 
transcription via an IGF1R/IRS1 signal versus an 
IR-A/IRS2 -generated one [97,98], in which the 
IR-A/IRS2 axis has been also confirmed to associ
ate with the Pol-I- transcription factor UBF. This 
concept has been conveyed in Figure 3. It is worth 
noticing that most of the initial knowledge about 
IRS proteins has been obtained in highly differen
tiated tissues (namely, muscle, liver and beta- 
pancreatic cells) for their role in mediating the 
insulin metabolic actions in mammalians. Since 
a common feature of pre-cancerous cells, indepen
dently from their embryological tissue of origin, is 
to de-differentiate and start expressing genes out 
of the tissue/organ functional context (what in 
pathology is referred as “ectopic expression”), 
therefore, when considering the growth and pro
liferative signals mediated by IRS proteins (as for 
any other IGF activated signaling molecule) in 
contexts such as cancer, it becomes important to 
confirm the underlying signaling protein variants 
under which context they operate. Additional dif
ferences between IRS1- and IRS2-mediated signals 
supporting the above scenario have been shown by 
studies focusing on the malignant features asso
ciated to cellular proliferation in cancer cells, sup
porting a specific role of IRS2 towards the invasive 
behavior mediated by the IGF system in Non- 
Small Cell Lung Cancer (NSCLC) lines and in 
Head and Neck cancer cell lines [110,111]. An 

Figure 3. Essential IGF ligands/receptor signal determinants for cell size net effect (refer to text for further explanation).
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interesting finding specifically linking IRS2 to cell 
cycle comes from the recent observation that IRS2 
is an APC substrate and promotes cell cycle pro
teins expression and spindle assembly during 
M-phase [112] disclosing further interest in the 
mechanisms by which direct IGF-mediated signal 
transducers affect pathophysiological growth and 
proliferation.

Grb and Shc protein adaptors and the SOS GTP 
exchange factor

Grb2
Grb2 was originally cloned as an EGFR signal 
transduction adaptor protein containing SH2 and 
SH3 domains and involved in inducing RAS acti
vation and cell proliferation upon ligand stimula
tion [113]. GRB2 specific involvement in insulin 
and IGF signal transduction upstream of RAS 
activation came from the demonstration of the 
physical interaction between Grb2 and IRS along 
with the Ras activating effect of such interaction 
upon insulin stimuli [81]. The GTP exchange fac
tor (GEF) SOS1 was soon identified as a common 
functional link connecting Grb2 to Ras activation 
[114] as further mentioned below.

Grb10
Grb10 belongs to the Grb7 family of molecular 
adaptors. It inhibits insulin receptor biological 
actions via both inhibiting the IR interaction with 
IRS1/2 and consequent block of PI3K activation by 
insulin [115]. Furthermore, it allows IR protein 
degradation upon sustained insulin stimuli [116] 
indicating that the Grb10-mediated degradation 
effect is exerted on the IRK activated form. An 
additional key finding comes from a study placing 
Grb10 as a direct target of mTORC1 as part of 
a negative feedback loop enabling its inhibitory 
actions [117].

Grb14 also belongs to the Grb7 gene family. 
Grb14 was found to bind activated Insulin recep
tors and inhibits their kinase activity [118]. 
Maximal inhibitory effect of Grb14 on the IRK 
has been shown to require binding with PDK1 
[119]. GRB14 has been also shown to bear inhibi
tory effects on Insulin receptor mediated mitotic 
signals. In particular, it has been shown that 

GRB14 inhibits the insulin receptor-induced cell 
division through (a) insulin-induced binding to 
the ubiquitin ligase Chfr, a factor involved in the 
control of the G2/M checkpoint, and (b) the 
further targeting and degradation of Aurora 
A and Polo-like kinase which ultimately leads to 
growth arrest [120].

Shc
Similarly to Grb2, Shc SH2/SH3 adaptors have 
been shown to be phosphorylated upon activation 
of the insulin/IGF tyrosine kinases and to convey 
their proliferative signal to RAS upon IRS recruit
ment and SOS1 binding [83,121,122]. Besides 
functionally and physically linking to the RAS 
pathway a number of RTK proliferative signals 
initiated by GFs, Shc proteins have also been 
shown to convey to RAS a variety of other extra
cellular stimuli linked to matrix proteins towards 
exerting migration effects [123,124].

SOS
SOS paralogs (acronym of son of seven-less) 
belongs to a family of phylogenetically conserved 
GTP exchange factors found to translated RTK 
phosphorylative signals towards activation of RAS 
and its growth promoting pathway [125]. SOS1, 
the most studied and common member of this 
family, has widely been shown to exert such func
tion through direct binding to Grb2- and Shc SH3 
domains and consequent binding to RAS [122]. 
More recently, SOS1 has been also shown to act 
as an extracellular proliferative signals sensor and 
a retrograde signal regulator of the RAS-MEK- 
ERK-RSK pathway since both ERK and RSK have 
been shown to phosphorylate and inhibit SOS- 
mediated RAS activation [126,127] therefore estab
lishing a negative feedback checkpoint towards 
protecting the cell from excessive exposure to 
extracellular originated growth stimulation.

PI3K
Although the enzymatic phosphatidylinositol-3 
kinase activity is shared by the homonymous 
family of lipid kinases with associated Serine/ 
Threonine kinase capability, of all the three char
acterized sub-classes identified, each displaying 
class-specific regulatory factors and catalytic pro
duct, the PIK3C1A class and specifically the 

10 P. SCALIA ET AL.



isoform characterized by the catalytic p110α sub
unit and the use for the regulatory adapters p85α/β 
and p55α/γ constitutes the PI3K variant found to 
mediate most of the insulin and IGFs-mediated 
growth, and proliferative effects [128–130]. 
A critical finding related to PI3K upstream regula
tion contributing to its proliferative effects has 
come from the finding that PI3K is also a direct 
downstream target of RAS [131]. Indeed, the con
firmation of PI3K110α role in cell size and prolif
eration has been further confirmed by the recent 
identification of a naturally occurring group of 
rare overgrowth syndromes linked to an activating 
mutation in the PIK3CA gene referred as PROS 
(from PIK3CA-related overgrowth spectrum) 
(reviewed in [132]. The key downstream mediator 
of the Insulin/IGF-activated PI3K Class 
I heterodimer is the AKT/PKB serine threonine 
kinase which is a key transducer of the growth 
and proliferative effects of this family of ligands 
and receptors, as further reviewed herein.

PDK1
PDK1, together with the PIK3C1A catalytic sub
unit, is part of the upstream Serine/Threonine 
Kinase cascade stimulated by the insulin and 
IGFs signal. Its membrane recruitment requires 
the PIP3 signal generated by the PI3K Lipid 
Kinase in response to its binding with the InsR/ 
IGF1R-activated IRS adapters [86] and is necessary 
for the activation of the PH-motif membrane- 
anchored AKT on Threonine 308 [85]. Important 
to the context of the present review is the demon
stration by loss-of-function in vivo that PDK1 
contributes to cell and body size ([133] and 
Table 1). PDK1 exerts its main growth/prolifera
tive effects by priming phosphorylation events 
directly enabling other transducers which are key 
components of the PI3K-AKT-TSC1/2-Rheb1- 
mTORC1-S6K signaling axis. In fact, PDK1 has 
been found to be a direct kinase activator for 
AKT [86], S6K [134], PKC [135],and SGK [136]. 
This has more recently triggered a specific interest 
for the development and clinical use of PDK1- 
specific anti-cancer compounds [136,137]. 
Indeed, PDK1-blocking compounds have been 
shown to re-sensitize cancer cells which become 
resistant upon PI3K inhibition via a PDK1-SGK 
axis which, in such resistant cells, compensate the 

deficient growth/proliferative signal initially 
caused by PI3K block at the level of mTORC1 
[136]. This provides an example on how the clin
ical use of specific signaling kinases inhibitors in 
cancer treatments is speeding up our understand
ing of the redundant signaling pathways which can 
then be further scrutinized at the molecular level 
for optimization of their use in a personalized 
setting. It can, therefore, be stated that 
a contextually designed block of key Insulin/IGF- 
signal transducers is expected to constitute the 
mainstay of cancer therapy either as a first line of 
biological treatment or a mandatory combination 
following expected single target block recurrence.

PKB/AKT
AKT is an oncogenic Serine/Threonine kinase of 
the AGC family which involvement as mediator of 
insulin and IGF growth and proliferation-related 
effects has been widely established [85,138]. Its full 
activation requires dual phosphorylation on 
Thr308 by PDK1 [86] and on Ser473 by 
mTORC2 [139,140]. On a mechanistic standpoint, 
ins/IGF-induced PIK3CA lipid kinase activation 
causes local membrane increase in phosphatidyli
nositol-3,4,5-triphosphate (PIP3) levels allowing 
AKT membrane recruitment via its PH domain 
[141] which is instrumental for its activation by 
PDK1 and mTORC2 [86,139]. In particular, its 
phosphorylation on Ser473 by mTORC2 also 
requires membrane translocation via its core factor 
mSIN1 [142]. Lysine-mediated ubiquitination 
[143] has been found to play a key role for AKT 
activity, sub-cellular localization and protein life
span upon ligand stimuli [144]. In further support 
of the direct role of a IRS1-PIK3CA-AKT axis in 
the insulin and IGFs-stimulated control of riboso
mal biogenesis, a critical checkpoint for cell 
growth and size regulation, a study has also 
described a direct axis between AKT, CK2 and 
the Pol-I core transcription factor TIF-IA (also 
known as RRN3) towards direct activation of the 
ribosomal gene transcription [145]. In regards to 
the AKT regulation, which is central to the control 
of cell growth and cell proliferation, a growing 
number of evidences connect this serine/threonine 
kinase to the machinery involved in regulating 
such effects. Among such evidences, besides the 
above finding of an direct PI3K-AKT-CK2-TIF-IA 
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(Pol-I) axis increasing ribosomal gene transcrip
tion, it has been recently demonstrated a direct 
regulation of AKT1 on Serine 473 by CyclinD1 
(the same Serine residue phosphorylated by 
mTORC2) towards promoting mitogenesis [146]. 
These findings provide additional mechanistic 
details to the previously established circuitry by 
which AKT promotes growth and proliferation.

PTEN is the acronym of Phosphatase/Tensin 
homolog on chromosome 10. PTEN is a key nega
tive regulator of PI3K, AKT and S6K1 growth- 
promoting/proliferative activities and as such it 
bears tumor-suppressor activity [147,148]. This is 
consistent with PTEN negative regulatory role on 
growth and body size observed in vivo [149]. Any 
of the insulin and IGFs biological actions, includ
ing cellular growth and proliferation, promoted by 
generation of the PIP3 messenger through the 
activation of the PI3-lipid kinase, requires 
a biologic counter-inhibitor to attenuate and/or 
modulate such signal. This role in the cell is 
exerted by PTEN, bearing both lipid and serine/ 
threonine dual phosphatase activity [150,151]. 
Since PTEN phosphorylation by GSK3β and CK2 
stabilize its activity [152] insulin/IGFs-mediated 
inhibition of GSK3β and CK2 constitutive activ
ities favors PTEN rapid cellular turnaround. The 
discovery of PTEN fine regulation by ubiquitina
tion dependent-degradation through WWP1-E3 
ligase [153] creates interest on the yet undefined 
mechanistic landscape by which PTEN is regulated 
in response to cellular stimuli. A further layer of 
PTEN regulation potentially affecting its anti- 
proliferative signals regards the identification and 
role of new isoforms and/or pathological variants 
towards dimer formation and signaling [154].

TSC1/2
The role of Tuberous Sclerosis Complex (TSC) pro
teins is constitutive part of a key heterodimer complex 
acting as a negative regulator of growth and prolifera
tion under GF-unstimulated conditions and which 
dimer resolution and single protein effects are critical 
for the stimulation of their targets (reviewed in Saxton 
and Sabatini [155]). TSC2 dimer partner TSC1, ori
ginally known as Hamartin, acts as direct brake for 
mTORC1 which is specifically released from the 
above complex upon Insulin and IGFs-induced phos
phorylation of TSC2 (Tuberin). Specifically, the 

TSC1-TSC2 dimer is dissociated upon direct phos
phorylation of TSC2 by AKT [156–158], which ulti
mately leads to activation of mTORC1 allowing 
release of the TSC1 inhibition on the mTORC1- 
activator Rheb1 [159,160]. The intrinsic role of such 
mTORC1-inhibitory factors downstream to the insu
lin/IGFs pathway has been shown in Drosophila 
where their gene over-expression counteracts the 
insulin and AKT growth promoting effects and is 
able to reduce cell growth, cell proliferation and 
organ size [161]. The cellular growth- and prolifera
tion promoting role of TSC2 phosphorylation by 
Insulin and IGFs activation of the IRS1/2-PI3K-AKT 
axis is further synergized by the direct phosphoryla
tion of TSC2 by ERK/MAPK and its effector p90RSK 

[162,163] which is also able to cause dissociation of 
the TSC1/TSC2 dimer by unleashing the TSC1-Rheb1 
-mTORC1-S6K1 signal (graphically summarized in 
Figure 1). TSC1 is also regulated by GSK3β phosphor
ylation, which inhibition is relieved by AKT-mediated 
phosphorylation in response to Insulin/IGFs stimuli 
[164]. The growth/proliferative inhibitory role in 
absence of the above growth factor dependent signal 
ultimately depends on TSC1 negative effect on the 
p70S6K (S6K1) actions dependent on the PI3K-AKT 
axis [89]. However, studies on TSC2−/− MEF demon
strate that TSC2 also potentiates this TSC1 inhibitory 
effect on S6K1 due to TSC2 antagonistic effect on 
IRS1 phosphorylation by S6K1 on S302 (and corre
spondent Serine on IRS2) as well as by repression of 
S6K1-mediated IRS1 (but not IRS2) gene expression 
[88]. IRS1 phosphorylation on S302 by S6K1 in 
TSC2-/- MEF in the same study is acutely reduced 
by rapamycin treatment along with IRS1 binding to 
PI3Kp85. It is also shown that sustained Rapamycin 
treatment in the same cell line reverses such trend and 
inhibits IRS1 binding to the insulin receptor ulti
mately supporting the key role of S6K1 phosphoryla
tion on its growth signal antagonized by TSC2.

mTORC1/2
Despite mTOR has been demonstrated to be 
a phosphorylative target of insulin antagonized 
by rapamycin treatment since the late nineties 
[165], the discovery and characterization of the 
two mTOR complexes known as mTORC1 and 
mTORC2 have provided a critical puzzle piece 
for the understanding of a central mechanism by 
which insulin and IGFs exert their cellular 
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metabolic and mitogenic functions. Following 
extensive biochemical and functional character
ization of mTOR and its two complexes 
(mTORC1 and mTORC2) we now know that 
complex-specific constitutive factors confer 
mTOR Serine/Threonine kinase its specific rapa
mycin-sensitivity, specificity and underlying 
functions. In particular, the combination of con
stitutive factors known as Raptor and mLST8 are 
constitutive elements of mTORC1 [166,167], 
while Rictor, mSIN1(formerly also known as 
MAPK associated protein 1) and mLST8 are 
distinctive components of mTORC2 
[142,166,168]. Furthermore, other non-core fac
tors can also associate to and modulate 
mTORC1 and mTORC2 such as Deptor which 
binds both mTORC1 and mTORC2, and 
Proctor1/2 as specific binder of mTORC2. 
mTORC1 has been established to be directly 
activated by the GTPase Rheb1 upon GF-signal 
induced release of TSC1 and PRAS40 inhibition 
[169]. Indeed, the discovery of mTOR as the 
invoked direct molecular target of the immuno
suppressant/ antiproliferative agent Rapamycin, 
which competes with the insulin- and IGFs- 
induced activation of 4EPB1and p70S6K1 
[170,171] and for causing G1 cell cycle arrest, 
further supports the specific functions exerted by 
insulin and IGF-I/II towards G1/S cell-cycle 
transition [172]. The critical function of 
mTORC1 in response to insulin and IGF stimuli 
towards promoting cell growth and metabolism 
relates to its direct promotion of protein, lipid, 
nucleic acid synthesis and glucose metabolism 
[171]. Such effects have been shown to rely 
upon the PI3K-dependent activation of AKT 
which acts upstream of mTORC1 via a pathway 
that involved TSC2 phosphorylation, TSC2/TSC1 
dimer dissociation, and PRAS40 and Rheb1, 
respective unstimulated activities reversal 
[160,173]. Worth noticing that the mTORC1- 
depedent growth/proliferative signal is activated 
also by ERK2 upstream phosphorylation of TSC2 
[163]. This is an alternative switch to the TSC2-/ 
TSC1-PRAS40-Rheb1-mTORC1 axis activation 
by AKT supporting the synergistical, contextual 
and, partially redundant possibilities by which 
the Insulin/IGF-inducible growth/proliferative 
signal takes place in the cell. The growth and 

proliferative effect of mTORC1 are mostly 
mediated by its Rheb1-dependent activation of 
S6K1 and 4EPB1 [169] which, through respective 
direct targets, regulate key synthetic- and cell- 
cycle events (see Figure 2 and Table 4). 
mTORC2 has been found to be insensitive to 
the acute inhibitory effect of rapamycin 
[174,175]. Nonetheless, prolonged exposure of 
cells to rapamycin is able to determine 
a delayed inhibition also on mTORC2 which is 
considered to be caused by depletion/ pool 
exhaustion of available mTOR enzyme for its 
complex formation [176]. mTORC2 has been 
shown to control proliferation and survival via 
at least three known direct targets. First, via 
mTORC2 phosphorylation of ATKS473 which 
allows its full activation [139] and reverberates 
on key substrates and proliferative mediators 
such as GSK3β, FoxO1 and SGK1 (reviewed by 
[155]. Second, via positive feedback phosphory
lation at the level of the Insulin/IGF receptor 
kinases [95], and, third, via phosphorylative 
cross-talk with RSK [177] and PKC family mem
bers [178,179]. mTORC1 and mTORC2 are also 
responsible for establishing negative feedback 
loops causing the degradation of the IRS pro
teins towards down-modulating sustained 
upstream growth/ proliferative- stimulation. In 
particular, they exert such feedback effects via 
mTORC1-S6K1-mediated phosphorylation of 
IRS1 [106] and via IRS1 and IRS2 phosphoryla
tion and proteolytic degradation by mTORC2 
[107,180]. The targetability of mTORC1 and 
mTORC2 to block their growth and proliferative 
effects in cancer has been considered since the 
first introduction of rapamycin (Serolimus) in 
the clinical setting. Using later generation 
mTOR inhibitors targeting both cellular com
plexes, it has been established that such block, 
although overcoming the limitations of rapalogs 
(rapamycin analogues) still causes a rebound or 
compensatory upstream hyperactivation of RTKs 
and PI3K leading to AKT re-phosphorylation on 
T308 (caused by via PI3K-PDK1 compensatory 
activation) following an initial transient inhibi
tion [181] and a compensatory increased activity 
RAS-ERK pathway [182,183]. Therefore, the 
general current view for the use of mTOR block
ers as anti-proliferative/anti-cancer agents in the 
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Table 4. Downstream signal targets and relevant PTM sites for the insulin/IGF signal transduction components implicated in cell 
growth and cell-cycle control.(a) www.phosphositeplus.com DB, (b) UniProt, [301].

Signaling component/ 
transducer Y/S/T/K PTM residuesModulated by Ins/IGF*

Downstream direct targetsInvolved in growth/ 
proliferation

Insulin n/a Insulin receptor (InsR)
Insulin Receptor and isoform 
A (InsR-A)

Y989, Y999,Y1101, Y1139, Y1185, Y1189/90, S1132/33, 
S1354, Y1351, Y1355, Y1361, T1375

IRS1, IRS2, (IRS3), IRS4

IGF-I n/a IGF1R > Hybrid InsR/IGF1R ≫ InsR
IGF-II n/a InsR-A = IGF1R > Hybrid InsR/IGF1R
IGF-I receptor (IGF-IR) Y974, Y981, Y988, K1055, Y1127, K1130, Y1161, Y1253, 

Y1281, Y1283, S1310/11/12, Y1346, Y1352
IRS1, IRS2, IRS4

IRS-1 S24, Y47, Y107, S270, S303, S307, S312, S323, S330, 
S348, S362, T446, Y460, T495, S527, S531, Y546, Y608, 
S616, S629, S632, S639, Y658, Y760, Y891, Y935, Y1006, 
S1078, S1100/1101, S1142/45, Y1220

P85PI3K, GRB2, GRB10, SHC, UBF

IRS-2 Y136, Y191, Y214, S306, S365, S577, Y628, Y649, Y671, 
Y734, Y758, Y814, Y911, Y970, Y1061, S1149, Y1242, 
Y1303

P85PI3K, GRB2, GRB10, SHC, 14.3.3, UBF, APC

Shc1p52 Y427 SOS1/2
Grb2Grb10Grb14 GRB2: (Y209)GRB10: Y67, S150, S428 S476GRB14: S366 Grb2: Sos1Grb10: IR, IGF1RGrb14: chfr

PIK3R1 (PI3Kp85) S608 PIK3CA Type I class (p110 isoforms)
PIK3CA (PI3K110α) TBD AKT1/2/3,
PDK1 Y9, S25, S64, S241, T354, Y373, Y376, S394, S396/98, 

T513
AKTS308, PKC, S6K, RSK, SGK

PKB/AKT-1/2/3 AKT1:S129,Y176, K276sm, S308, T450, S473, S477, 
T479AKT2: S126, S131, T309,T451,S474,AKT3: T305, S472

S6K1/2, GSK3a/b, mSIN1T89(mTORC2)TSC2, FOXO1/ 
3a

PKC-α,β,δ,β,ζ PKCa: T638PKCb: TBDPKCd: T507, S645, S664PKCg: 
TBDPKCz: T410

S6K1, mTORC1/2?, c-Fos,Negative feedback target: 
IRS1

PTEN Y27, Y174, S380 PIP3 dephosphorylation (PI3K)
RAS (H, K, N) HRAS: Y32, T144, T148KRAS: Y32, Y64 Raf, PI3KCA, PKC, mTORC2
B-Raf S365, S429, S446 MEK1/2
MEK1/2 MEK1: S218, S222MEK2: S222, S226 ERK1/2
ERK1/2 ERK1: T202, Y204, Y210ERK2: T185, Y187 RSK1, TSC2, mTORC2, cFOS, cJUN, ETS1/2, ELK1, 

egr-1, Cyclin D1Negative feedback direct targets: 
MEK1, RAF, SOS1, IRS2

RSK1/2 RSK1: S221, T573, T359, S380RSK2: S19, T577 GSK3, S6K1S235/236, c-FOS, p27KIP1, TP53Negative 
feedback direct target:SOS1

S6K1/S6K2 S6K1: T252, S394, T412, S427, S434, T444, S447, 
K516acS6K2: T228, S473

GSK3β, eIF3, Ribosomal biogenesis nucleolar 
proteins (Nop56, Nop14, Gar1, Rrp9, Rrp12, Rrp15, 
Pwp2)Negative feedback targets:IRS1, mTORC2S1135

4EBP1 T37, T41, S44, T46, S65, T68, T70, S101, S112 eIF4E, p21CIP1, p27KIP1

GSK3β S9, T43, Y216 CyclinD1, 4EBP1Negative feedback targets:HRAS, 
PTEN

TSC1TSC2 TSC1: not directly targetedTSC2: S939, S981, S1387, 
S1452, T1462

TSC1: TSC2, Rheb1, PRAS40, p27KIP1TSC2: TSC1, 
p27KIP1, CyclinB1

RHEB1 S130 mTORC1
mTORC1: 
mTORRaptorLST8Deptor

mTOR: S1261, S1415, T2446, S2448, S2481Raptor: S696, 
S722, S855, S859, S863, T865, S877, S881/82, T883, S884, 
S886/87, T889LST8: TBDDeptor:, T241, S244, S258, T259, 
S263, S265, S282/83, S286/87, S291, S293, T297/98/99

S6K1S389,S235/236,S240/244, 4EBP1S37/46, TIF1A/ 
RRN3Negative feedback target:IRS1, mTORC2 (via 
S6K1)

mTORC2:mTORRictorLST8SIN1 mTOR: see aboveRICTOR: T1135, S1177LST8: TBDSIN1: 
T86, S128

AKTS473, RSKS380,E2F->cMyc (transcription)Upstream 
positive feedbackIGF1R, IR,Negative feedback target: 
IRS1, IRS2

Casein Kinase-2 (CK2)CK2A1: 
Catal. Sub A1CK2A2:Catal. Sub 
A2CK2B: regulat. Sub B

CK2A1: T13CK2A2: TBDCK2B: S2, S3, PKC, UBF, TIFI, MBM-cMYC, PTEN

CyclinD1/D2 CCND1: T286CCND2: T280 AKTS473

Cyclin E1/E2 CCNE1: T395CCNE2: (S21) Rb1/2, Frap1, Mybl1, Dmrtc2
P21CIP1 T145, S146 PCNA, TAF1
P27KIP1 T157 AURORA-K, RB2p130
RbRb2 (p107, p130) RB1: S780, S807, T821RB2: (S639, T642, T986, S1035) SL1(RPol-I), SNAc(RPol-III)E2F, Pin1
TP53 (S15, S20, S33, S46, T55) Suppresses IGF-I, IGFII, IGFIR and InsR genes 

transcriptionSuppresses RPol-I transcription
MDM2 S166, S186, S188 p53, IGF1R

(Continued )
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clinical setting is to combine them with RTK 
inhibitors to prevent AKT re-activation [181].

S6K
The S6K family of Serine/Threonine kinases is part 
of a wider AGC kinase super-family that include 
S6K1 with its two paralogs referred as to p70 and 
p85, and the homolog S6K2 (p54 and p56) with 
which it shares 80% of their amino-acid sequence, 
along with generally conserved domains (but the 
C-terminal PDZ found only in S6K1, and a proline 
rich motif in the intermediate C-terminal portion 
present only in S6K2) and partially conserved acti
vation sites (reviewed by [184]. S6K1 role in pro
moting growth and proliferative signals is 
consistent with the small size of animals with 
ablation of its gene (Table 2) [185]. S6K1 mechan
istic role towards promoting protein and riboso
mal synthesis has been conveyed in Table 4 and it 
has been reviewed elsewhere [186]. In here we 
summarized S6K1 regulatory aspects. S6K activity 
is activated by insulin and IGFs via direct AKT 
and mTORC1 phosphorylation [170]. Indeed, 
S6K1 constitutes one of the two known effectors 
along with 4EBP by which mTORC1 promotes 
protein synthesis [173,187–190]. S6K1 is regulated 
by PDK1 which phosphorylation is required for its 
full activation. S6K1 has been shown also to be 
a growth/proliferative target of GSK3β [91] despite 
being in its turn a reciprocal phosphorylative pro
liferative target of S6K in cells lacking TSC1 and 

TSC2 [89]. S6K1 also negatively regulates 
mTORC2 via phosphorylation of Rictor [191– 
193] establishing a parallel mTORC1->S6K1- 
>mTORC2 negative feedback. S6K1 is also part 
of the mTORC1-mediated negative feedback reg
ulation on IRS1 discussed above. In addition to the 
classically described S6 protein, additional 7 
nucleolar targets of S6K1 involved in ribosome 
biogenesis have been described (Chauvin et al., 
2014 [194]), Table 4. p70S6K1 known actions 
towards regulation of protein translation and ribo
somal proteins biogenesis [171,194] involve its 
ordered translocation between cytoplasm and the 
nucleus. In this context, the exact mechanistic 
roles of the other paralog and homologs, 
p85S6K1 and S6K2, also activated by the Ins/IGF 
stimuli, is an open topic of investigation at the 
light of the prevalent and/or diversified nuclear 
localization of such homologs underlying 
a different subset of targets and regulated nuclear 
activities [195].

4EBP1
4EBP1 (formerly reported also as PHAS-1) and its 
paralog 4EBP-2 play a growth-inhibiting and anti- 
proliferative role by binding, phosphorylating and 
suppressing the activity of their cellular targets 
[196]. Their phosphorylation by insulin and 
IGFs, by removing their inhibition, unleashes the 
growth and proliferative effects of their targets 
among which a major role is played by eIF4E 

Table 4. (Continued). 

Signaling component/ 
transducer Y/S/T/K PTM residuesModulated by Ins/IGF*

Downstream direct targetsInvolved in growth/ 
proliferation

RPol-I (190 subunit) TBD rDNA gene(UBF/TIF1A-RRN3, TIFI63, TIFI110)
UBF1 (RPol-I core TF) (T9, S23, K61, K71, T117, K132, K144, K160, T201, K216, 

K232, K266, S273, K279, K352, S389, S412, S433, S449, 
K480, S484, S495, S546, S584, S638)

rDNA gene promotervia RPol-I and other associated 
TFs

RRN3/TIF-IA(RPol-I core TF) (S44, K75, S170, S172, S199, T200, K610, S633, S635, 
S636, S640, S649)

rDNA gene promotervia RPOL-I and other 
associated TFs

TAF1 (TAFII250) TBD TFIID (RPol-II)UBF (RPol-I)
TAFII150 (RPol-II) TBD CyclinD1 transcription via SP1
RPol-III (220 subunit) TBD ERK activates tRNA synthesis by RPOL-III by 

phosphorylating TFIIIB
MAF1 (RPol-III) S60, T64, S65, S68, S70, S73, K74, S75, S85, S89, T212, 

S214
RPol-III regulated genes

JunFos Jun: S63Fos: (T232,, S362) CyclinD, sox6, jun-d, gadd45a, and tob1, YAP/TAZ
MycMax MYC: T58, S62MAX: (S2, S11) Myc: rDNA gene/Pol-I transcription, E2FMyc/Max: 

p27kip1 CyclinE, CDK2, CDK4
FOXO1AFOXO3A FOXOA1: T24, S256, S319, S322, S325, S329FOXO3A: T32, 

S253, S315, S318, S321
CyclinD1/D2, p21CIP1, p27KIP1,MDM2, 4EBPNegative 
feedback target:InsR
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towards driving protein translation [197]. 
Specifically, 4EBP1 is directly phosphorylated by 
mTORC1 in response to the insulin and IGFs 
activation of the IRS1-PI3K-pathway towards 
exerting its growth and mitogenic actions 
[198,199]. Phosphorylation of 4EBP1 drives its 
cellular re-localization and inhibits eIF4E [200] 
which causes an increase in its mRNA capping 
activity by enhancing the protein translation pro
cess [201]. 4EBP1 also plays a key role in cell cycle 
regulation by (a) stabilizing p21CIP1 [202] as well 
as upregulating p27KIP1 activity [203]. 4EBP1 
phosphorylation by mTORC1 upon insulin and 
IGF stimuli mitigates the activation of these down
stream cell cycle natural inhibitors resulting in 
a cell cycle promoting effect. Despite 4EBP1 estab
lished tumor-suppressing actions at the cellular 
level such effect has been hidden in loss-of- 
function studies in animal models due to an 
observed hypercatabolic state caused by it gene 
ablation resulting in animals with apparent normal 
size [204,205].

GSK3β
Mammalian Glycogen synthase kinase-3 (GSK3) beta 
along with its paralog GSK3α belongs to a family of 
constitutively activated serine/threonine kinases with 
inhibitory functions and preferential phosphorylation 
of their primed targets [206]. GSK3β is a well- 
established inhibited target of the Insulin, IGF-I and 
IGF-II stimuli via AKT-mediated phosphorylation on 
its Ser9 [207,208]. Its role in mediating Insulin/IGFs- 
induced cell growth and proliferative effects is asso
ciated to GSK3β control of anabolic/synthetic func
tions [209,210] and of growth/cell cycle gene products 
[211,212]. This triggers an increase in glucose home
ostasis and microtubules formation, on which pro
cesses depend both on cellular growth and division. 
Specific targets of the GSK3β inhibitory control 
towards regulation of growth and cell cycle include 
MYC [211], the AP1 transcription factor JUN [213], 
and CyclinD1 [212]. In regards to the control of 
parallel synthetic metabolic requirements GSK3β reg
ulates eIF2B [209] and Glycogen Synthase [210]. As 
for the underlying mechanistic features, GSK3β pro
motes CyclinD1 proteasome-mediated degradation 
by phosphorylation on Thr286 [212]. Similarly, 
GSK3β phosphorylation of MYC on Thr58 has been 
found to antagonize its proteasome-dependent 

degradation via SCFFbw7 [211]. Interestingly, GSK3β 
can mediate the S6K1 growth/proliferative signal by 
direct phosphorylation/kinase inhibition in TSC1/2−/− 

MEF when AKT is suppressed by mTORC1 [89]. To 
date GSK3α has been less studied compared to its 
GSK3β homolog. Indeed it constitutes 
a multifunctional Ser/Thr protein kinase activated by 
insulin and IGFs [210] which has been implicated in 
the control of several regulatory proteins [214]. Due to 
its bona fide tumor suppressing actions a few studies 
have addressed the in vivo phenotype under constitu
tive loss-of-function conditions. However, the lethality 
of such mouse model has delayed to strengthen the 
evidences obtained in cellular models. Nonetheless, 
a tissue-specific knockout model, namely a GSK3-/- 
mouse, has confirmed the GSK expected growth res
cue function since its gene deletion was able to rescue 
the major proliferative and metabolic defect caused by 
the parallel block of the insulin receptor towards res
cuing normal pancreatic cells and organ growth [215].

The RAS-RAF-MEK-ERK-RSK Axis

RAS
represents the most known cellular GTPase 
([216,217] which, under any of its known paralogs 
functional/structural composition (H-RAS, N-RAS, 
and K-RAS) is activated by the Insulin/IGF signal 
[94]. An established effect of oncogenic RAS expres
sion in cancer cells is its ability to drive serum/ 
growth factor independence by inducing growth fac
tors expression and autocrine stimulation towards 
autonomous growth and proliferation [218]. Gain-of 
-function studies in immortalized non-tumorigenic 
IG1R or InsR expressing cells in presence of onco
genic RAS have been shown to produce a robust 
growth and proliferative signal leading to malignant 
phenotypic features [46,219]. The study by Sell et al 
has also established the permissive function of the 
signals mediated by the IGF1R towards allowing 
RAS transformation [219]. As for the underlying 
signal connecting ligand-induced activation of the 
Insulin/IGF membrane receptor tyrosine kinases to 
RAS, it has been established that the activated recep
tors recruit the IRS proteins via their YXMX motifs 
and allow the sequential recruitment of an additional 
SH2/SH3 adaptors, namely GRB2 and/or Shcp52. 

These activated targets can then bind the GTP/ 
GDP exchange factor SOS1 which is responsible for 
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the positive feedback loop causing an exponential 
number of membrane-linked RAS molecules to 
acquire their active complex conformational state 
underlying its intracellular activation cascade 
(reviewed in [216]. Since RAS protein activation 
plays a critical role in the regulation of the growth 
and proliferative potential of any eukaryotic organ
ism via the activation of its downstream cellular 
targets, it has been at the center of intense investiga
tion from its original discovery [220]. It is established 
that the RAS gene products are differentially regu
lated by polyisoprenylation, palmitoylation, methy
lation and coordinated proteolysis [221–223]. The 
canonical RAS-Raf-MEK-ERK-RSK signaling cas
cade has been found to be shared by both the 
Insulin/IGF ligand/receptor system as well as by 
other GFs/RTK systems with the unique difference 
being in the main upstream circuitry due to the 
almost exclusive use of the IRS adaptor proteins by 
the IR and IGF1R system (see also under chapter 4, 
Figure 2 and Table 4). These other GF/RTK systems 
(such as EGFR, PDGFR, and others) have been 
shown to directly recruit either Grb or Shc proteins 
towards triggering the SOS1-mediated activation of 
membrane-linked RAS [81,224,225]. The canonical 
RAS pathway has been further enriched by the 
demonstration of the direct RAS-induced activation 
of PIK3CA (the catalytic subunit of PI3K) [131] and 
very recently by mTORC2 [226] disclosing newer 
scenarios on the mechanisms by which RAS proteins 
trigger their established growth and proliferative 
effects (see Figure 2 and Table 4). Noteworthy, 
K-RAS is the most represented variant in cancer 
with the only exception of glioblastoma in which 
N-Ras is the predominant variant [217]. Despite 
recognizable differences in their biochemical activ
ity, mutant RAS isoforms within cells have displayed 
similar ranges of ERK output [227] suggesting that 
the qualitative aspects of the RAS circuitry induced 
by extracellular signals plays a major role in the 
modulation of this pathway as well as on its intrinsic 
biological message towards directing growth and 
mitotic events. Interestingly, loss-of-function studies 
in mice have shown that H-RAS and N-RAS consti
tutive individual and double gene deletion does not 
affect normal growth while K-RAS KO mice were 
perinatally lethal [228]. Nonetheless, by comparing 
K-RAS−/− versus K-RAS-/+ mice intrauterine 
growth Johnson at al were able to confirm K-RAS 

growth/proliferative physiologic role since RAS−/− 

mice fetuses displayed a smaller phenotype starting 
E10.5 compared to their RAS−/+ counterparts [229].

Raf
B-Raf with its Raf1 (C-Raf), and A-Raf paralogs is 
the direct downstream activated component of the 
RAS pathway [230]. The molecular mechanism 
shared by RAS isoforms to activate RAF is now 
better understood at the light of the recognition of 
the RAS-GTP/RAF/14-3-3 intramolecular complex 
dynamics in order to allow full RAS activation 
[231]. This, especially at the light that B-Raf iso
forms can be differentially regulated as shown in 
isoforms containing exon 8b which are phos
phorylated on S365 corresponding to the Raf/14- 
3-3- binding site, causing enhanced intramolecular 
interaction between the regulatory domain and the 
kinase domain of B-Raf and reduction of this iso
form kinase activity [232]. As for Raf paralogs role 
in mediating specific growth and cell-cycle pro
moting signals, it is worth mentioning that the 
three Raf (A-/B- and C-Raf) kinases differ in 
their ability to activate MEK in vitro and the 
ERK pathway in vivo, and to transform NIH 3T3 
cells. in fact, B-Raf is the paralog which outper
forms the others in terms of both basal activity an 
responsivity to RAS and extracellular stimuli 
(reviewed in [233]. The dimerization of Raf and 
its paralogs (Raf1 or C-Raf, B-Raf and A-Raf) via 
homologous and heterologous dimers formation 
has been shown to play a key permissive role 
towards downstream targets activation [234]. In 
this context, despite C-Raf (Raf-1) has been 
shown to play a key role in normal embryo growth 
and development with embryonal lethality timing 
depending upon the underlying genetic back
ground [235], another loss-of-function study in 
mice found that MEK activity was not required 
for Raf-1 physiologic growth/proliferative function 
in [236]. This can find explanation on the fact that 
B-Raf, as functionally central paralog is still be able 
to dimerize with other isoforms and compensate 
for Raf-1 genetic or Y340/Y341 activation sites 
ablation. Nonetheless, the basic role of Raf-1 
(C-Raf) and A-Raf has been specifically addressed 
in another loss-of-function study [237] confirming 
the relevance of these Raf paralog genes towards 
normal embryological growth both individually 
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and by double null ablation as well as for the need 
of such genes for G1/S cell cycle transition, MEK- 
ERK phosphorylation and c-Fos and CyclinD1 
induction as shown in MEF cells obtained from 
these mice embryos. Indeed, a degree of C-Raf 
dependency has also been described in a KRAS 
mutant lung cancer cell (A549) where C-Raf abla
tion triggers A-Raf mediated hyperactivation of 
ERK [238]. Raf is also target of the ERK negative 
feedback loop towards downmodulating hyperac
tivation of the RAS-Raf-MEK-ERK pathway [239]. 
The biological and mechanistic meaning of RAF 
dimers towards downstream activation of MEK 
and the modulation of the underlying proliferative 
effect has been further clarified upon studying 
B-Raf naturally occurring mutation, BRAF- 
V600E, which constitutes the most common type 
of B-Raf mutation detected in melanoma (86% of 
all B-Raf mutations in this cancer type) and in 
a relevant percentage of other solid cancers. This 
B-Raf mutant, differently from its wild type coun
terpart and paralogs does not require dimerization 
for MEK activation and is insensitive also to native 
negative feedbacks as shown by its inability to bind 
to Sprouty2 [240,241], mechanistically and clini
cally explaining the type of response and observed 
resistance mechanism to the anti-proliferative 
agent vemurafenib along with B-Raf central role 
in Raf biology (reviewed in [242]. Altogether, the 
current findings on Raf paralogs suggest the pre
sence of a broader and integrated signal regulation 
both in the context of the RAS-ERK canonical 
pathway as for yet undefined cross-talk circuits 
leading to growth/proliferative effects.

MEK1/2
are Serine/Threonine and Tyrosine dual phos
phorylation kinases directly targeted by RAF pro
teins in response to extracellular proliferative 
signals [243]. They also integrate signals from 
other kinases activated in response to other types 
of stimuli. MEKs have been found to phosphory
late ERK/MAPK both on Serine/Threonine and 
Tyrosine residues (summarized in Table 4) and 
their upstream activation requires phosphorylation 
on two specific serine sites [243]. A MEK1 asso
ciated protein (MP1) in a complex with a 14KDa 
protein has been found to provide a scaffold to 
increase both MEK1 and ERK activation and 

enhancing its downstream targeting specificity 
towards ELK1 [244,245]. Interestingly, till recently 
the almost exclusive downstream target of MEK1 
and MEK2 was ERK/MAPK. This has changed 
with the demonstration of the ability of MEK1 
and MEK2 to interact with AKT through their 
Proline-rich domain and promote the activation 
of FOXO [246]. This finding is further demonstra
tion of the cross talk between the RAS-Raf-MEK- 
ERK-RSK axis and the PI3K-AKT main alternative 
proliferation signal in response IGFs under per
missive integrated conditions towards controlling 
the growth and proliferation status of the cell. 
Loss-of-function studies in mice have shown the 
MEK1 absolute dependency for normal embryolo
gical and post-natal growth [247]. On the opposite, 
constitutive MEK2 somatic ablation in mice leads 
to viable and normal organisms [248] suggesting 
a full compensatory function of MEK1 in 
mammalians.

ERK1/2
(MAP2K-p42/p44) are Serine/Threonine kinases 
long known to be Insulin/IGF-signal targets and 
mediators of their proliferative signals [249]. As 
for other kinases involved in growth and cell- 
cycle regulation, ERKs’ phosphorylation of their 
downstream targets releases their inhibited con
formations allowing proliferation and cancer 
promoting effects [250,251]. As a result, growth- 
factor-mediated sustained activation of ERKs can 
downregulate antiproliferative genes involved in 
G1 phase unleashing cell cycle progression, in 
part through involvement of AP1 [250]. Among 
such G1/S promoting targets of ERKs is 
FOXO3a, known repressor of Cyclin D and acti
vator of p27KIP1 [252,253]. The removal of the 
FOXO inhibitory effect on G1 Cyclins/CDKI 
targets by ERK has indeed been shown to play 
a constitutional role in ERK mediated prolifera
tive effect [254]. Another ERK target triggered 
by the IGFs proliferative signal is TSC2, which is 
also targeted by AKT as cited herein (Table 4). 
TSC2 targeting by ERK2 determines TSC2 dis
sociation from its dimer partner, TSC1, and 
consequent repression of Rheb1, a key step in 
mTORC1 activation triggering proliferation and 
growth signals during both developmental 
growth and in tumorigenesis [163]. ERK 
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activation can be transient or sustained, depend
ing upon the involved cell stimuli. Part of the 
mechanism for controlling the duration of ERK 
activation is exerted through ERKs-mediated 
inhibition of upstream components of the sig
naling pathway through direct feedback phos
phorylation following ERK activation. This ERK 
negative feedback control so far has been 
demonstrated at four levels. Specifically, by (a) 
ERK feedback phosphorylation of MEK1 (Ser 
292 and Thr386) which inhibits MEK1 activity 
[255,256] and decrease duration of MEK1 acti
vation in newly adherent cells [239]; (b) ERK 
phosphorylation of Raf (Ser 29, 289, 296, 301 
and 642) inhibiting RAF/RAS interaction and 
the overall RAF activity [257,258]. This feedback 
phosphorylation is highly reduced for A-Raf in 
cells bearing the B-Raf V600E and G469A 
mutants showing how such mutation can over
come ERK negative feedback mechanisms and 
maintain increased kinase-dependent signal acti
vation; (c) ERK phosphorylation of SOS1, within 
a proline-rich SH3 region responsible for its 
interaction with GRB2 (S1132, S1167, S1178, 
S1193) and shown to downregulate upstream 
signals mediated by a number of membrane 
RTKs using GRB2 or Shc to activate the RAS- 
ERK pathway [127,259] and, lastly (d) ERK 
phosphorylation of IRS2 (on Ser907) [260] 
which interferes with ERK activity and which 
functional role still awaits elucidation. 
Interestingly, in a cancer prostate cell IRS2 inter
acted with deubiquitinylase (DUB) USP9X 
resulting in increased IRS2 ubiquitination/degra
dation and suppressing basal ERK levels. These 
were restored by IRS2 exogenous expression sug
gesting that stabilization of IRS2 is critical for 
basal Erk1/2 activation [261]. As for the require
ment for each ERK paralog in growth and pro
liferation, loss-of-function studies in KO mice 
have shown that ERK2 function is essential for 
normal growth and proliferation both embryo
nically and post-embryonically while ERK1 con
stitutive gene ablation allows normal viable 
growth of the null organisms supporting full 
functional compensation by ERK2 [262,263].

RSK
has been described since the late nineteen eighties as 
one of the kinases active against the S6 ribosomal 
protein upon insulin and IGF signals [249,264,265]. 
Two isoforms have been described and they are 
parallel phosphorylative targets of ERK1/2 and 
PDK1 and phosphorylate a number of cytoplasmic 
and nuclear proteins (reviewed by [266] part of 
which support their proliferative function. 
Specifically, RSK1 and 2 phosphorylate p27KIP1 pro
moting 14-3-3 binding and cytoplasmic retention 
[267]. Both isoforms also phosphorylate, stabilize 
c-FOS therefore increasing its growth promoting 
effects [264,268]. RSK2 phosphorylates and inhibits 
GSK3β negative regulatory activity allowing down
stream signal activation [269]. As for ERK1/2, RSK2 
does also display a negative feedback by phosphor
ylating SOS1, therefore downregulating RAS/ERK 
activation [270]. An interesting finding relates to 
the observation that ERK signaling integrates extra
cellular signals with p53 activity to determines the 
duration of the G2 mitotic arrest such as that deter
mined by DNA breakage [271]. A previous study had 
already pointed at the relevance of asynchronous 
ERK activation pulses for the transmission of prolif
erative signals triggered by extracellular stimuli 
[272]. In agreement with the previous findings, this 
recent study further uncovers that under G2 phase 
arrest, ERK displays a pulsatile activity (such as that 
expected after prolonged serum starvation) parallel
ing the frequency pulses of p53 expression under the 
same circumstances. Upon sustained ERK activa
tion, such as that observed upon continuous growth 
factors availability (eg autocrine stimuli in cancer 
cells) or by oncogenic constitutive activation of an 
ERK-activating pathway, CDC25C becomes a target 
of ERK-dependent phosphorylation and p53 expres
sion pulses are inhibited leading to the accumulation 
of pro-mitotic factors (namely, CyclinB1 and PLK1). 
Worth noticing that a smaller phenotype associates 
with RSK2 null mice [273] independently from the 
neurological symptoms (Coffin-Lowry syndrome- 
related) appearing after 36 weeks of age suggesting 
that the other mammalian paralogs, namely RSK1, 
RSK3 and RSK4 can compensate RSK2 functions 
towards normal growth and proliferative embryonal 
and post-embryonic functions.

These known mechanisms have been summar
ized in Figure 2 and conveyed in Tables 2, 3 and 4.
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RNA Polymerase-II-dependent transcription 
factors activated by the IGF-growth/cell 
cycle-related signal

The transcription factors included below provide 
a selected well established set of players linking the 
IGF signal involved in the control of cell size and 
cell division. The general knowledge and mechan
istic details on the type of signal network and 
feedback mechanisms are expected to grow con
sistently in time. All of them depend on the tran
scriptional activity of Polymerase-II (Pol-II) and 
are typically considered co-activators since they 
increase the transcription rate of a specific set of 
genes bearing their respective binding motifs and 
act by physically associating the regulated gene to 
the polymerase complex, namely, the polymerase 
II enzyme along with its constitutive (“core”) tran
scription factors. As for the Pol-II core transcrip
tion factors involved in the growth and mitogenic 
effect of insulin and IGFs these are discussed in 
chapter 5.

FOXO
FOXO genes belong to the Forkhead box O family 
of transcription factors, (TF) (co-activators) tar
geting a set of genes directly involved in cell 
cycle regulation [274]. They also modulate 
Insulin/IGF growth and proliferative actions such 
as providing specific feedback phosphorylation 
loops that modulate their upstream signal [275] 
(see Figure 2 and Table 4). In particular, FOXO1 
(FKHR), FOXO3a (FKHR-L1) when over- 
expressed or in insulin/IGF-deprived conditions 
induce cell cycle arrest in agreement with their 
ability to upregulate p27KIP1 and downregulate 
CDK2, CyclinD1 and PCNA [276,277]. Insulin/ 
IGFs stimuli determines both their phosphoryla
tion by AKT as well as their transcriptional repres
sion [274,276] which inhibits p27KIP1 transcription 
and unleashes FOXO-dependent Cyclins D1 and 
D2 expression [276]. This signaling axis has been 
shown to be a phylogenetically conserved cell 
growth control mechanism [278] supporting 
a tight functional link between insulin/IGF signals 
and FOXO in the control of cell growth and other 
metabolic actions in vivo [275]. Nonetheless, gene 
ablation studies in drosophila have shown that, 
while dFOXO overexpression causes organ size 

reduction by targeting 4EBP, its gene knockout 
does not cause body or organs overgrowth despite 
an increase in cell number [279]. This suggests 
that a specific compensatory or size regulatory 
checkpoints are present downstream to FOXO 
transcription factors functionally independent 
from this TF family effects on cell cycle.

Jun/Fos (AP-1)
The Jun/Fos heterodimer known as AP1 is a Pol-II 
-associated transcription co-activator regulated by 
serum, IGFs and other growth factors through 
direct phosphorylation of c-FOS allowing its 
dimer partner c-Jun to enhance the function of 
CyclinD1 and other genes required for G1 pro
gression [280]. Specifically, mitogens inducing sus
tained ERK activation [281] along with its 
downstream signal target p90RSK phosphorylate 
c-Fos C-terminus domain, enhancing c-Fos pro
tein stability and potentiating its activity towards 
the induction of target genes involved in the G1/S 
checkpoint. The same ERK signaling, via phos
phorylation and transcriptional upregulation of 
the AP-1 transcriptional complex induces down
regulation of antiproliferative genes that inhibit G1 
progression such as sox6, jun-d, gadd45a, and 
tob1, among others [250]. Recently, a positive 
feedback cross talk at the transcriptional and post- 
transcriptional level between AP-1 and the YAP/ 
TAZ dimer has been demonstrated for the reci
procally targeted genes supporting the tight inter
action between the mitogenic signals involved in 
immediate early transcription and the Hippo path
way contributing to a coordinated cell prolifera
tion and organ growth [282].

Myc/Max
Like c-Fos, also Myc is an early transcription fac
tor phosphorylated by ERK (p90RSK?) and CK2 
[283] enhancing its stability and consequent ability 
to promote G1/S cell cycle transition [280]. 
A specific mechanism triggered by insulin and 
serum (containing IGFs) involves p90RSK phos
phorylation of MAD leading to its ubiquitin degra
dation. Since MAD competes with Myc/Max 
dimer assembly in GF-deprived conditions, its 
p90RSK-induced degradation favors Myc/Max 
dimer formation and downstream activation of 
its G1/S phase promoting genes [284]. Myc 
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regulates this critical checkpoint by several con
sensual mechanisms. These include (a) the antag
onization of the activity and/or expression of cell 
cycle inhibitors p15, ARF, p21 and p27. 
Specifically, on p27 (b) Myc induces its proteaso
mal degradation through the upregulation of the 
SCFSKP2 complex which regulates Cul1, Cks1, and 
Skp2 (reviewed in [285]; (c) Myc directly stabilizes 
the CyclinE/CDK2 complex by dimerizing with 
Max [286] and mediating the mTORC2- 
dependent up-regulation of E2F1 [287] which is 
an established transcriptional activator of Cyclin 
E [288]. Finally, (d) Myc represses the CDKN1B 
promoter by direct interaction and inhibition of 
FOXO3a, transcription factor known to upregulate 
CDKN1B expression [289]. Interestingly, Myc reg
ulates mitochondrial functions such as oxygen 
consumption, pyruvate/lactate production and 
ATP generation which have been found to be an 
essential requirement to enable rapid cell cycle 
entry [290]. Another mechanism used by Myc to 
promote cellular growth beyond its Polymerase-II 
dependent transcriptional activity targeting G1 
phase genes, relates to its Pol-II independent abil
ity to stimulate Polymerase-I-mediated transcrip
tion of the ribosomal DNA gene which is a key 
mechanism for ribosomal biogenesis and the 
housekeeping gene products synthesis occurring 
in S phase. Myc exert such direct stimulatory effect 
by binding and activating Pol-I core TF SL1 at the 
promoter level [291].

E2F
E2F regulates the expression of genes relevant for 
cell proliferation most of which involved with the 
G1/S cell cycle checkpoint and has a specific role 
in determining the correct timing for G2 cell cycle 
transition [292]. E2F exerts its function as an het
erodimer combination of two groups of conserved 
gene products (E2F1-5 and DP1-3), mainly via 
conditional and sequential dimer interaction and 
complex formation with the RB (“pocket”) pro
teins (also known as p107 and p130) where the 
unbound E2F dimer form has activating functions 
while the E2F dimer-RB complexed form exerts 
repressing transcriptional functions (reviewed in 
[293]. E2F has been found regulated by mTORC2 
through MYC which establishes a direct exploita
ble axis linking the IGF signal to its transcriptional 

functions [287]. E2F activity is further regulated by 
physical interaction with p53 (reviewed in [294] 
Sp1 [295], Cyclin A [292] and Cyclin F [296].

Egr-1
The interest between this early response gene and 
the IGF system stands on the positive feedback 
between its induction by mitogenic growth factors 
and its mediated transcriptional activation of the 
Igf2 and Igf1r genes [297,298]. Egr-1 has been 
found to regulate directly multiple tumor suppres
sor genes including TGFβ1, p53, Fibronectin and 
PTEN [299]. In particular, for the PTEN regula
tion, Egr-1 has been found to be part of an in vivo 
AKT-Egr1-ARF-PTEN as part of a feedback inhi
bition on the PI3K signal [300]. Interestingly, the 
involvement of Egr-1 implies its Sumoylation 
which requires post-transcriptional priming pro
vided by direct phosphorylation from AKT [300].

Insulin/IGFs-induced ribosomal biogenesis by 
RNA Polymerase I&III and growth/cell-cycle- 
regulated transcription by RNA Polymerase II

The process of ribosomal biogenesis refers to the 
sum of the events leading to the synthesis of mature 
ribosomal subunits in the cell. To grasp the relevance 
and potential of ribosomal biogenesis for both cel
lular growth and proliferation maybe the most com
pelling case can be made by the results of the 
Telomere-to-Telomere Consortium project for the 
full sequencing of the human genome in which the 
number of ribosomal genes for the haploid genome 
has been clearly established at 209 copies (409-/ 
+9 per diploid cell) [302]. This level of intrinsically 
designed redundancy allows a tremendous burst in 
protein translation along with the enzymatic activ
ities required to synthesize all other non-proteic 
components of the cell. It further implies that sus
tained and coordinated control signal is required by 
hormones and growth factors of the insulin and IGF 
family towards ensuring the required amount of 
ribosomal content and activity in the growing/pro
liferating cell. The ribosome structure contains dedi
cated constitutive RNAs and proteins and their 
synthetic process is regulated by all three human 
polymerases, each responsible for the synthesis of 
a dedicated component. Specifically, Polymerase 
I and III for its structural RNA components, and 
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Polymerase II for the genes coding for the ribosomal 
proteins (reviewed by [303]. Furthermore, this pro
cess is regulated during cell-cycle [304,305] and sti
mulated by Insulin and IGFs [306–308]. In 
particular, a number of evidences have shown 
a rapid activation of ribosomal gene transcription 
by Polymerase I to be activated by Insulin and IGFs 
within 10 minutes and to reach maximal activation 
by 30 minutes [309–311]. As expected, given the 
macromolecular and the above mentioned hetero
geneous composition of the ribosome, a large 
amount of mechanisms need to participate to the 
control of its synthesis and function. Only at the level 
of the ribosomal gene transcription by Polymerase I, 
insulin-, IGFs- and cell-cycle-regulated kinases such 
as ERK, PI3K110α and CK2, have been shown to 
increase (via direct phosphorylative events) 
Polymerase-I transcription factors RRN3-TIFIA 
and UBF [108,312–314]. Similarly, insulin and IGF- 
regulated factors have been involved in the regula
tion of Polymerase-III [307] which gene products are 
key structural requirements for both ribosomal 
structure and the overall translational function. 
Since animal gene ablation studies have demon
strated the role of the IRS1-PI3K-PDK1-AKT- 
mTORC1-S6K1 axis in growth and cell cycle control 
(as summarized in Table 2), and given the depen
dence of growing cells from the structural genes 
transcribed by Pol-I and Pol-III activities, it is rea
sonable to consider them as rate limiting mechan
isms for cell growth. Although both Pol-I and Pol-III 
activities are cell cycle regulated and Pol-I activity is 
specifically silenced at mitosis through p53- 

dependent and independent mechanisms [304,315], 
they do not seem to have a direct role in supporting 
the mitotic process. While the key biological contri
bute of Polymerase I and III genes relates to the 
synthetic apparatus of the cell mainly conveyed in 
activities occurring in the homonymous (“S”: 
Synthetic) cell cycle phase, Polymerase II- 
transcribed gene products and underlying transcrip
tional activity is required for both cellular growth 
and division. Specifically, Polymerase II involvement 
in both cell growth and cell-cycle has been shown 
based upon the established evidences proving its 
direct involvement (1) in ribosomal biogenesis 
through the transcription of all the ribosomal pro
teins which constitute the ribosome macromolecular 
complex (reviewed by [303]) and, (2) through the 
Cell-Cycle specific role of its core transcription fac
tor component TAF250 also referred as TAF1, part 
of its TAFIID complex, which has been shown to 
correspond to the gene product CCG1, 
a transcription factor required for G1/S transition 
[316]. Since TAF1 is a phylogenetically required gene 
for the G1/S boundary, this makes Polymerase II 
activity a key transducer of proliferative signals 
being directly involved in all the cell cycle boundary 
junctions (G1/S and G2/M). Nonetheless, TAF1, has 
also been found to stimulate Pol-I activity outside 
the TAFIID complex via UBF carboxy terminal tail 
interaction [317] although the physiologic and 
pathologic relevance of this mechanism remains to 
be determined. Indeed, several studies have shown 
that cells spanning from prokaryotic to human types 
bear an intrinsic mechanism for the coordination of 

Figure 4. Proposed relationship between cellular growth, cell division and relative Polymerases activities in response to the Insulin/ 
IGF proliferative signal. Refer to text for further explanation. [337](renumber to 336).
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cell growth versus cell division [318]. Although we 
have a better picture about the molecular transducers 
involved in the process triggering either cell growth 
(affecting cell size) and proliferation (by number of 
mitoses) as well as having gained a broader under
standing of the Insulin and IGFs signal mediated by 
its receptors, the exact mechanism for the coordina
tion of these two co-dependent and partially and 
intrinsically overlapping processes, remain to be elu
cidated. The few hypotheses that are supported by 
several authors and the current review are repre
sented in figures 3 and 4 where particular emphasis 
has been given to the relative and/or predominant 
activation of rate-limiting transducers of the IGF 
signal considering as ultimate growth and mitotic 
gatekeepers all three RNA polymerases, namely 
Pol-I/III as exquisitely favoring S phase and cellular 
size, and Polymerase II, covering all cell-cycle phases 
but specifically bearing an intrinsic critical role for 
both G1/S and G2/M checkpoints. In this scenario, 
considering the double and parallel role of growth 
factor signal and nutrients availability (either in 
defect and in excess) to regulate growth and/or 
mitosis, the hypotheses fitting our current knowl
edge have been revisited and graphically conveyed in 
Figures 3 and 4 considering that they are an exem
plification of a more integrated but widely estab
lished growth and cell division signal network 
discussed herein and further summarized in 
Figure 2 and Tables 2, 3 and 4.

Considerations and perspectives

Our present critical analysis of retrospective and cur
rent research on the role of the IGF system and cell 
cycle related signal in mediating growth and prolif
eration can be reflected, respectively, in: (a) the revis
ited role of the IGF ligands in physiology and 
abnormal growth/proliferative conditions such as 
cancer, (b) the revisited role of their cell signaling 
transducing receptors, and (c) the functional distinc
tion of the oncogenic- versus tumor-suppressing 
intracellular kinase network towards regulation of 
the cellular, machinery underlying the growth/mitotic 
effects. As far as the actual role of the IGF ligands for 
the regulation of cellular, tissues and body growth in 
mammalians, we find that, beyond the large amount 
of in vitro evidence produced in regards to the affinity 
between each insulin/IGF ligand and their highly 

conserved RTKs (namely, IGF1R, InsR-A/B, and 
their heterodimeric hybrids), an additional tier has 
been missing or underscored towards proper evalua
tion of the growth/proliferative effects of IGF-I, IGF- 
II and insulin in vivo. This missing frame relates to the 
IGF ligands and receptors contextual mode of action 
depending on the place and timing of their expression 
and protein stability determining actual physical 
interaction and signal duration. We believe that this 
very simple concept established by both clinical and 
experimental work has been diluted and is often miss
ing in the experimental design leading to reductionis
tic conclusions with the result of flattening critical 
biological differences that could be otherwise properly 
exploited towards sound actionable interventions. 
Specifically, insulin production, secretion and rapid 
clearance under physiologic conditions, let alone its 
harmful hypoglycemic effect when sustained levels of 
insulin are produced in a normal human body, per se 
allows to rule out insulin from sustaining pathological 
proliferative tissue growth in vivo. This with the only 
exception of pancreatic insulinoma as a benign con
dition linked to its restricted paracrine/autocrine 
effect. This consideration leaves IGF-I and IGF-II as 
the main IGF factors functionally affecting cell growth 
and division under physiologic and pathologic condi
tions. This, we believe, is where retrospective and 
current findings allow to draw novelty that can 
guide field scientists to establish new findings and 
working hypotheses. In fact, although to date the 
amount of experimental work on the IGF ligands 
has been focusing on IGF-I in vitro, giving the 
wrong perception of IGF-II as a complementary fac
tor for the activation of the IGF1R, specific and strong 
lines of evidence place indeed IGF-II at the very heart 
of the IGF system-mediated control of the growth and 
mitogenic cellular program. We here stress out that 
contextual expression holds the interpretation key for 
understanding the growth effects mediated by IGF-I 
compared to those mediated by IGF-II. Namely, IGF- 
I exerts its physiological functions mostly via endo
crine and paracrine action mode. Specifically, IGF-I 
endocrine effect is linked to GH stimuli, while its 
paracrine effect is linked to its secretion by stromal 
tissue which provided a physiological IGF trophic 
growth stimuli for the maintenance of cell and tissue 
proteic structures in the whole body linked to its 
anabolic (insulin-like) promoting cellular effect. On 
the contrary, most of the IGF-II production and 

CELL CYCLE 23



growth/proliferative-promoting effects are tightly 
linked to its autocrine loop, which is mostly noticeable 
during fetal growth and in malignancy. We wont 
reiterate herein the revisited role of the IGF ligands/ 
receptors and IGFBP network which has been dis
cussed elsewhere [29,319]. Instead, upon critical 
review of the work related to the IGF binding proteins 
we find that: (1) there are no consistent and reprodu
cible evidences in the literature supporting a key role 
from any of the previously classified IGF Binding 
Proteins (IGFBPs) towards exerting their physiologi
cal role as IGF-inhibiting factors by purely or mostly 
interfering with the IGF-growth/proliferative signal 
in vivo; this suggests that other IGF-independent 
functions are predominant in the whole organism; 
(2) the only demonstrated inhibitor of the IGF 
growth/proliferative effects with a validated effect 
in vivo is the IGF-II scavenging transmembrane pro
tein traditionally known as Igf2r/mannose-6-phos
phate “receptor” for which we propose the 
physiologically and functionally adherent new acro
nym of SpI2-6 for “Scavenger TM-protein for Igf2 and 
mannose-6-phosphate”. Although cumulative evi
dence has established that the binding of IGF-II to 
SpI2-6 does not actively trigger an active intracellular 
response, and it would have been sufficient to revise 
such misleading definition much earlier, we believe it 
is still important to adopt the proposed new acronym 
so to be able to restrict the wording “receptor” to any 
other gene product with measurable high affinity for 
a given ligand which triggers a pro-active biological 
effect. This typically involves an increase of the recep
tor enzymatic activity and the consequent activation 
of a second messenger system (where the first mes
senger is provided by the ligand). On the contrary, 
SpI2-6 has consistently proven its IGF-II scavenging 
role towards buffering the stimulatory autocrine effect 
of both circulating and secreted IGF-II under both 
physiological and pathological conditions. This func
tion of SpI2-6 per se supports its established tumor- 
suppressing capability as widely demonstrated by 
gene knockout studies. As far as the analysis of the 
IGFs- regulated intracellular transducing network in 
terms of oncogenic versus tumor-suppressing activ
ities towards the control of cellular, tissue and whole 
body growth, the present review confirmed that, con
stitutive gene ablation/silencing of the oncogenic 
components of the IGF signaling clearly associates 
with a noticeable cell size/number defect and an 

impaired/small phenotype. On the contrary, the con
stitutive ablation of tumor-suppressing components 
of the IGF growth/proliferative signal (namely, 
GSK3β, 4EBP1 and FOXO1A) do not lead to an 
expected overgrowth/hyper-sized phenotype (eg as 
observed in the SpI2-6/igf2r KO mouse). In spite of 
this, the reviewed work supports that a minimum 
level of redundancy in IGF growth/proliferation sig
nals must be in place to allow cellular and whole 
organism viability. The general perception is that the 
oncogenic components of the cellular pathway regu
lated by this GF/RTK family carries higher redundant 
potential compared to its tumor-suppressing counter
part towards control of the same growth/proliferation 
effects. In other words, while the constitutive gene 
knockout of an oncogenic-acting component of the 
IGF signal preserves a functional cross talk between 
the cell-cycle machinery and the supporting pre- 
mitotic metabolic growth program (active during 
S phase), the constitutive block of a tumor- 
suppressing component of the IGF pathway appears, 
somehow, to cause loss of coordination between the 
molecular events supporting cell growth versus the 
events solely dedicated to cell division. This view is 
consistent with the results of the gene KO studies for 
major IGF-regulated tumor-suppressing transducers, 
namely, 4EBP1, GSK3β, and FOXOA1. Accordingly, 
in all these cases, the constitutive gene block does not 
result in an overgrowth phenotype suggesting func
tional disconnection between cellular growth and cell 
cycling. A condition, which is minimally compliant 
with a viable organism. This hypothesis is further 
epitomized by a study in GSK3−/− mice where, 
although single gene ablation is not compatible with 
life, this growth-suppressing gene deletion in the pan
creatic tissue is still able to rescue the major prolif
erative and metabolic defect caused by the parallel 
block of the insulin receptor towards rescuing normal 
pancreatic cells and organ growth [215]. Although an 
exponential amount of novel findings is expected to 
fill-in the blanks on the mechanistic details by which 
the IGF family of ligands and TK receptors regulates 
growth and proliferation going forward, we believe 
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that several pieces of a previously challenging puzzle 
have finally come into place. This provides the long- 
awaited evidence-based landscape for these factors’ 
mechanism of action which is mature for biologically 
sound molecular interventions.

Conclusions

The IGF family of ligands and receptors are major 
drivers of cellular growth and division. Under phy
siological circumstances they contribute to cell 
growth through two broad biological strategies. The 
first strategy involves the activation of the cell syn
thetic program. Although under diversified biologi
cal circumstances, these IGFs/IGF receptors effects 
are achieved via upregulation of most anabolic sig
naling pathways. Specifically, the IGFs signal 
enhances the rate-limiting activities of a specific set 
of enzymes along with the RNA-Polymerasic 
machinery regulating cell growth and proliferation 
acting at transcriptional and post-transcriptional 
checkpoints. Among these regulatory crossroads 
are protein translation, ribosomal biogenesis, lipid 
synthesis associated to pre-mitotic cell membranes 
expansion, and nucleic acids pool synthesis and spe
cific gene expression. Furthermore, IGFs and their 
receptors enhance both directly and indirectly the 
molecular events responsible for G1/S and G2/M 
cell-cycle transitions. These effects are exerted 
in vivo as a result of the integrated effect of IGF-I 
and IGF-II via respective activation of the IGF1R 
and the Insulin receptor fetal variant (IR-A), along 
with their heterologous (hybrid) receptors counter
parts. While paracrine IGF-I plays a growth/division 
promoting role under physiologic and in part under 
pathologic conditions, autocrine IGF-II plays 
a major function in angiogenic/invasive cancer cells 
via activation of both the IGF1R and the IR-A. These 
ligand/receptors interactions determines a series of 
acute and delayed signaling events depending upon 
the length of the ligand availability as well as on the 
contextual/ectopic expression of their intracellular 
signaling components (isoforms, paralogs and 
mutated fusion variants). The balance between 
ligand/receptor protein expression and interaction 
duration along with the co-expression of down
stream signaling components and relative protein 
variants affects the net outcome of such signal 

towards cellular growth and division. The acquired 
structural/functional knowledge of the involved IGF 
signal components reviewed herein shed light on the 
positive and negative feedbacks generated at core 
intermediate signal checkpoints leading to the dis
tinctive and coordinated regulation of cell size and 
number. Overall, strategies meant to block the 
growth and proliferative effects exerted by the IGF 
system in the personalized medicine age will reach 
a desirable predictive/preventive/interventional level 
upon adoption of proteo-transcriptomic profiling of 
the patient cancer cell along with the translation of 
the knowledge discussed herein into smart IT tools.
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