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ABSTRACT
Background: Diabetic nephropathy (DN) has become the major cause of end-stage kidney dis-
ease and is associated to an extremely high cardiovascular (CV) risk.
Methods: We screened 318 DN patients for 23 SNPs in four glucose transporters (SLC2A1,
SLC2A2, SLC5A1 and SLC5A2) and in KCNJ11 and ABCC8, which participate in insulin secretion.
Regression models were utilised to identify associations with renal parameters, atherosclerosis
measurements and CV events. In addition, 506 individuals with normal renal function were also
genotyped as a control group.
Results: In the patient’s cohort, common carotid intima media thickness values were higher in
carriers of ABCC8 rs3758953 and rs2188966 vs. non-carriers [0.78(0.25) vs. 0.72(0.22) mm,
p< 0.05 and 0.79(0.26) vs. 0.72(0.22) mm, p< 0.05], respectively. Furthermore, ABCC8 rs1799859
was linked to presence of plaque in these patients [1.89(1.03-3.46), p< 0.05]. Two variants,
SLC2A2 rs8192675 and SLC5A2 rs9924771, were associated with better [OR ¼ 0.49 (0.30-0.81),
p< 0.01] and worse [OR ¼ 1.92 (1.15-3.21), p< 0.05] CV event-free survival, respectively. With
regard to renal variables, rs841848 and rs710218 in SLC2A1, as well as rs3813008 in SLC5A2, sig-
nificantly altered estimated glomerular filtration rate values [carriers vs. non-carriers: 30.41(22.57)
vs. 28.25(20.10), p< 0.05; 28.95(21.11) vs. 29.52(21.66), p< 0.05 and 32.03(18.06) vs. 28.14(23.06)
ml/min/1.73 m2, p< 0.05]. In addition, ABCC8 rs3758947 was associated with higher albumin-to-
creatinine ratios [193.5(1139.91) vs. 160(652.90) mg/g, p< 0.05]. The epistasis analysis of SNP-
pairs interactions showed that ABCC8 rs3758947 interacted with several SNPs in SLC2A2 to sig-
nificantly affect CV events (p< 0.01). No SNPs were associated with DN risk.
Conclusions: Polymorphisms in genes determining glucose homeostasis may play a relevant
role in renal parameters and CV-related outcomes of DN patients.
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Introduction

Cardiovascular disease (CVD) is responsible for over
sixty percent of the life-years lost from diabetes.
Indeed, the risk of dying from CVD is two times higher
for diabetics than for non-diabetic subjects [1]. Up to
40% of patients with diabetes develop diabetic nephr-
opathy (DN), which has become the major cause of
end-stage kidney disease (ESKD) worldwide, primarily
because of the global obesity pandemic [2]. These DN
patients are at such an elevated cardiovascular (CV)
risk that is far more likely for them to die from CVD
than from the deterioration of their renal function.

The mechanisms underlying the solid link between DN
and CVD are, however, poorly understood, and trad-
itional CV risk factors, although commonplace in these
patients, do not fully account for the observed ele-
vated risk [3].

Diabetes has been consistently linked to macro and
microvascular complications, mainly caused by hyper-
glycaemia, whose persistence results in increasing
reactive oxygen species (ROS) generation, disruption
of cell functioning and formation of abnormal proteins
[4]. This hyperglycaemia is a key CV risk factor for
patients with type 2 diabetes mellitus (T2DM). It has
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been reported that lowering of glucose levels reduce
CV events (CVE) provided that (i) treatment is initiated
early, (ii) hypoglycaemia is avoided and (iii) thera-
peutic regimes are individualised [5–7], although there
are also some contradictory reports [8,9]. The advent
of the SGLT2 (sodium/glucose cotransporter 2) inhibi-
tors (SGLT2i), which increase urinary excretion of glu-
cose as well as decreasing blood pressure (BP), has
provided a major advance for the prevention and
treatment of diabetes, CKD, and CV events, since the
obtained decrease of albuminuria, prevents estimated
glomerular filtration rate (eGFR) decline and reduces
CV mortality [10,11].

A critical step in glucose homeostasis is its trans-
port across the cells of the proximal tubule through
two different classes of transporters, namely glucose
transporters GLUT1 and 2, encoded by the SLC2A1-2
genes, and sodium-dependent glucose transporters
SGLT1 and 2, encoded by SLC5A1-2 [12]
(Supplementary Figure S1). Several SNPs in these loci,
such as rs9934336, rs3813008, rs371505974 or
rs200406921, have been related to impaired glucose
homeostasis [13], the risk of DN [14,15] and CVD [16].
In addition, two proteins, namely Kir6.2 (potassium
channel subunit) (KCNJ11 gene) and SUR1 (sulfony-
lurea receptor-1) (ABCC8 gene), form together an ATP-
sensitive potassium channel that is key in glucose-
induced insulin secretion by pancreatic beta cells
(Supplementary Figure S1). Genetic variability in these
two genes, most notably rs5219, has also been associ-
ated with glucose imbalance, T2DM and CVD [17–20].

Our aim was to target a set of genes that interact
with each other to enable glucose reabsorption and
insulin secretion by determining whether 23 common
SNPs in their loci were associated with CV traits and
events in DN patients. An additional objective was to
identify variants related to DN risk.

Patients and methods

Participants

The present study was performed on patients and
controls previously included in the NEFRONA reposi-
tory. This was a collection of biological samples from
Spanish CKD patients and healthy individuals who
were recruited between 2010 and 2011 and were fol-
lowed for 4 years to register atherosclerosis measure-
ments and CV traits and events [21]. For this work, we
focussed on a subgroup of CKD patients with DN. Our
study was approved by the Scientific Committee of
the NEFRONA group, which allowed us to screen sam-
ples from 318 patients with DN (stage 3 CKD or

higher) and 506 controls with normal renal function
for variants in genes related to glucose homeostasis.

Samples of the NEFRONA repository were analysed
in this work if they corresponded to (i) patients over
18 years of age with T2DM (fasting glucose >126mg/
dL or non-fasting glucose >200mg/dL) and deterior-
ation of kidney function [eGFR <60ml/min/1.73 m2

and >300mg albumin (or >500mg protein) in 24-
hour urine]; or (ii) healthy subjects over 18 years of
age with eGFR > 60ml/min/1.73 m.2 The diagnosis of
classical diabetic nephropathy was made using clinical
criteria (proteinuria higher than 500mg/day or micro-
albuminuria higher than 300mg/day associated with
documented diabetic retinopathy (confirmed by exam-
ining the back of the eye). A kidney biopsy was car-
ried out to confirm the diagnosis in those cases where
the patient did not present diabetic retinopathy and
proteinuria was higher than 1 g/day, after patient con-
sent was obtained. Other possible diagnoses were
adequately ruled out using clinical protocols for glo-
merulopathy and immunological screening. NEFRONA
exclusion criteria included previous history of any CV
event, transplantation of any organ, carotid artery sur-
gery, active infection, pregnancy, or life expectancy
below one year.

A schematic representation of the study design is
depicted in Supplementary Figure S2.

Clinical variables

Diagnosis and staging of the CKD patients was carried
out with the Kidney Disease Improving Global Outcomes
(KDIGO) classification and the CONSORTIUM-CKD equa-
tion (www.kidneyriskfailure.org). Renal function was esti-
mated with The Modification of Diet in Renal Disease
(MDRD) equation.

High blood pressure was diagnosed according to
2013 ESH/ESC Guidelines for the management of arter-
ial hypertension. Dyslipidemia diagnosis was made
using the criteria of 2016 European Guidelines on
Cardiovascular Disease prevention in clinical practice.

The presence of atheromatous plaques was
assessed by arterial ultrasound as previously described
[22] in ten different territories according to the
Mannheim IMT Consensus guidelines [23] and the
American Society of Echocardiography [24]. Three lon-
gitudinal measurements of intima media thickness
(IMT) were carried out in the right and left common
carotid arteries (CC). Atheromatous plaques were con-
sidered when IMT was >1.5mm. CV risk was evaluated
in a 4-year follow-up (54months) during which the
likelihood of experiencing CV events was recorded.
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Events considered were acute myocardial infarction,
acute coronary syndrome, coronary catheterisation
requiring angioplasty, coronary bypass, typical angina
with positive stress tests, sudden death, cerebrovascu-
lar accident, and peripheral arterial disease. Aneurysm
was also observed in the larger NEFRONA cohort of
CKD patients, but no individuals with DN analysed in
this work experienced this event.

All subjects gave written informed consent for their
participation in the study, which was approved by the
Ethics Committee of the Badajoz University Hospital
(No 18002909), and it was carried out in accordance
with the Declaration of Helsinki and its subse-
quent revisions.

Genotyping

DNA for the genotyping analyses was obtained from
whole-blood samples by QIAamp DNA Blood kits
(Qiagen, Valencia, CA, USA) and stored at 4 �C in ster-
ile plastic vials until analysis. Twenty-three SNPs in
four genes coding for glucose transporters (SLC2A1,
SLC2A2, SLC5A1 and SLC5A2) and in two genes
(KCNJ11 and ABCC8) key for insulin secretion were
studied. These SNPs were selected based on previous
reports stating their influence on glucose homeostasis,
T2DM, DN and/or associated CV traits [13,14,25–36].
Genetic analyses were carried out by allelic discrimin-
ation using a customised panel (TaqManVR OpenArray
Genotyping) on a QuantStudioTM 12 K Flex Real-Time
PCR System (Life Technologies, Carlsbad, CA, USA) at
the Centro Nacional de Genotipado-Instituto de Salud
Carlos III (CeGen-ISCIII; Madrid, Spain). Each run
included a trio of Coriell Institute samples with known
genotypes. Individuals with missing genotypes (rang-
ing from 0.2% to 1.2% depending on the SNP) were
ruled out in each analysis

Statistical analyses

Categorical variables were compared with Chi-square
test, whilst differences between continuous variables
were assessed by T-Student’s/Mann–Whitney or
ANOVA/Kruskal–Wallis, depending on the normality of
the data and the numbers of groups compared. The
effect of SNPs was evaluated by regression analyses
adjusting by confounding variables that were selected
based on univariate tests or by clinical criteria.
Significant covariates used included demographics
(age, sex, body-mass index) and clinical parameters,
namely hyperlipidaemia, hypertension, and CKD stage.
A dominant model of inheritance was chosen for the

genetic analyses, as the resulting comparison groups
were the most balanced in terms of size, as conducted
in previous studies of our group with CKD patients
[37,38]. The CV impact of the SNPs was analysed by
Kaplan–Meier curves, comparing the different geno-
types with the log-rank test. SNPs with p-values lower
than 0.1 were included in Cox regression models to
establish their effect after controlling for traditional CV
risk factors. Patients were followed up until the earliest
of CV event, death or end of study.

Gene-gene interaction (epistasis) analyses were per-
formed by using log-likelihood ratio tests adjusted by
relevant covariates in a dominant model. In the result-
ing plots, the diagonal line contains the P values from
likelihood ratio test for the crude effect of each SNP,
which are sorted by their genomic position. The upper
triangle in the matrix contains the P values for the
interaction (epistasis) log-likelihood ratio test. The
lower triangle contains the P values from likelihood
ratio test comparing the two-SNP additive likelihood
to the best of the single-SNP models. The network
visualisation of the gene-gene interactions was gener-
ated by Cytoscape software package v. 3.9.1.

Statistical analyses were performed with the
SNPassoc (2.0-11) in the R environment v. 4.1.3 and
with IBM SPSS software (SPSS Inc., Chicago, IL, USA,
v. 22.0).

Results

Main clinical and demographic characteristics of the
population are described in Table 1. Median age (and
interquartile range) was 57 (17) years for the control
group and 63 (18) years for DN patients. The percent-
age of males was predominant in both groups (54.2
and 65.4%, respectively). Patients had significantly
higher values of blood pressure and CCIMT and a
higher incidence of hypertension, hyperlipidaemia,
atherosclerotic plaques, and CV events experienced in
the 4-year follow-up [median follow-up ¼ 46.46
(4.11) months].

Two out of the 23 SNPs, rs371505974 and
rs200406921, were monomorphic in our population
and hence were ruled out from further analyses. The
remaining 21 SNPs did not show deviations from the
Hardy-Weinberg equilibrium (p> 0.05 in all cases). The
percentage of missing genotype data ranged from 0.2
to 1.2 depending on the specific SNP. Supplementary
Table S1 summarises the main characteristics and pre-
dicted consequences of the SNPs studied. Statistical
power calculations were carried out considering an
arbitrary effect size of 2.0 for genetic variants and a
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type-I error of 0.05. With the reported incidence of the
disease in the population [39] and the available sam-
ple size available, the statistical power of the study to
identify genetic associations ranged from 0.821 to
0.944 depending on the minor allele frequency
(Quanto v1.2.4, USC Los Angeles, USA)

Risk analysis

Out of the 21 SNPs assayed, carriers of the rs3758947
A-allele in the ABCC8 gene were at higher risk of DN
than non-carriers [OR ¼ 1.38 (1.02-1.89), p< 0.05].
However, after controlling for meaningful covariates,
namely age, sex and BMI, the association lost statis-
tical significance. None other risk associations were

observed. Supplementary Table S2 shows the results
of the risk analysis obtained for all the SNPs.

Associations with renal function

We then analysed the cohort of 318 DN patients to
identify associations with renal parameters. Linear
regression analysis controlling for sex, hyperlipidaemia,
CCIMT and CKD stage, showed that two SNPs in
SLC2A1 (coding for the GLUT1 transporter), rs841848
and rs710218, and the rs3813008 variant in SLC5A2
(coding for SGLT2) were associated with eGFR values.
Median (and interquartile range) values of carriers vs.
non-carriers for these 3 SNPs were 30.41 (22.57) vs.
28.25 (20.10), p< 0.05; 28.95 (21.11) vs. 29.52 (21.66),

Table 1. Demographic and clinical characteristics of the population of study.
Controls DN

N 506 318
Age (yrs) 57 (17) 63 (18)���
Men 274 (54.2) 208 (65.4)��
BMI (kg) 27.8 (5.33) 29.12 (7.95)��
Albumin/Creatinine (mg/g) 7.2 (45.12) 186.41 (841.56)���
eGFR (ml/min/1.73m2) 89.19 (21.8) 29.43 (21.2)���
Stage of CKD
3 120 (37.7)
4-5 125 (39.3)

Dialysis 73 (23.0)
Smoking
Non-smoker 195 (38.5) 123 (38.7)
Current-smoker 106 (20.9) 66 (20.8)

0Former-smoker 205 (40.5) 129 (40.6)
Hypertension
No 325 (64.2) 4 (1.3)
Yes 181 (35.8) 314 (98.7)���

Hyperlipidaemia
No 327 (64.6) 58 (18.2)
Yes 179 (35.4) 260 (81.8)���

Pulse pressure (mmHg) 51 (16) 70 (27)���
Systolic blood pressure (mmHg) 132 (24) 150 (33)���
Dyastolic blood pressure (mmHg) 80 (14) 79.5 (16)
Triglycerides (mg/dL) 100 (68) 130 (89)���
Total cholesterol (mg/dL) 203.2 ± 34.74 170.38 ± 38.26�
LDL-Cholesterol (mg/dL) 126.68 ± 32.03 94.86 ± 34.17
HDL-Cholesterol (mg/dL) 51.1 (20) 44 (18)���
Calcium (mg/dL) 9.4 (0.55) 9.3 (0.74)���
Phosphorus (mg/dL) 3.49 (0.79) 4 (1.33)���
Calcium-phosphorus product 29.07 (47.44) 37.2 (11.15)���
Glycated haemoglobin (%) 5.6 (0.9) 7.1 (1.8)���
Fasting sugar (mg/dL) 97 (19) 139.5 (80)���
TyG 8.48 (0.80) 9.07 (0.96)���
Insulin 6 (1.2) 244 (76.7)���
ACEi 43 (8.5) 101 (31.8)���
ARBs 100 (19.8) 200 (62.9)���
Oral hypoglycaemic agents 45 (8.9) 102 (32.1)���
CCIMT (mm) 0.71 (0.21) 0.76 (0.23)���
CV Event
No 497 (98.2) 253 (79.6)
Yes 9 (1.8) 65 (20.4)���

Presence of plaque
No 229 (45.3) 57 (17.9)
Yes 277 (54.7) 261 (82.1)���

Data are shown as median (interquartile range), mean ± standard deviation or count and percentages in parenthesis.
BMI: body mass index; CCIMT: common carotid intimate media thickness; DN: diabetic nephropathy; eGFR: estimated
glomerular filtration rate; TyG: Triglycerides and glucose index. ACEi: angiotensin converting enzyme inhibitors; ARBs:
angiotensin II receptor blockers. �p< 0.05, ��p< 0.01, ���p< 0.001.
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p< 0.05 and 32.03 (18.06) vs. 28.14 (23.06) ml/min/
1.73 m2, p< 0.05, respectively (Figure 1(A–C)). With
regard to proteinuria, measured as albumin-to-creatin-
ine ratios, ABCC8 rs3758947 was significantly associ-
ated with higher median values in the DN patients
[193.5 (1139.91) vs. 160 (652.90) mg/g creatinine,
p< 0.05; Figure 1(D)]. Supplementary Table S3 shows
the detailed statistical model obtained for these
associations.

Associations with atherosclerosis parameters and
cardiovascular events

We examined genetic associations with measurements
of atherosclerosis in the DN patients. After adjusting
linear regression models for confounding factors (age,
sex, hyperlipidaemia, hypertension, BMI and CKD
stage), we observed that CCIMT median values were
higher in carriers of two SNPs in ABCC8, rs3758953
and rs2188966, compared with wild-type subjects
[0.78 (0.25) vs. 0.72 (0.22) mm, p< 0.05 and 0.79 (0.26)
vs. 0.72 (0.22) mm, p< 0.05, respectively] (Figure 2
and Supplementary Table S4). We also found that
ABCC8 rs1799859 was associated with higher [OR ¼
1.89 (1.03-3.46), p< 0.05] risk of atherosclerotic plaque
after controlling for confounding variables, whilst
KCNJ11 rs5219 showed a trend towards lower risk [OR
¼ 0.54 (0.29-1.03), p< 0.05].

Regarding CV events, DN increased their incidence
after adjusting for traditional risk factors. A total of 65

patients (20.4%) experienced these events in the four-
year follow-up compared with only 9 subjects (1.8%)
in the control group [OR ¼ 5.39 (1.61-18.00), p< 0.05].
The proportion of patients affected within the DN
cohort is inferior to other series reported, which can
be explained by the fact that none of our patients
had experienced CV events prior to their enrolment.
Demographic and clinical features of DN patients who
experienced or not CV events are shown in Table 2.

Genetic analyses to determine associations with CV
events in the control group could not be tested, as
only 9 subjects experienced CV events. Survival ana-
lysis in the DN cohort revealed two SNPs with a sig-
nificant impact. SLC2A2 rs8192675 was associated with
an increased estimated CV event-free median (inter-
quartile range) survival [49.19 (0.96) months compared
with 44.69 (1.38) for the wild-type genotype; log-rank
p< 0.01]. In contrast, patients harbouring the SLC5A2
rs9924771 SNP presented lower survival than non-car-
riers did [46.27 (1.18) vs. 48.40 (1.11) months, log-rank
p< 0.05]. Figure 3 shows Kaplan-Meier curves depict-
ing event-free survival for each of the mentioned gen-
otypes. The statistical significance of these associations
was maintained after controlling for traditional CV risk
factors in Cox regression models, which resulted in OR
values of 0.49 (0.30-0.81), p< 0.01 and 1.92 (1.15-3.21),
p< 0.05 for rs8192675 and rs9924771, respectively.

Table 3 shows the estimated impact on event-free
survival of a regression model including both SNPs
simultaneously.

Figure 1. Estimated glomerular filtration rate (eGFR) values according to the presence of rs710218 (A), rs841848 (B) and
rs3813008 (C) variants, and albumin-to-creatinine ratios (ACR) distributed by rs3758947 genotypes (D) in patients with diabetic
nephropathy. Manhattan plots show the p-value for the association of all the SNPs studied regarding eGFR (E) and ACR
(F). �p< 0.05.
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Multiple-SNP analysis

We finally conducted an epistasis study to evaluate
interactions between SNP pairs in the genes involved
in glucose homeostasis. In relation to parameters of
renal function, a quadrant corresponding to significant
associations between pairs located within the SLC2A1
gene locus and eGFR estimation was clearly noticeable
(p-values ranging between <0.05 and <0.01; Figure
4). In addition, the rs8192675-rs11920090 pair in
SLC2A2 showed a far higher influence on albumin-to-
creatinine (ACR) ratios (p< 0.01) than that of these
SNPs by separate (Figure 4). Regarding CV events,
ABCC8 rs3758947 was observed to interact significantly
(p-values <0.01) with several consecutive polymor-
phisms in SLC2A2 (Supplementary Table S5 shows spe-
cific p-values for all the SNP-SNP interactions
considering CV risk). Finally, the presence of plaque

was mostly associated with SNP pairs in the top left
quadrants, thus indicating interactions between
SLC5A2-SLC2A1 and SLC5A2-ABCC8. The highest signifi-
cance was observed for the SLC5A2 rs9934336-SLC2A1
rs710218 pair in relation to the presence of plaque
(p< 0.001; Figure 4). Supplementary Figure S3 shows a
network visualisation of the discussed interactions.

Discussion

Patients with DN not only show a disproportionately
higher risk of CVD than the general population, but
this risk is also greatly elevated in comparison with
diabetics who have normal renal function [40]. Given
the limitations of current DN biomarkers such as albu-
min urinary excretion, the identification of new
markers of the disease, particularly for its CV

Figure 2. Distribution of common carotid intima media thickness (CCIMT) values according to different genotypes of ABCC8 in
patients with diabetic nephropathy. The Manhattan plot shows the p-value for the association of all the SNPs studied. �p< 0.05.
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Table 2. Variables of interest in patients of diabetic nephropathy experiencing or not cardiovascu-
lar events.

No CVE CVE p Value

N 253 65
Age (yrs) 63 (19) 64 (15) 0.293
Sex

Women 93 (36.8) 17 (26.2) 0.071
Men 160 (63.2) 48 (73.8)

BMI (kg) 28.67 (8.54) 29.28 (5.48) 0.908
ACR (mg/g) 170.2 (818) 259.11 (2179) 0.526
eGFR (ml/min) 29.52 (21.25) 27.78 (20.17) 0.514
Stage of CKD

3 98 (38.7) 22 (33.8) 0.244
4-5 102 (40.3) 23 (35.4)

Dialysis 53 (20.9) 20 (30.8)
Smoking

Non-smoker 100 (39.5) 23 (35.4) 0.718
Current-smoker 53 (20.9) 13 (20)

Former-smoker 100 (39.5) 29 (44.6)
Hypertension

No 2 (0.8) 2 (3.1) 0.187
Yes 251 (99.2) 63 (96.9)

Hyperlipidaemia
No 46 (18.2) 12 (18.5) 0.542
Yes 207 (81.8) 53 (81.5)

Pulse pressure (mmHg) 71.1 ± 20 73.23 ± 20.52 0.723
Systolic lood pressure (mmHg) 150.04 ± 23.54 153.54 ± 25.63 0.635
Dyastolic blood pressure (mmHg) 78.94 ± 11.50 80.31 ± 12.87 0.471
Total cholesterol (mg/dL) 168 (49) 164 (60) 0.803
Triglycerides and glucose index 9.11 ± 0.78 9.13 ± 0.71 0.458
CCIMT 0.76 (0.21) 0.83 (0.30) p< 0.05
Presence of plaque

No 53 (20.9) 4 (6.2) p< 0.01
Yes 200 (79.1) 61 (93.8)

Glucose (mg/dL) 139 (81) 149 (77) 0.706
Calcium (mg/dL) 9.3 (0.71) 9.1 (0.8) 0.453
Sodium (mEq/L) 140 (3) 140 (4) 0.662
Potassium (mEq/L) 4.92 ± 0.6 5.11 ± 0.63 0.496

ACR: albumin-to-creatinin ratio; CCIMT: common carotid intimate media thickness.

Figure 3. Kaplan–Meier curves depicting cardiovascular event-free survival in patients with diabetic nephropathy carrying the
SLC2A2 rs8192675 (A) or SLC5A2 rs9924771 (B) polymorphisms.
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implications, has been pointed out as essential for risk
stratification, individualisation of treatment and identi-
fication of novel therapeutic targets [41–43]. In the
present study, we have focussed on the role that var-
iants in loci related to glucose homeostasis may play
in this regard.

Our findings show that several SNPs in the KCNJ11
and ABCC8 genes, both coding for subunits of the
ATP-sensitive potassium channel (KATP) that

participates in insulin secretion [44], were associated
with subclinical atherosclerosis (as shown by CCIMT
values) and with the presence of atherosclerotic pla-
que in the CKD patients. These two genes, which are
located on the same chromosome locus 11p15.1, are
only 4.5 kb apart and indeed genetic variants in both
loci have been reported to cause similar phenotypes.
Several SNPs in KCNJ11 were initially reported to be
linked to T2DM susceptibility [45] and subsequently to
vascular-related complications of T2DM such as hyper-
tension [46], coronary artery disease (CAD) [47] or dia-
betic retinopathy [48]. We observed that rs5219, a
nonsynonymous (Glu23Lys) SNP, showed a trend
towards lower presence of plaque. In line with this
finding, the variant allele in this locus has also been
related to decreased risk of CVD, both in the general
population [49] and in T2DM patients [50]. However,
no previous studies have been carried out in DN
patients, nor have there been studies aimed to deter-
mine the impact of rs5219 on atherosclerosis
measurements.

Table 3. Cox regression analysis showing the effect of
rs8192675 and rs9924771 on cardiovascular event-free survival
in diabetic nephropathy patients.

B SE Wald OR CI p Value

rs8192675 �0.69 0.26 7.27 0.50 0.30-0.83 0.007
rs9924771 0.631 0.26 5.76 1.90 1.14-3.19 0.015
Age 0.012 0.01 1.09 1.01 0.99-1.3 0.297
Sex 0.461 0.30 2.43 1.59 0.89-2.83 0.119
BMI �0.033 0.03 1.85 0.97 0.92-1.02 0.173
Hyperlipidaemia 0.156 0.33 0.23 1.17 0.62-2.22 0.634
CKD stage 0.533 0.18 8.93 1.71 1.20-2.42 0.003
Hypertension �0.952 0.77 1.52 0.39 0.09-1.76 0.218

BMI: body mass index; CKD: chronic kidney disease.

Figure 4. Effect of interactions between SNPs in glucose homeostasis genes on several clinical phenotypes in CKD patients.
Significant hits discussed in the text are highlighted in red. The diagonal line contains the P values from likelihood ratio test for
the crude effect of each SNP, which are sorted by their genomic position. The upper triangle in the matrix contains the P values
for the interaction (epistasis) log-likelihood ratio test. Finally, the lower triangle contains the P values from likelihood ratio test
comparing the two-SNP additive likelihood to the best of the single-SNP models. eGFR: estimated glomerular filtration rate (ml/
min/1.73 m2); ACR: albumin-to-creatinine ratio (mg/g); CV: cardiovascular; CCIMT: common carotid intima media thickness.
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According to our findings, the most significant
gene for atherosclerosis was ABCC8, with two relevant
variants in the 50-UTR region (rs2188966 and
rs3758953) and a synonymous AGG1273AGA SNP
(rs1799859). This locus is also known to harbour
numerous mutations reportedly affecting insulin secre-
tion through impairment of the KATP channel, which
may eventually lead to hyperglycaemia and a wide
spectrum of T2DM phenotypes [51]. Specifically, the
SNPs studied in the present work had been previously
associated with T2DM susceptibility [25,52] and
response to sulfonylurea treatment [53]. Only a very
recent study by Gurzeler et al. [54] has analysed the
effect of one other ABCC8 SNP (Glu1506Lys) on athero-
sclerosis, although this was published after the com-
pletion of our work and hence we could not include
the SNP in our analyses. These authors found that the
1506Lys variant impaired glucose tolerance and
increased arterial inflammation, thus promoting a vul-
nerable atherosclerotic plaque phenotype in rodents.
It is tempting to speculate that other SNPs in the
same locus, such as those described herein, may also
promote plaque formation through simi-
lar mechanisms.

Two SNPs, rs8192675 and rs9924771, displayed a
significant impact on CV event-free survival after other
traditional risk factors were considered. The first is an
intronic variant (transcript
NM_000340.2:c.612þ 54T>C) in SLC2A2, which enco-
des the facilitated glucose transporter GLUT2, and that
has been consistently linked to better response to
metformin monotherapy in T2DM patients [27,55].
Available gene expression data point to a reduction in
GLUT2 expression caused by this rs8192675 [55], but
its full functional consequences are still unclear and
hence we cannot establish a direct biochemical con-
nection with the observed improved survival. One
study has reported that the minor allele was associ-
ated with lower levels of high-density lipoproteins in
hypertensive subjects, and the authors suggested this
could increase metabolic risk of CVD, although this
was not confirmed [56]. In contrast, in our study, the
minor allele was associated with a 5-month improved
CV event-free survival. It should be noted that we did
not observe the reported impact of rs8192675 on HDL
in our cohort (data not shown). Hence, additional
in vitro studies are necessary to unveil other possible
mechanisms, e.g. effect on glycaemia or insulin secre-
tion, that may explain why this SNP impacts CV out-
comes significantly in CKD patients [57]. The second
polymorphism, rs9924771, is located in an intronic
region of SLC5A2, a gene that codes for the SGLT2

transporter. This is a tag-SNP, meaning that it repre-
sents variability of a whole region in the gene locus
[28]. To our knowledge, there have been no studies
on the effect of this variant on CV outcomes in CKD.
On the other hand, and consistent with our results,
variability in the SLC5A2 gene has been recently
regarded as an important locus for CVD in a large
study with over 400,000 participants [16]. The underly-
ing mechanism remains elusive though, as neither
these authors, nor the present work, could find signifi-
cant associations with atherosclerotic measurements.
Furthermore, other reports have not found an impact
of rs9924771 on insulin release, plasma glucose or
plasma glucagon concentrations [28,58], although it
should be noted that we did observe a trend towards
higher HbA1c levels in rs9924771 carriers (p¼ 0.05,
data not shown). In any case, even though rs8192675
and rs9924771 correlate with CV outcomes in DN
patients, causality is still to be confirmed until an
explanatory mechanism has been identified.

The analysis of the effect of SNP pairs interactions
on CV traits revealed an intriguing association
between ABCC8 rs3758947 and several SNPs mainly
located in SLC2A2, which modified the risk of CV
events. To our knowledge, there are no studies on the
combined effect of SNPs in these genes, but our data
show that this interaction could have clinical rele-
vance. The interacting genes code for GLUT2 and
SUR1, which work together in pancreatic cells for insu-
lin secretion; therefore, it is tempting to speculate that
the combined presence of functional variants could
impair insulin release and affect CV phenotypes. The
most significant gene-gene interaction regarding CV
traits was SLC5A2 rs9934336- SLC2A1 rs710218, which
was associated with an increased risk of atheroscler-
otic plaque formation. However, it should be noted
that these genes had not shown a relevant effect on
atherosclerosis in the single-SNP approach and hence
this association, although it showed a p-value <0.001,
should be interpreted with caution.

The study of renal function in the DN cohort
revealed that SNPs in SLC2A1 (GLUT1) and SLC5A2
(SGLT2) were associated with eGFR values after adjust-
ing by CKD stage and other variables. However, the
fact that these variants did not affect DN risk raises
questions about their clinical relevance. These differen-
ces were more noticeable for the SLC5A2 rs3813008
variant, an intronic tag-SNP that has been studied in
relation to T2DM susceptibility and glycaemic parame-
ters [14,58], but that to date was untested in the CKD
setting. The SLC5A2-encoded SGLT2 transporter has
been widely studied because of the advent of SGLT2i,
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which have evolved from glucose-lowering drugs to
renoprotective and cardioprotective agents potentially
useful in patients with low eGFR [59]. However, and
somewhat surprisingly, there are no previous data on
the impact of genetic variants in the gene locus
(which could somehow mimic the effect of SGLT2i) on
renal function. Our results, together with the afore-
mentioned association with CV outcomes in our DN
patients suggest that the determination of SLC5A2
genetic variability could be useful in renal patients
and a factor to bear in mind when prescribing SGLT2i.
As for proteinuria, a hallmark of DN, we observed that
carriers of the ABCC8 rs3758947 variant allele had, on
average, 268mg albumin/g creatinine in urine more
than wild type patients. Polymorphisms in this gene
have been related to T2DM risk because of hypergly-
caemia derived from impaired insulin secretion [25].
Although this could be a plausible hypothesis for the
association with higher proteinuria, we could not con-
firm that levels of glucose correlated with the SNP in
our cohort (data not shown) and therefore the proc-
esses explaining this association are still unclear.

Finally, we analysed a cohort of healthy subjects to
identify variants that could be associated with the risk
of DN. However, we could not identify relevant SNPs
in this regard after adjusting for other risk factors. This
result likely stems from a limitation of the study,
which is that only 55 of the 506 controls with normal
renal function had T2DM. A larger group of fully char-
acterised T2DM patients without CKD would have
been desirable to perform risk analyses. Another limi-
tation of the study is that clinical associations lost stat-
istical significance after correction for multiple testing.
Furthermore, observed differences of eGFR and pro-
teinuria across genotypes, although statistically signifi-
cant, might not be as large as to have clinical
relevance. Studies in groups with a higher proportion
of patients with advanced CKD might provide with a
wider range of eGFR and proteinuria values and hence
differences according to genotype would presumably
be more noticeable.

In summary, our findings indicate that polymor-
phisms in genes coding for proteins and transporters
key for glucose homeostasis may affect CV-related out-
comes in patients with DN. Specifically, polymor-
phisms in the two subunits that form the KATP
channel regulating insulin secretion were associated
with atherosclerosis measurements in these subjects,
which supports the proposed link between T2DM and
atherosclerosis [60]. In addition, variability in GLUT2,
also involved in insulin secretion, and in the glucose
transporter SGLT2, resulted in altered CV event-free

survival, which is particularly relevant in a pathology
such as DN, which confers an exceptionally high CV
risk. On the other hand, the reported differences
observed for renal function in our cohort warrant add-
itional, larger studies that can compare patients show-
ing a wide range of eGFR values.
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