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Sonic Hedgehog (Shh) is a ventrally enriched morphogen controlling dorso-

ventral patterning of the neural tube. In the dorsal spinal cord, Gli3 protein

bound to suppressor-of-fused (Sufu) is converted into Gli3 repressor (Gli3R),

which inhibits Shh-target genes. Activation of Shh signalling prevents Gli3R

formation, promoting neural tube ventralization. We show that cadherin-7

(Cdh7) expression in the intermediate spinal cord region is required to

delimit the boundary between the ventral and the dorsal spinal cord. We

demonstrate that Cdh7 functions as a receptor for Shh and enhances Shh

signalling. Binding of Shh to Cdh7 promotes its aggregation on the cell

membrane and association of Cdh7 with Gli3 and Sufu. These interactions

prevent Gli3R formation and cause Gli3 protein degradation. We propose

that Shh can act through Cdh7 to limit intracellular movement of Gli3

protein and production of Gli3R, thus eliciting more efficient activation of

Gli-dependent signalling.
1. Introduction
The vertebrate neural tube is patterned along the dorsoventral (DV) axis to form

different progenitor domains, identified by unique patterns of transcription

factor expression and distinct neuronal fates [1]. This DV patterning results

from a ventral-to-dorsal gradient of Sonic Hedgehog (Shh), which is comple-

mented by bone morphogenetic proteins (BMPs) and Wnts acting in the

dorsal neural tube. These morphogens provide positional information by

promoting specific transcription factor profiles in each progenitor domain

[2,3]. Although progenitor domains are sharply delimited along the DV axis,

the mechanisms underlying well-defined boundaries of gene expression in

the neural tube are still unclear.

Shh is secreted by the notochord and the neural tube floor plate, generating

a dynamic ventral-to-dorsal gradient of concentration that results in spatio-

temporally graded Shh pathway activation and ventral neural tube patterning

[2,4,5]. Shh peptide is proteolytically cleaved to generate an N-terminal biologi-

cally active fragment (N-Shh) [6], which binds the transmembrane protein

Patched1 (Ptch1) [7]. In the absence of N-Shh, Ptch1 represses the movement

of another transmembrane protein, Smoothened (Smo), to the primary cilium

[8]. When Ptch1 is bound to N-Shh, Smo can accumulate in the primary

cilium and transduce Shh signalling intracellularly, modulating the activity of

Gli1–3 transcription factors [6].

Gli2 and Gli3 exist as either full-length transcriptional activators (Gli2FL and

Gli3FL) or truncated N-terminal fragments generated by partial proteolysis of the

carboxyl terminus (Gli2R and Gli3R), acting as transcriptional repressors [9].
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Suppressor-of-fused (Sufu) functions as an inhibitor of Shh

signalling by binding Gli2/3FL proteins in the cytoplasm

and preventing them from reaching the nucleus [10]. In the

absence of Shh, Gli2/3FL proteins associated with Sufu are

thought to be phosphorylated by PKA, GSK3b and CKI at

the base of the primary cilium, causing their conversion

into Gli2/3R [10–13]. Gli2R is completely degraded, but

Gli3R translocates to the nucleus and represses transcription

of Shh-target genes [14]. Activation of Shh signalling is believed

to cause increased localization of unphosphorylated Gli2/3FL

within the primary cilium, causing their transport to the

nucleus, where they can activate Shh-target genes [10]. While

Gli2FL is a strong transcriptional activator, Gli3FL has a low

transcription-promoting activity and it rapidly undergoes pro-

teosomal degradation when Shh signalling is active [11,12,15].

Therefore, GliR function can be mainly ascribed to Gli3R,

while Shh-dependent transcriptional activation is mostly

mediated by Gli2FL [10]. Despite major headway in dissecting

the regulation of Shh signal transduction, there is still limited

knowledge of the molecular mechanisms controlling trafficking

and processing of Gli proteins.

Cdh7 is a member of the classical cadherin family, which

is expressed in the intermediate neural tube region at the

lower end of the Shh morphogen gradient [6]. Here, we

show that Cdh7 is required to ventrally delimit the expression

domain of dorsal spinal cord genes, thus allowing the speci-

fication of ventral territories. We provide evidence that Cdh7

exerts this function by positively regulating Shh signalling.

The extracellular region of Cdh7 is bound by N-Shh, which

alters Cdh7 distribution within the cell membrane. This

promotes association of the intracellular domain of Cdh7

with Sufu and Gli3FL. As a result of these interactions,

Gli3R production and nuclear accumulation are inhibited,

and Gli3 protein is instead targeted for degradation, thus

enhancing Shh signalling levels. These results reveal a new

mechanism of Shh signalling regulation and help to under-

stand how a highly dynamic spatio-temporal Shh gradient

can result in well-defined boundaries of gene expression.
2. Results
2.1. Cdh7 expression in the intermediate spinal cord

delimits Pax7-positive domain in the dorsal spinal
cord

In the developing chick spinal cord, at Hamburger & Hamil-

ton (HH) [16] stage (st.) 17–23, Cdh7 is expressed in an

intermediate domain confined to the Pax7-positive region in

the dorsal spinal cord (figure 1a–k) [17–20]. Confirming

previous observations [18], unilateral electroporation of Shh-

encoding DNA in the ventral spinal cord of HH st. 10 chick

embryos led to coordinated dorsal shift of both Pax7 ventral

expression boundary and of Cdh7-positive domain

(figure 1l–q). When Shh was overexpressed in the dorsal

half of the spinal cord, the endogenous Cdh7 domain in the

intermediate spinal cord was repressed, whereas ectopic

Cdh7 expression was detectable in the most dorsal spinal

cord region (figure 1r–w). Similar effects were detectable by

overexpressing SmoM2, a constitutively active form of Smo

[21]. Unilateral electroporation of SmoM2-encoding DNA in

the spinal cord of HH st. 10 chick embryos led to ectopic
upregulation of Cdh7 in SmoM2-expressing cells within the

dorsal spinal cord, whereas endogenous Cdh7 expression

was downregulated in SmoM2-expressing cells within the

intermediate spinal cord (figure 1x–aa). Shh or SmoM2 over-

expression in the intermediate spinal cord probably results in

higher levels of Shh signalling in comparison with dorsal

overexpression, due to additive effects with endogenous

Shh signalling, and to the ability of SmoM2 to upregulate

Shh expression in the ventral, but not in the dorsal spinal

cord (figure 1ab,ac). Therefore, these results suggest

that Cdh7 expression occurs within a specific range of

Shh signalling activation.

This was confirmed by analysing Cdh7 expression,

along with that of the ventral spinal cord marker Isl1/2,

the intermediate marker Lim1/2 and the dorsal marker

Pax7, in explants of presumptive intermediate neural tube

that were cultured for 20 h with different concentrations

of recombinant N-Shh (rN-Shh) (figure 1ad,ae). Isl1/2

expression was observed at 4 nM rN-Shh and Lim1/2

expression at 2 nM N-Shh, while Pax7 expression was

repressed by rN-Shh. Cdh7-positive cells were detectable

only in the presence of 2 nM rN-Shh, indicating that

Cdh7 expression is specifically promoted by low/moderate

doses of Shh signalling (figure 1ad,ae).

Similar results were obtained using SAG (3-chloro-N-

[trans-4-(methylamino)cyclohexyl]-N-[3-(4-pyridinyl)benzyl]-

1-benzothiophene-2-carboxamide), a small molecule agonist

of Smo [22] (figure 1af).
To gain more insight into Cdh7 function in the DV pattern-

ing of the neural tube, we electroporated a plasmid co-

expressing green fluorescent protein (GFP) and Cdh7 into

HH st. 10 chick spinal cord, and analysed its effects on Pax7

expression at HH st. 15. Control embryos were electroporated

with a plasmid expressing GFP only. In control embryos, GFP-

expressing cells located in the dorsal half of the spinal cord

were mostly Pax7-positive (Pax7þ) (figure 2a–c). By contrast,

a significant fraction of the cells overexpressing Cdh7 were

Pax7-negative (Pax72) (figure 2d–g; yellow-labelled and

blue-labelled cells or arrows in figure 2c,f,g correspond to

Pax72 and Pax7þ-electroporated cells, respectively). When

Pax7þ cells were counted in the intermediate neural tube

close to the ventral border of Pax7 expression domain, a

clear reduction in the fraction of Pax7þ cells was observed in

Cdh7-expressing cells in comparison with cells expressing

GFP only (figure 2h; electronic supplementary material,

figure S1a–n). Dorsally localized Cdh7-overexpressing cells,

however, retained Pax7 expression (figure 2g; electronic

supplementary material, figure S1g–n). By staining electropo-

rated embryos with an antibody against Dbx1, a marker of the

p0 progenitor domain [23], we found ectopic Dbx1þ cells close

to the dorsal border of the Dbx1 expression domain upon

Cdh7 overexpression, but not in embryos expressing GFP

only (figure 2i–m; electronic supplementary material, figure

S1o–ad). Thus, Cdh7-dependent signalling can repress Pax7

expression specifically in the intermediated spinal cord

region, leading to the acquisition of more ventral fates.

To test whether Cdh7 is required for proper spinal cord pat-

terning, we electroporated HH st. 10 embryos with a plasmid

expressing a Cdh7-targeting siRNA (siRNA-Cdh7), which could

effectively knock down Cdh7 expression (figure 2n,o,y–ac), or

with a control siRNA plasmid (siRNA-control). Electroporation

of siRNA-Cdh7, but not of siRNA-control, caused ventral

expansion of the Pax7þ domain (figure 2p–x).
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Figure 1. The concentration-dependent regulation of Cdh7 expression by Shh controls specification of the Pax7þ/Pax72 neural tube boundary. (a – j) Immuno-
staining (a,c – e,g – j) or in situ hybridization (b,f ) analyses using anti-Shh mAb (a,e), Cdh7 RNA probe (b,f ), anti-Cdh7 mAb (c,g), anti-Pax7 mAb (d,h), anti-Isl1/2
mAb (i) or anti-Lim1/2 mAb ( j ) on transversal sections of HH st. 17 (a – d) or st. 23 (e – j) chick embryonic spinal cord. Cdh7 mRNA and Cdh7 protein are detectable
in the intermediate region of the developing neural tube (black and white brackets in (b,f ) and (c,g), respectively), as well as in the floor plate (f ) in ( f,g). At HH st.
23, Cdh7 transcription in the intermediate region is restricted to neural progenitors in the periventricular region (black brackets in ( f ), whereas Cdh7 protein is
expressed throughout the neural tube wall (white brackets in (g)). The dorsal border of Cdh7 expression in the intermediate spinal cord abuts the ventral
border of Pax7 expression in the dorsal spinal cord (cf. (c,g) with (d,h)) and coincides with the boundary between the dorsal and the ventral neural tube. At
these stages, Shh is detectable in the neural tube floor plate (f ) and the underlying notochord (n) (a,e). Isl1/2 is detectable in the dI3 and MN regions (i),
and Lim1/2 is detectable in the dI2, dI4, dI6, V0, V1 and V2 regions ( j ) in HH st. 23 embryonic spinal cord; (k) shows a schematic diagram of the progenitor
and neuronal domains and of the expression patterns of Shh, Cdh7, Pax7, Lim1/2 and Isl1/2 in the chick embryonic spinal cord. The ventral-to-dorsal gradient of Shh
protein and the different Shh concentrations at which expression of Pax7, Cdh7, Lim1/2 and Isl1/2 is induced in spinal cord explants are shown on the right. See text
for details: f, floor plate; n, notochord; Scale bars, 50 mm. (l – w) Adjacent transversal sections of HH st. 23 chick neural tube following unilateral electroporation of a
chick Shh-expressing plasmid at HH st. 10 and immunostaining using anti-Shh (l,r), anti-Cdh7 (m,s), anti-Pax7 (n,t) anti-Isl1/2 (o,u) or anti-Lim1/2 ( p,v) antibodies.
The electroporated side is shown on the left; (q,w) shows merging of Shh (red), Cdh7 (green) and Pax7 (blue) staining as in (l,r), (m,s) and (n,t). Shh overexpression
in the ventral neural tube causes coordinated dorsal shift of both Cdh7þ and Pax7þ domains. Shh overexpression in dorsal regions represses Cdh7 expression in the
intermediate spinal cord and ectopically activates it in the roof of the neural tube. Green brackets in (l,q,r,w): ectopic Shh-expressing region. Red squares in (w);
endogenous Shh-expressing region. White brackets in (m,q,s,w) and green squares in (w): endogenous and ectopic Cdh7-expressing regions. White arrows in
(n,q,t,w) point to the boundaries between the Pax7þ and Pax72 region. f, floor plate. Scale bar, 100 mm. (x – ac) Immunofluorescence analyses performed
with anti-Cdh7 mAb (red signal, (x,z)), anti-GFP mAb (green signal, (y,z)) or anti-Shh mAb (red signal, (ab)) on transversal sections of HH st. 20 chick spinal
cord tissue, following unilateral co-electroporation of plasmids expressing SmoM2 and EGFP at HH st. 10. The electroporated side is shown on the right. Quanti-
fication of the fraction of Cdh7þ/EGFPþ cells in the dorsal and the intermediate spinal cord is shown in (aa). At least 10 sections from five different embryos were
used for these analyses. Error bars represent s.e.m.; *p , 0.005 according to Student’s t-test. SmoM2 expression causes Cdh7 upregulation in the dorsal spinal cord,
but represses Cdh7 expression in the intermediate spinal cord. SmoM2 expression results in Shh upregulation within the ventral, but not the dorsal spinal cord (ab).
Hoechst 33342 staining is shown in blue in (ac). Scale bars, 25 mm. (ad) Immunostaining using antibodies against Isl1/2, Lim1/2, Pax7 and Cdh7 on HH st. 10
explants of presumptive intermediate spinal cord, which were cultured for 20 h with 0, 2 or 4 nM rN-Shh. Scale bar, 100 mm. Quantification of the percentage of
cells positive for the indicated markers is shown in (ae). At least each 500 cells were counted for these analyses. Error bars represent s.e.m. rN-Shh treatments cause
Pax7 repression and dose-dependent upregulation of Cdh7-Lim1/2 (at 2 nM rN-Shh) or Isl1/2 (at 4 nM rN-Shh). (af ) Immunostaining using antibodies against Isl1/2,
Lim1/2, Pax7 and Cdh7 on HH st. 10 explants of presumptive intermediate spinal cord, which were cultured for 20 h with 0, 0.5 or 0.75 mM SAG. SAG treatments
cause Pax7 repression and dose-dependent upregulation of Cdh7-Lim1/2 (0.5 mM SAG) or Isl1/2 (0.75 mM SAG). Scale bar, 100 mm.
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Taken together, these data suggest that Shh-dependent

expression of Cdh7 in the intermediate spinal cord is key to

define the ventral boundary of the Pax7-expressing domain

in the dorsal spinal cord.

2.2. Cdh7 promotes Shh signalling by binding Gli3FL
and Sufu with a Shh-dependent mechanism

We analysed whether Cdh7 can modulate Shh signalling by

means of reporter assays with a Shh-sensitive Gli-binding site–
luciferase reporter plasmid (GBS-luc reporter [15]) on chick

neural plate explants. We electroporated a plasmid mixture

including a Cdh7 expression vector, the GBS-luc reporter plas-

mid and an internal control plasmid into HH st. 10 embryonic

spinal cord. After 6 h, explants of the presumptive intermediate

spinal cord were dissected and incubated for 20 h with or with-

out rN-Shh before assaying for relative luciferase activity (RLA),

as described in the electronic supplementary material, figure S2.

In these assays, treatments with 4 nM rN-Shh caused

significant RLA increase, indicating upregulation of Shh



Figure 2. (Opposite.) Shh-dependent Cdh7 expression controls specification of the Pax7þ/Pax72 neural tube boundary. (a – c) Immunostaining analysis with anti-
Pax7 (red staining) and anti-GFP (green staining) mAbs on HH st. 15 chick neural tube, following unilateral electroporation of a control plasmid driving expression of
a chimeric GFP protein fused to a nuclear localization signal; (c) shows a higher magnification of boxed regions in (a) and (b). Yellow and blue circles indicate Pax7-
negative and Pax7-positive electroporated cells, respectively, within the intermediate spinal cord region (bracket). Within this region, most of the GFP-expressing cells
are Pax7-positive. f, floor plate. Scale bars, 50 mm. (d – g) Immunostaining with anti-Pax7 (red staining) and anti-GFP (green staining) antibodies on HH st. 15
neural tube, following unilateral electroporation at HH st. 10 of a plasmid driving expression of both Cdh7 and a chimeric GFP protein fused to a nuclear localization
signal; ( f ) shows a higher magnification of (d,e) at the level of the dorsal spinal cord, while (g) shows further enlargement of the electroporated intermediate spinal
cord region. Cells overexpressing Cdh7 (green cells in (e), ( f ) and (g)) within the intermediate or the dorsal spinal cord are mostly negative or positive for Pax7,
respectively. Brackets indicate the dorsal half of the spinal cord in (d ), and the intermediate (bottom bracket) or the dorsal (top bracket) spinal cord regions in ( f ). In
( f,g), yellow arrows point to electroporated cells that are Pax72, whereas blue arrows point to electroporated Pax7þ cells. f, floor plate; so, somite. Scale bar,
100 mm for (e); 50 mm for f; 25 mm for (g). (h) Quantification of the percentage of the electroporated Pax72 or Pax7þ cells within the intermediate spinal cord
region, following electroporation of expression plasmids (EP) encoding for both Cdh7 and GFP (blue bars) or GFP only (orange bars). At least 13 sections from three
different embryos were used for these analyses. Error bars represent s.e.m.; *p , 0.005 according to Student’s t-test. (i – l) Immunostaining with anti-Dbx1 (red
staining) and anti-GFP (green staining) antibodies on HH st. 15 neural tube, following unilateral electroporation at HH st. 10 of a plasmid driving expression of both
Cdh7 and a chimeric GFP protein fused to a nuclear localization signal; (l) shows a higher magnification of the boxed area (i,j,k). Blue arrows point to electroporated
Dbx1þ cells. Scale bar, 40 mm for (k); 20 mm for (l); (m) shows the percentage of the electroporated cells ectopically expressing Dbx1 following electroporation of
EP encoding for both Cdh7 and GFP (blue bars) or GFP only (orange bars). At least 15 sections from five different embryos were used for these analyses. Error bars
represent s.e.m.; *p , 0.005 according to Student’s t-test. (n,o) siRNA-mediated knock-down of Cdh7 protein in L-Cdh7 cells with stable expression of Cdh7, as
shown by immunoblotting (n) and immunostaining (o) analyses. In (o), cells electroporated with plasmid expressing siRNA-Cdh7 and GFP are labelled in green,
while red staining shows Cdh7 expression. Scale bar, 50 mm. ( p – r) Immunostaining with anti-Pax7 (red staining, p,r) or anti-GFP (green staining, q,r) mAbs in
transversal sections of HH st. 15 neural tube following unilateral co-electroporation of a plasmid encoding for siRNA-control and GFP at HH st. 10. The expression
domain of Pax7 is not affected in the electroporated side. Scale bar, 50 mm. (s – x) Immunostaining with anti-Pax7 (red staining) or anti-GFP (green staining) anti-
bodies on HH st. 15 neural tube following unilateral co-electroporation of a plasmid encoding for siRNA-Cdh7 and GFP at HH st. 10. Images in (v), (w) and (x) show
high magnifications of the boxed areas in (s), (t) and (u), respectively. Hoechst 33342 (blue) staining is shown in (u,x). Cdh7 knock-down causes ventral ectopic
expression of Pax7 in siRNA-Cdh7/GFP-expressing cells within the intermediate spinal cord region. f, floor plate; so, somite. Scale bars, 50 mm for (u); 25 mm
for (x). ( y – ac) Immunostaining with anti-Cdh7 (red staining) or anti-GFP (green staining) mAbs on HH st. 15 chick neural tube following unilateral co-electroporation
of a plasmid encoding for siRNA-Cdh7 and for GFP at HH st. 10. Images in (ab) and (ac) show high magnifications of the boxed areas in ( y) and (aa), respectively. In
the electroporated side (shown on the right), Cdh7 expression is abrogated in GFP-positive cells. f, floor plate. Scale bars, 50 mm.
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signalling, whereas the effects of 2 nM rN-Shh were not sig-

nificant (figure 3a; p-values for these experiments are

reported in the electronic supplementary material, table S1).

Notably, Cdh7 overexpression significantly enhanced Shh

signalling in the presence of 2 nM rN-Shh, but not in the pres-

ence of 4 nM rN-Shh or in the absence of rN-Shh (figure 3a;

electronic supplementary material, table S1). The specificity

of this effect was confirmed by co-electroporation of plasmids

expressing Cdh7 and siRNA-Cdh7 (figure 2n,o), which abol-

ished the increase in reporter expression observed in Cdh7-

expressing explants (figure 3b; electronic supplementary

material, table S1). Furthermore, reporter expression was

not enhanced upon overexpression of truncated versions of

Cdh7 lacking the intracellular or the extracellular domains,

respectively (figure 3c,d; electronic supplementary material,

table S1). N-cadherin (Ncdh) and cadherin-20 (Cdh20) were

unable to enhance Shh signalling in this assay (figure 3e; elec-

tronic supplementary material, table S1). These observations

suggest that Cdh7 is a specific binding partner of Shh and

a positive regulator of Shh signalling in the presence of

low/moderate levels of Shh ligand.

We investigated the mechanisms of Cdh7-dependent regu-

lation of Shh signalling in more detail. We found that 25 nM

cyclopamine-KAAD, a specific Smo inhibitor [21], abrogated

Cdh7-dependent upregulation of GBS-luc reporter expression

(figure 3f; electronic supplementary material, table S1), indicat-

ing that Cdh7 requires Smo function to promote Shh signalling.

In agreement with these results, Cdh7 was able to reinforce GBS-

luc reporter expression when overexpressed together with a

constitutively active form of Smo (SmoM2) [21], especially in

the presence of 2 nM rN-Shh (figure 3g; electronic supplemen-

tary material, table S1). We then analysed whether Cdh7 could

exert similar effects following co-overexpression with the Smo
effectors Gli1, Gli2 and Gli3. Notably, Cdh7 could enhance

reporter expression in combination with 2 nM rN-Shh and

Gli3FL (figure 3h; electronic supplementary material, table S1),

but not Gli1, Gli2 or Gli3R (electronic supplementary material,

figure S3; all p-values for the experiments shown in figure S3

are reported in electronic supplementary material, table S2).

Similar results were obtained when performing GBS-luc repor-

ter assays in vitro using NIH3T3 cells, which bear a functional

Shh signalling pathway [24]. Confirming assays performed

with chick embryo explants, GBS-luc reporter activity was sig-

nificantly increased by 4 nM rN-Shh, but not by 2 nM rN-Shh.

Furthermore, Cdh7 expression in NIH3T3 cells significantly

enhanced Shh signalling together with 2 nM rN-Shh, but not

with 4 nM rN-Shh or without rN-Shh. The effects of Cdh7

could not be mimicked by Cdh20 or deletion mutants of

Cdh7, and they were sentitive to the presence of siRNA-Cdh7
and KAAD-cyclopamine. Moreover, in the presence of 2 nM

rN-Shh, Cdh7 could strengthen Shh signalling in collaboration

with SmoM2 or Gli3FL, but not with Gli1, Gli2 and Gli3R (elec-

tronic supplementary material, figure S4; all p-values for the

experiments shown in figure S4 are reported in electronic

supplementary material, table S3). These results suggest that

Cdh7 modulates Shh signalling by acting at the level of

Gli3FL, but not through Gli1, Gli2 or Gli3R. They also suggest

that Smo-dependent signal transduction is necessary for Cdh7

action and facilitates it.

Endogenously produced N-Shh peptide undergoes post-

translational modifications through covalent binding of a

cholesterol moiety at its C-terminus and a palmitate moiety

at its N-terminus [10]. To confirm whether Cdh7 could func-

tionally interact with fully lipidated N-Shh, we performed

GBS-luc reporter assays with explants from chick embryos

co-electroporated with plasmids encoding for Cdh7 and
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full-length chick Shh (cShh), instead of explant treatments

with rN-Shh. The results of these assays generally showed

higher experimental variability in comparison with rN-Shh

treatments, probably due to variability in transfection effi-

ciency of the cShh plasmid. Nonetheless, they largely

recapitulated those obtained with rN-Shh, suggesting that

Cdh7 can functionally interact with the fully lipidated

N-Shh peptide (electronic supplementary material, figure S5;

all p-values for the experiments shown in figure S5 are reported

in electronic supplementary material, table S4).

2.3. Cdh7 binds Shh protein and enhances Shh
signalling

As shown above, Cdh7 can repress Pax7 expression in the

intermediate spinal cord region, but not in more dorsal

areas. We speculated that this spatially limited activity
might be due to a molecular interaction between Cdh7 and

Shh, which is not present in the dorsal spinal cord, and

explored this possibility by means of co-immunoprecipitation

assays. As described in the Material and methods (see elec-

tronic supplementary material), lysates of NIH3T3 cells

transiently expressing chick Cdh7 were incubated with rN-

Shh, followed by immunoprecipitation using an anti-Shh

monoclonal antibody (mAb) or an anti-Cdh7 monoclonal

antibody (mAb). Cdh7 (106 kDa) co-precipitated with

N-Shh and vice versa (figure 4a), indicating direct binding

between Cdh7 and N-Shh. N-Shh was not precipitated in pull-

down experiments with anti-Cdh7 mAb using control

NIH3T3 cells, which do not express Cdh7 (data not shown).

Co-immunoprecipitation of endogenous N-Shh and Cdh7 was

also observed using extracts from HH st. 17 spinal cord tissue

(figure 4b). By contrast, rN-Shh did not co-immunoprecipitate

with Ncdh or Cdh20 in assays with NIH3T3 cells transiently
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expressing Ncdh or Cdh20. (figure 4c,d). Both Ncdh and Cdh20

are expressed in the developing spinal cord [25,26], and Cdh20 is

the closest cadherin family member to Cdh7 [27], indicating that

the binding between N-Shh and Cdh7 is highly specific.
We performed saturation binding experiments using

COS-7 cells expressing Cdh7, which were treated with con-

ditioned medium from 293 cells expressing N-Shh tagged

with alkaline phosphatase (AP) (figure 4e; electronic



Figure 4. (Overleaf.) Cdh7 binds Shh and associates with Gli3FL and Sufu. (a) Immunoblotting with anti-Cdh7 mAb (left blot) or anti-Shh pAb (right blot) showing
immunoprecipitation assays with lysates of NIH3T3 cells transiently expressing chick Cdh7 that were incubated with rN-Shh, followed by pull-down with anti-Shh or
anti-Cdh7 mAbs. (b) Immunoblotting with anti-Cdh7 mAb (left blot) or anti-Shh pAb (right blot) showing the results of immunoprecipitation assays with HH st. 17
chick embryo lysates, following pull-down with anti-Shh or anti-Cdh7 mAbs. Both anti-Shh and anti-Cdh7 mAbs can co-immunoprecipitate both N-Shh and Cdh7. (c)
Immunoblotting with anti-Ncdh pAb (left blot) or anti-Shh pAb (right blot) showing immunoprecipitation assays with lysates of NIH3T3 cells transiently expressing
chick Ncdh that were incubated with rN-Shh, followed by pull-down with anti-Shh or anti-Ncdh mAbs. No co-immunoprecipitation of N-Shh and Ncdh is detectable.
(d ) Immunoblotting with anti-Myc pAb (left blot) or anti-Shh pAb (right blot) showing immunoprecipitation assays with lysates of NIH3T3 cells transiently expres-
sing Myc-tagged chick Cdh20 that were incubated with rN-Shh, followed by pull-down with anti-Shh or anti-Myc mAbs. No co-immunoprecipitation of N-Shh and
Cdh20 is detectable. (e) AP staining of control (left) or Cdh7-expressing (right) COS-7 cells that were incubated with conditioned medium from 293 cells expressing
N-Shh-AP. N-Shh-AP signal is detectable only in Cdh7-expressing cells. Scale bar, 200 mm. ( f ) Saturation binding curve (inset) and Scatchard analysis of N-Shh-AP
binding to Cdh7, showing a dissociation constant (Kd) of 4.8 nM. (g) Schematic diagram of Myc-tagged Cdh7 full-length and deletion constructs as used for the
assays shown in (h). (h) Immunoblotting with anti-Myc pAb showing immunoprecipitation assays with lysates from COS-7 cells transiently expressing Cdh7 constructs
shown in ( f ). Lysates were incubated with rN-Shh, followed by pull-down with anti-Shh mAb. Only constructs containing CR1 and CR2 domains are pulled down by
anti-Shh mAb. The blot at the bottom shows the expression levels of each Cdh7 construct in lysates used for immunoprecipitation (input). (i – m) Immunoblotting
with anti-Cdh7 mAb (i), anti-Gli3FL pAb ( j ), anti-Sufu pAb (k), anti-Gli3 pAb (l) or anti-GSK3b pAb (m) showing immunoprecipitation assays with NIH3T3 cells
transiently expressing Cdh7 that were incubated with the indicated doses of rN-Shh, followed by pull-down with anti-Cdh7 mAb. Following cell treatment with rN-
Shh, anti-Cdh7 mAb can co-immunoprecipitate Gli3FL and Sufu along with Cdh7, but not Gli3R and GSK3b. Note that anti-Gli3FL pAb used for ( j ) does not react
with Gli3R, while anti-Gli3 pAb used for (l) reacts with both Gli3FL and Gli3R, and only the Gli3R 80 kDa band is shown. (n – p) Immunoblotting with anti-Gli3FL
pAb (n), anti-Cdh7 mAb (o) or anti-Ncdh pAb ( p) showing immunoprecipitation assays with HH st. 17 spinal cord lysates using anti-Cdh7 or anti-Ncdh mAbs.
Anti-Cdh7 mAb, but not anti-Ncdh mAb, can co-immunoprecipitate both Gli3FL (n) and Cdh7 (o).
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supplementary material, figure S6a,b). This analysis showed

that the dissociation constant (Kd) between N-Shh and

Cdh7 was approximately 4.8 nM (figure 4f ). Ncdh, however,

did not bind AP-tagged N-Shh (electronic supplementary

material, figure S6c,d). By performing immunoprecipitation

assays with different Cdh7 deletion mutants, we found that

cadherin repeat 1 (CR1) and cadherin repeat 2 (CR2) domains

are the major binding sites for N-Shh (figure 4g,h). Binding

between N-Shh and Cdh7 was not prevented by anti-Shh

mAb (clone 5E1), which inhibits N-Shh binding to Ptch1

(electronic supplementary material, figure S7) [28],

suggesting that Shh interacts with Cdh7 and Ptch1 through

different domains.

Sufu plays a pivotal role in controlling Gli3 processing to

Gli3R [9,10]. Remarkably, co-immunoprecipitation assays

using anti-Cdh7 mAb and Cdh7-expressing NIH3T3 cells

showed stronger association of Cdh7 with Gli3FL and Sufu

in cells cultured in the presence of rN-Shh, in comparison

with control cells. In particular, treatments with 2 nM rN-

Shh roughly doubled the amount of Gli3FL and Sufu

bound to Cdh7 in comparison with untreated cells

(figure 4i–k; western blot quantifications are reported in elec-

tronic supplementary material, table S5). By contrast, Cdh7

did not interact with Gli3R (figure 4l; electronic supplemen-

tary material, table S5) or GSK-3b neither in the absence

nor in the presence of rN-Shh (figure 4m; electronic sup-

plementary material, table S5). Co-immunoprecipitation

assays with anti-Cdh7 or anti-Ncdh mAbs using HH st. 17

chick embryos confirmed that Cdh7, but not Ncdh, interacts

with Gli3FL in vivo (figure 4n–p). These results suggest that

Cdh7 can bind Gli3FL and Sufu at the intracellular level

and that these interactions are strengthened when the

extracellular region of Cdh7 is bound to Shh.
2.4. Shh promotes Cdh7 aggregation within the cell
membrane

As Shh enhances the association of Cdh7 with Gli3FL and Sufu,

we speculated that Shh might alter Cdh7 distribution within the

cell membrane. To address this question, we performed

immunocytochemical analysis of NIH3T3 cells transiently
overexpressing Cdh7. In the absence of exogenous rN-Shh,

Cdh7 was broadly distributed across the cell membrane, but

treatments with 2–4 nM rN-Shh caused dose-dependent Cdh7

aggregation on the cell surface (figure 5a–d). To quantify Shh-

dependent changes in Cdh7 localization, we compared the

distribution of fluorescence intensities in representative images

of control-treated and rN-Shh-treated Cdh7-expressing cells by

charting the number of pixels falling within specific intensity

ranges (figure 5b,c). Most pixels in control samples fell within

a restricted range of intensities, indicating that Cdh7 tendsto dis-

tribute evenly across the cell surface in the absence of Shh. By

contrast, rN-Shh-treated samples showed a much broader inten-

sity distribution. This is consistent with Cdh7 aggregation

resulting in Cdh7-low and Cdh7-high areas at the cell surface.

Comparison of the standard deviations of fluorescence intensity

in control and rN-Shh-treated samples confirmed that intensity

distribution was significantly different in the absence and in the

presence of rN-Shh (figure 5d). When the same analysis was per-

formed with Ncdh-expressing cells, no significant differences

could be detected between control and rN-Shh-treated samples,

confirming that Ncdh localization at the cell surface is insensi-

tive to Shh treatments (figure 5e–h). Furthermore, NIH3T3

cells transiently expressing Cdh7 showed no changes in the dis-

tribution of endogenously expressed Ncdh upon rN-Shh

treatments, which promoted Cdh7 aggregation (electronic

supplementary material, figure S8a–i).
Immunohistochemical analysis in the intermediate spinal

cord region at HH st. 20 confirmed aggregation of endogenously

expressed Cdh7, but not of b-catenin or Ncdh, on the surface of

embryonic spinal cord cells (figure 5i–v). Ectopic expression of

Cdh7 in the dorsal spinal cord following electroporation

of a Cdh7-expressing vector resulted in significantly lower

levels of Cdh7 aggregation in dorsal regions in comparison

with those detected in the intermediate spinal cord region

(figure 5w–ac), suggesting that Cdh7 aggregation is promoted

in cells falling within the Shh distribution gradient.

2.5. Cdh7 prevents Gli3R production and promotes
degradation of Gli3 protein in the presence of Shh

As Shh is able to alter Cdh7 distribution at the cell mem-

brane, we investigated whether Cdh7 aggregates forming in
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the presence of Shh co-localized with Sufu. We expressed

Cdh7 in NIH3T3 cells and cultured them in the presence of

0, 2 or 4 nM rN-Shh. We then incubated non-permeabilized

cells with anti-Cdh7 mAb, followed by cell permeabilization

and incubation with anti-Sufu polyclonal antibody (pAb)

(0 nM rN-Shh, figure 6a–c; 2 nM rN-Shh, figure 6d–f, j–s;

4 nM rN-Shh, figure 6g–i). In the absence of exogenous rN-

Shh, Cdh7 was present across the entire cell membrane and

Sufu was weakly detectable in the cytosol (figure 6a–c). Fol-

lowing rN-Shh treatments, Cdh7 aggregates were associated

with Sufu at the cytoplasmic side of the cell membrane

(figure 6d–s), while no association was detectable between

Sufu and Ncdh, Cdh20 or a truncated Cdh7 version lacking

the intracellular domain (electronic supplementary material,

figure S9 and figure S10a–i). Artificially cross-linking Cdh7

molecules on the cell surface using anti-Cdh7 mAb resulted

in association with Sufu, but could not activate GBS-luc

reporter expression, indicating that Cdh7 aggregation per se
is not sufficient to promote Shh signalling (electronic sup-

plementary material, figure S10j–m). These results suggest

that Cdh7 positively modulates Shh signalling by interacting
with Sufu at the intracellular level and that this interaction

involves Shh-dependent regulation of Cdh7 distribution

within the cell membrane.

To investigate whether Cdh7 interaction with Gli3FL and

Sufu can modulate Gli3R production, we generated a con-

struct encoding for a fusion protein of mouse Gli3FL with

an N-terminal GFP tag and a C-terminal V5 tag (GFP-

Gli3FL-V5). This allowed to detect nuclear accumulation of

Gli3R as positive GFP nuclear staining together with negative

V5 staining, while co-localization of GFP and V5 staining or

the absence of GFP staining would indicate decreased pro-

duction of Gli3R. We transfected GFP-Gli3FL-V5 along with

either control or Cdh7-expressing vectors into NIH3T3 cells,

followed by cell culture in the presence of 0, 2 or 4 nM rN-

Shh and immunocytochemical localization of GFP-tagged

and/or V5-tagged peptides.

In control untreated cells, we detected nuclear GFP stain-

ing, while V5 staining was mainly localized in the cytoplasm,

indicating efficient production and nuclear localization of

Gli3R (figure 6t–v). Treatments with 2 nM rN-Shh resulted

in nuclear co-localization of both GFP and V5 staining,
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Figure 5. (Continued.) Shh promotes aggregation of Cdh7. (a – d) Immunofluorescence analysis performed with anti-Cdh7 mAb (red signal) using NIH3T3 cells transiently
expressing Cdh7 that were cultured for 24 h in the indicated concentrations of rN-Shh. rN-Shh promotes Cdh7 aggregation at the cell membrane. Scale bar, 10 mm.
(b) High magnifications of the yellow boxed areas in (a). (c) Distribution of fluorescence intensities in the representative images shown in (b) of Cdh7-expressing cells cultured
without or with 2 nM or 4 nM rN-Shh. Charts report the number of pixels falling within a given range of fluorescence intensity. Cdh7 signal varies much more broadly in rN-Shh-
treated samples in comparison with the untreated sample. (d ) Box-and-whisker plots of the standard deviation of fluorescence intensities in Cdh7-expressing cells treated with the
indicated concentrations of rN-Shh. Standard deviation of Cdh7 signal is significantly higher in rN-Shh-treated cells in comparison with control samples. Whiskers represent the
distribution of the standard values for the fluorescence intensity of each image. The lower and higher whiskers indicate the minimum and maximum values, respectively. The
bottom and top of the box represent the first and third quartiles, respectively, and the band inside the box indicates the second quartile (the median). At least 15 representative
cells for each experimental condition were used for this analysis; *p , 0.005 according to Student’s t-test. (e – h) Immunofluorescence analysis performed with anti-Ncdh mAb
(red signal) using NIH3T3 cells transiently expressing Ncdh that were cultured for 24 h in the indicated concentrations of rN-Shh. rN-Shh treatments do not cause Ncdh aggregation
at the cell membrane. (f ) High magnifications of the yellow boxed areas in (e). (g) Distribution of fluorescence intensities in the representative images shown in (e) of Ncdh-
expressing cells cultured without or with 2 nM or 4 nM rN-Shh. Charts report the number of pixels falling within a given range of fluorescence intensity. Ncdh signal spans a
similar range of intensities in rN-Shh-treated samples in comparison with the untreated sample. (h) Box-and-whisker plots of the standard deviation of fluorescence intensities in
Ncdh-expressing cells treated with the indicated concentrations of rN-Shh. Standard deviation of Ncdh signal is not significantly different in rN-Shh-treated cells in comparison with
control samples. (i – v) Immunofluorescence analyses performed with anti-Cdh7 Ab ((i – l), red signal), anti-b-catenin Ab ((m – p), red signal) or anti-Ncdh Ab ((q – t), red signal)
on transversal sections of HH st. 20 chick spinal cord tissue, showing aggregation of Cdh7 (blue arrows in (l )), but not b-catenin ( p) or Ncdh (t), in cells within the intermediate
spinal cord region. (k,o,s) show high magnification images of (i,m,q), respectively; (l,p,t) show high magnification images of the yellow boxed regions in (k,o,s), respectively.
Hoechst 33342 staining is shown in blue in ( j,n,r). Scale bar, 100 mm in (i), 50 mm in (k) and 10 mm in (l,p,t). (u,v) Distribution of fluorescence intensities in the representative
images shown in (l,p,t). (v) Box-and-whisker plots of the standard deviation of fluorescence intensities in (l,p,t). Standard deviation of Cdh7 signal is significantly higher than that
of b-catenin or Ncdh signal; *p , 0.005 according to Student’s t-test. (w – ac) Immunofluorescence analysis performed with anti-Cdh7 mAb (red signal) on transversal sections
of HH st. 23 chick spinal cord, which shows ectopic expression of Cdh7 in the dorsal neural tube following unilateral electroporation of a Cdh7-expressing construct at HH st. 10. The
electroporated side is shown on the left. Lower levels of Cdh7 aggregates are detectable in dorsal spinal cord cells within ectopic Cdh7 expression (w,x,y) in comparison with Cdh7
aggregates present in the intermediate spinal cord (z,aa); (x,y,aa) show high magnification images of the boxed regions in (w,z) as indicated. Scale bar, 50 mm. (ab) Distribution
of fluorescence intensities in the representative images shown (x,y,aa). (ac) Box-and-whisker plots of the standard deviation of fluorescence intensities in (x,y,aa). Standard
deviation of Cdh7 signal is significantly higher in the intermediate than in the dorsal spinal cord region; *p , 0.005 according to Student’s t-test.
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Figure 6. Cdh7 interacts with Sufu and collaborates with Shh to prevent Gli3R formation. (a – s) Immunostaining analysis with anti-Cdh7 (green signal) or anti-Sufu
(red signal) antibodies using NIH3T3 cells transiently expressing Cdh7 that were cultured for 24 h in the indicated concentrations of rN-Shh. rN-Shh promotes
association of Cdh7 aggregates with Sufu (d,e,f,j,k,l); (m,n) show high magnification images of the boxed areas in (l); (o,p) show high magnification images
of the boxed areas in ( j,k), respectively. Scale bar, 50 mm in (i,j), 10 mm in (n). (q,r) Surface plots showing quantification of fluorescence intensities in (o,p);
(s) shows the merging of the plots in (q,r) (t – as). Immunostaining analysis with anti-GFP (green signal) or anti-V5 (red signal) antibodies using NIH3T3
cells transiently expressing a Gli3 chimeric construct tagged with GFP at the N-terminus and V5 at the C-terminus. Both control (t – af ) or cells transiently expressing
Cdh7 (ag – as) were treated for 18 h with the indicated concentrations of rN-Shh. Nuclear GFP staining is detectable in both control and Cdh7-expressing cells in the
absence of rN-Shh (t – v,ag – ah), but not in cells treated with 4 nM rN-Shh (z – ab,am – ao). At 2 nM rN-Shh, nuclear GFP localization is present in control cells (w – y)
but not in Cdh7-expressing cells (aj – al), suggesting that Cdh7 can effectively prevent Gli3R formation at these lower rN-Shh levels. Scale bar, 50 mm. (ac – ae)
Surface plots of fluorescence intensities in (w – y); (af ) shows the merging of the plots in (ac – ae). (ap – as) Surface plots of fluorescence intensities in (aj, ak, al);
(as) shows the merging of the plots in (aj – al). (at – ay) Immunoblotting of nuclear extracts of NIH3T3 cells transiently expressing a Gli3 construct tagged with V5 at
the C-terminus, using antibodies against the Gli3 N-terminal region (at,aw) or V5 (au,ax). Blots in (at,aw) show the 80 kDa Gli3R band, while the 190 kDa Gli3FL
band is shown in (au,ax). Control (at – av) or Cdh7-expressing cells (au – ax) were treated with the indicated concentrations of rN-Shh. In the absence of rN-Shh,
nuclear extracts from both control and Cdh7-expressing cells clearly show the 80 kDa Gli3 N-terminus-positive band, indicating that Gli3R formation takes place in
these conditions. The 190 kDa V5-positive band is weakly detectable in the nuclear extract from control cells. Treatments of control cells with increasing rN-Shh
levels cause progressive decrease of the ratio between the 80 kDa Gli3 N-terminus-positive and 190 kDa V5-positive bands, indicating dose-dependent inhibition of
Gli3FL processing to Gli3R. In Cdh7-expressing cells, the 80 kDa band is clearly decreased and the 190 kDa band is undetectable in rN-Shh-treated samples, indi-
cating that Cdh7 effectively prevents Gli3R production and leads to Gli3 degradation in the presence of rN-Shh. Transfection efficiency in each condition is shown by
immunoblotting using anti-GFP mAb (av,ay), following co-transfection of a GFP control plasmid.

rsob.royalsocietypublishing.org
Open

Biol.7:170225

11
suggesting that in the presence of Shh signalling Gli3 protein

was less efficiently converted into Gli3R (figure 6w–y,ac–af ).
No GFP staining was detectable after treatments with 4 nM

rN-Shh (figure 6z–ab), indicating that elevated levels of Shh

signalling can prevent Gli3R formation. Nuclear V5 staining

was detectable at these doses of rN-Shh, suggesting that

they cause Gli3 protein degradation to C-terminal fragments

[12], which translocate into the nucleus. These degradation

products are likely to coexist with Gli3R at lower rN-Shh

doses (2 nM), while they predominate over Gli3R at higher

rN-Shh doses (4 nM). In the absence of rN-Shh, Cdh7
expression had no impact on Gli3R formation (figure 6ag–ai).
No GFP staining, however, was detectable after treatments of

Cdh7-expressing cells with 2 nM rN-Shh (figure 6aj,ap–as),
suggesting that Cdh7 efficiently blocks Gli3R production in

the presence of these lower doses of rN-Shh. V5 staining was lar-

gely excluded from the nucleus in Cdh7-expressing cells treated

with rN-Shh (figure 6ak,al,an,ao,ap–as), suggesting that

C-terminal fragments resulting from Gli3 degradation in the

presence of both rN-Shh and Cdh7 do not undergo nuclear

translocation. V5 staining and Cdh7 aggregate staining,

however, did not co-localize (electronic supplementary
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Figure 7. Models of Cdh7 roles in the regulation of Shh signalling and neural
tube patterning. (a) Model of Cdh7-dependent specification of the Pax7þ/
Pax72 neural tube boundary via regulation of Gli3R production and Pax7
expression. Shh promotes Cdh7 expression in the intermediate spinal cord
region and collaborates with Cdh7 to prevent processing of Gli3 to Gli3R
and Pax7 expression. Dorsal to the Cdh7 expression domain, Gli3 is converted
into Gli3R, indirectly leading to Pax7 expression (dashed arrow). Repression of
Cdh7 expression by Pax7 helps to maintain a sharp boundary between the
Cdh7þ/Pax72 ventral spinal cord and the Cdh72/Pax7þ dorsal spinal
cord. BMPs and Wnts promote both Gli3 and Pax7 expression in the
dorsal spinal cord. (b,c) Models of the regulation of Gli-dependent signalling
in cells exposed to low/moderate levels of Shh in the absence (dorsal spinal
cord cell, (b)) or in the presence (ventral spinal cord cell, (c)) of Cdh7. In the
dorsal spinal cord (Cdh7 non-expressing cell), low/moderate Shh levels do not
effectively prevent the Gli3FL/Sufu complex from transiting through the base
of the primary cilium, where Gli3FL becomes partially phosphorylated and
converted into Gli3R, leading to expression of dorsal transcription factors
(D-TFs) and repression of intermediate and ventral neural tube TFs (I-TFs,
V-TFs) (b). In ventral spinal cord cells (Cdh expressing cell), low/moderate
Shh levels collaborate with Cdh7 to retain the Gli3FL/Sufu complex in the
cytoplasm, thus preventing Gli3R formation and leading to Gli3 degradation
and expression of I-TFs (c). Higher Shh levels are needed for expression of
V-TFs (not shown). See text for further details.
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material, figure S11), indicating that Gli3 C-terminal frag-

ments forming in these conditions do not associate with

Cdh7 aggregates.

Immunoblotting analysis using nuclear extracts led to

results consistent with immunostaining data. In this case,

cells were transfected with a construct encoding for Gli3FL-

V5 fusion protein, with or without Cdh7-expressing vector,

and an antibody against the Gli3 N-terminal region was

used to detect Gli3R or Gli3FL. Cells were co-transfected

with a control GFP vector to account for transfection effi-

ciency. In agreement with immunostaining results, a

nuclear 80 kDa Gli3R band was detectable with anti-Gli3

N-terminus antibody both in the absence of rN-Shh and in

the presence of 2 nM rN-Shh, but it was reduced to approxi-

mately half of the levels detected in untreated cells after

treatments with 4 nM rN-Shh (figure 6at,aw; western blot

quantifications are reported in electronic supplementary

material, table S6). By contrast, the levels of nuclear

190 kDa Gli3FL band, as detected with anti-V5 antibody,

were roughly doubled in rN-Shh-treated cells in comparison

with untreated cells (figure 6au,av; electronic supplementary

material, table S6). These results confirm the idea that Gli3R

formation can take place at lower doses of rN-Shh (2 nM)

but it is efficiently inhibited at higher rN-Shh doses (4 nM).

They further suggest that rN-Shh treatments lead to Gli3

protein degradation to C-terminal fragments along with lim-

ited nuclear accumulation of Gli3FL (which is detectable by

immunoblotting, but not by immunostaining). Notably, in

Cdh7-expressing cells treated with 2 nM rN-Shh, the nuclear

Gli3R band was decreased to levels comparable to those pre-

sent in cells treated with 4 nM rN-Shh and roughly

corresponding to half of the levels detected in the absence

of rN-Shh (figure 6aw, ay; electronic supplementary material,

table S6). These results confirm that Cdh7 can inhibit Gli3R

formation in the presence of low/moderate doses of rN-

Shh. No V5-positive 190 kDa Gli3FL band was detectable

by immunoblotting in nuclear extracts of Cdh7-expressing

cells (figure 6ax, ay; electronic supplementary material,

table S6), indicating that, in the presence of rN-Shh, Cdh7

causes efficient Gli3 protein degradation to Gli3 C-terminal

fragments.

We confirmed that, in immunostaining assays, detection

of V5 signal without GFP signal was due to C-terminal

Gli3 peptides forming as a result of Gli3 degradation by

means of immunoblotting assays with cytoplasmic extracts

of cells transfected with Gli3FL-V5 using antibodies against

the Gli3 N-terminal region or V5 tag. While no 80 kDa

Gli3R or 190 kDa Gli3FL bands were detectable, we observed

several low molecular weight bands of various sizes

(20–70 kDa) by immunoblotting with anti-V5 antibodies

(electronic supplementary material, figure S12). This suggests

that Gli3FL is unstable in the cytoplasm and undergoes

partial proteolysis generating C-terminal fragments. Co-

transfection of plasmids expressing Cdh7 and siRNA-Cdh7
prevented the effects of Cdh7 on both Sufu localization

(electronic supplementary material, figure S13a–i) and Gli3

processing (electronic supplementary material, figure S13j–r),
indicating their specificity.

Taken together, these results indicate that, by associating

with Sufu and Gli3FL, Cdh7 can effectively collaborate with

Shh to prevent formation of Gli3R, leading to Gli3FL cyto-

plasmic degradation and enhanced activation of Shh

signalling.
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3. Discussion
A gradient of Shh protein, released from the notochord and

floor plate, plays a crucial role in ventral neural tube pattern-

ing [2,5,6,29]. Analysis of a variety of mutant mice, lacking

different components of the Shh signalling pathway, shows

that Shh-dependent patterning extends up to a sharp bound-

ary between Pax7-negative and Pax7-positive domains in the

ventral and dorsal neural tube, respectively [2,5,6,29]. As a

result of Shh graded action, the Pax72 region becomes sub-

divided into the floor plate and five sharply delimited

neural progenitor domains (p3, pMN, p2–p0), each of them

expressing specific transcription factors [2,5,6,29].

A crucial question that remains only partially addressed

is how an apparently continuous gradient of Shh protein

results in distinct, well-defined boundaries of gene expression

at different levels of the spinal cord DV axis. A crucial

element in the interpretation of the Shh gradient appears to

be the regulatory architecture of the transcriptional network

activated by Shh signalling, which involves cross-repressive

interactions between different transcription factors [30–32].

This mechanism ensures both activation of distinct genes at

different thresholds of Shh signalling, and the establishment

of mutually exclusive gene expression domains delimited

by sharp borders [30–32]. Although much progress has

been made to clarify how floor plate, p3, pMN and p2

domains are specified in the ventral spinal cord, the molecu-

lar mechanisms establishing the boundary between the

Pax72 and Pax7þ regions in the intermediate spinal cord

remain poorly investigated.

Cdh7 is expressed on the ventral side of the Pax7þ/Pax72

boundary in the intermediate spinal cord region overlapping

with the dorsal tail of the Shh gradient, and its dorsal limit

of expression is confined to the ventral border of the Pax7þ

region (figure 7a). Confirming previous results [18], we

found that Cdh7 expression in this intermediate spinal cord

domain is dependent on low/moderate Shh levels. We show

for the first time that Cdh7 overexpression represses Pax7

expression, while Cdh7 knock-down causes ventral expansion

of Pax7þ domain. In these assays, Cdh7 could inhibit Pax7

expression only in the proximity of the Pax7þ/Pax72 bound-

ary, but not in the most dorsal spinal cord region, which is

devoid of Shh. Therefore, Shh promotes Cdh7 expression in

the intermediate spinal cord and also collaborates with Cdh7

to negatively regulate Pax7 expression. Supporting this idea,

we found that Cdh7 interacts with Shh protein and cooperates

with Shh to prevent Gli3R formation. This interaction boosts

Shh signalling at low/moderate doses of the Shh ligand. We

speculate that this Cdh7-dependent mechanism of Shh path-

way enhancement leads to a sharp drop in the levels of Shh

signalling on the dorsal side of the Cdh72/Cdh7þ boundary

with respect to cells on the ventral side of the border. This, in

turn, facilitates establishment of Pax72 and Pax7þ domains

on each side of this border.

Based on these observations, we propose the model

shown in figure 7a. According to this model, ventral to the

Cdh72/Cdh7þ boundary, Shh-dependent Cdh7 expression

reinforces Shh signalling by inhibiting formation of Gli3R,

thus preventing Pax7 expression and specification of dorsal

identities. Dorsal to the Cdh72/Cdh7þ boundary, however,

lower levels of Shh in the absence of Cdh7 are not sufficient

to prevent Gli3R formation and Pax7 expression. As pre-

viously described [33–36], BMP and Wnt signals play a
major role in promoting Pax7 expression in the dorsal

spinal cord either directly or indirectly via positive regulation

of Gli3 expression, while Pax7-dependent repression of Cdh7

expression [18,37] probably contributes to sharpening the

boundary between the Cdh7þ/Pax72 and Cdh72/Pax7þ

regions. One possible caveat to this model comes from pre-

vious reports showing that the Pax7þ domain in the dorsal

spinal cord is not affected in Gli3 mutant mice [38],

suggesting that Cdh7 may also modulate Pax7 expression

via Gli3-independent mechanisms. It should be noted, how-

ever, that the Pax7þ domain spreads ventrally in either Shh

or Smo mutant mice, whereas it is correctly confined to the

dorsal spinal cord in Shh/Gli3 or Smo/Gli3 double mutant

mice [38–40]. Therefore, inhibition of Gli3R formation in

the intermediate spinal cord is both necessary and sufficient

to ventrally delimit the Pax7þ domain, even though Pax7

expression in the dorsal spinal cord can be maintained inde-

pendently of Gli3. Although Cdh7-dependent homophilic

interactions may also have a role in refining the Pax7þ/

Pax72 boundary and delimiting coherent progenitor

domains, Cdh7-dependent regulation of Shh signalling

clearly plays a major role in this process, because Cdh7 over-

expression in the dorsal neural tube, outside of the Shh range,

was unable to affect Pax7 expression and alter DV patterning.

Further work will be needed to elucidate possible roles of

Gli3-independent and/or cell adhesion-dependent mechanisms

of Cdh7 function in spinal cord patterning.

In spite of continuous progress in the field of Shh signal

transduction, the biochemical machinery controlling proces-

sing of Gli proteins in the absence or in the presence of Shh

remains only partially understood. According to recent

interpretations [10,41,42], in the absence of Shh, Gli2/3 pro-

teins bind Sufu in the cytoplasm and transit through the

primary cilium. When crossing the base of the primary

cilium, Gli2/3FL undergo phosphorylation by PKA, GSK3b

and CKI, leading to their conversion into Gli2/3R. While

Gli2R is degraded, Gli3R accumulates in the nucleus and

represses transcription of Shh-target genes. Activation of

Shh signalling is thought to increase the residence time of

Gli2/3FL–Sufu complexes within the primary cilium, thus

protecting Gli2/3FL from PKA/GSK3b/CKI-dependent

phosphorylation and preventing formation of Gli2/3R. This

leads to nuclear accumulation of Gli2FL, causing activation

of Shh targets, while unphosphorylated GLI3FL appears to

be quickly degraded by the proteasome [10–12,41].

We found that the extracellular region of Cdh7 binds Shh

and this interaction promotes the association of Cdh7 with

Sufu on the intracellular side of the cell membrane. We also

found that Shh stimulates Cdh7 aggregation, suggesting

that Cdh7 movement within the cell membrane is reduced

in the presence of Shh and that a mechanism involving

Shh-dependent Cdh7 translocation to the primary cilium is

unlikely. Preliminary evidences suggest that Cdh7 is

excluded from the primary cilium either in the presence or

in the absence of Shh (data not shown). Based on these obser-

vations, we propose that, following binding to Shh, Cdh7

associates with Sufu and retains the Sufu–Gli3FL complex

in the cytoplasm, thus preventing its translocation at the

base of the primary cilium and Gli3FL processing to Gli3R

(figure 7b,c). As we observed extensive degradation of the

Gli3 protein in the presence of both Cdh7 and Shh, we specu-

late that inhibiting Sufu–Gli3FL movement to the base of the

primary cilium and Gli3FL phosphorylation by PKA/
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GSK3b/CKI eventually leads to Gli3FL dissociation from

Sufu and degradation, irrespective of whether this involves

increased residence of the Sufu–Gli3FL complex within the

primary cilium (in the presence of high Shh levels without

Cdh7) or within the cytoplasm (in the presence of both

Cdh7 and low/moderate Shh levels). It should be noted,

however, that Cdh7-dependent activation of Shh signalling

is sensitive to Smo inhibitors and is enhanced by an active

form of Smo, indicating that Smo-mediated signal transduc-

tion, possibly involving the primary cilium, is required for

Shh signalling activation even in the presence of Cdh7.

Cdh7 ability to enhance Shh signalling was limited to low/

moderate doses of Shh. No Cdh7-dependent increase in

Shh signalling was detectable at higher Shh levels, suggesting

that the cross-talk between Cdh7 and Shh is likely to involve

complex, dose-dependent mechanisms. Future investigations

will need to shed light on how Cdh7-dependent and

Smo-dependent mechanisms converge on the regulation of

Shh-target genes, and on how the interactions between

Cdh7 and the Shh signalling pathway are influenced by the

levels of the Shh ligand.

In conclusion, Cdh7 expressed in the intermediate region

of the vertebrate spinal cord is required for proper neural

tube patterning. This role is due to the ability of Cdh7 to

enhance Shh signalling in the presence of low/moderate

levels of Shh, by causing more efficient inhibition of Gli3R

formation than would be achieved by these levels of Shh

on their own. We propose that this mechanism leads to a

marked difference in the levels of Shh signalling between

Cdh7þ and Cdh72 cells exposed to limited amounts of the
Shh ligand. This, along with opposite regulation of Cdh7

expression by Shh and Pax7, ensures establishment of a

sharp boundary between the Pax7þ and Pax72 neural tube

regions. By focusing mainly on the role of transcription fac-

tors, previous landmark studies have shown that the

interpretation of the Shh gradient depends on the regulatory

logic of downstream molecular networks [30–32,43], and this

work excitingly shows how embedding transmembrane pro-

teins such as Cdh7 in Shh-dependent molecular networks can

set the stage for morphogen-dependent tissue patterning.
4. Material and methods
Detailed description of experimental procedures is available

in the electronic supplementary material.
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