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Abstract: The aim of this article is to understand the extreme variability in estimates of the reproduction
ratio R0 observed in practice. For expository purposes, we consider a discrete-time, stochastic version of the
susceptible-infected-recovered model and introduce different approximate maximum likelihood estimators
of R0. We carefully discuss the properties of these estimators and illustrate, by a Monte Carlo study, the
widths of confidence intervals for R0. The Canadian Journal of Statistics 49: 992–1017; 2021 © 2021
Statistical Society of Canada
Résumé: Le but de cet article est de comprendre l’extrême variabilité du taux de reproduction R0 observée
en pratique. Pour la présentation, nous considérons une version stochastique en temps discret du modèle
SIR (Susceptible, Infecté, Guéri) et introduisons différents estimateurs du Maximum de Vraisemblance
Approché (MVA) de R0. Nous analysons en détail les propriétés de ces estimateurs et les illustrons par une
étude de Monte-Carlo des largeurs d’intervalles de confiance de R0. La revue canadienne de statistique 49:
992–1017; 2021 © 2021 Société statistique du Canada

1. INTRODUCTION

In the standard epidemiological model, the reproduction ratio—introduced by McDonald
(1952)—measures the expected number of persons who are infected by a newly infectious
individual. The value of this ratio describes the explosive episode in the early phase of an
epidemic, the peak number of infections, as well as an epidemic’s final size (Ma & Earn,
2006). It may be estimated daily or weekly as a simple indicator of either an approaching or
receding peak (Public Health Ontario [PHO], 2020) and is often used for containment policy.
In some cases, R0 is used to fix the conditions of a partial lockdown or to justify the closing of
an international border to foreigners arriving from other countries. “Alert levels are frequently
based on this new totemic figure” (Adam, 2020).

The estimated reproduction ratio is a forward-looking notion whose definition involves an
expectation that is conditional on both the size of the susceptible population and recovery rates.
This is a model-based notion that depends on the information and dynamic model used to evaluate
the expectation. The purpose of estimating R0 is to predict the rate of transmission of an infectious
disease. This forward-looking notion must be distinguished from its model-free, retrospective
analogue, which simply counts the number of persons infected by a given individual. This
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difference is similar to the difference between life expectancy and lifetime or between volatility
and realized volatility. However, the model-free approach cannot be carried out in the absence of
an accurate tracing process and is not immediately useful from a prediction perspective (White
& Pagano, 2008).

In practice, estimation of R0 generates large uncertainty regarding its value (Sanchez &
Blauer, 1997; Obedia, Haneef & Boelle, 2012; Cori et al., 2013). For instance, the first R0
estimates for COVID-19 in Wuhan, China, were between 1.9 and 6.4 (Li et al., 2020; Riou &
Althaus, 2020; Sanche et al., 2020; Wu et al., 2020). Estimating R0 is so important that, “to
calculate the official ratio of the United Kingdom, a dedicated government committee reaches
consensus on a possible range from ten estimations performed independently” (Adam, 2020).
The range in estimates is due to different interpretations and definitions of the ratio in the
models that underlie the estimation methods, the estimation methods themselves (see Obedia,
Haneef & Boelle, 2012; Cori et al., 2013 for standard estimation packages), and the way the
ratio is estimated using rolling calibration windows (Wallinga & Teunis, 2004; Cori et al., 2013).
Moreover, estimates are generally provided without confidence bands. These bands can be large,
especially in the early phases of an epidemic. Furthermore, estimators can be inconsistent for the
reproduction ratio of interest, even if applied to a large population.

The aim of this article is to precisely analyze the uncertainty and lack of robustness
of the reproduction ratio estimators. For expository purposes, we focus on the standard
susceptible-infected-recovered (SIR) model, initially introduced by Kermack & McKendrick
(1927) and widely used in the literature. This model is used to unambiguously define the repro-
duction ratio. This approach can feasibly be implemented to estimate COVID-19 reproduction
ratios using publicly available Canadian surveillance data.

In Section 2, we introduce a discrete-time, stochastic version of the SIR model and discuss the
possibility of aggregating the individual infection histories without loss of information. We also
rigorously define different notions of the reproduction ratio and how these ratios evolve during
an epidemic. Statistical inference for the SIR model is the topic of Section 3. Since the binomial
distributions that underlie the SIR model can be approximated by either Poisson or Gaussian
distributions, depending on the structure of the population and on transition probabilities, we
consider different approximate maximum likelihood estimators of the reproduction ratio. These
estimators do not provide the same estimated value, nor do they have the same distribution when
we perform estimation in a Gaussian asymptotic framework. They can even be inconsistent
in a Poisson asymptotic framework. This leads to Section 4, which contains a Monte Carlo
study to find valid confidence intervals for the different estimators and under various designs.
We introduce the matrix-variate definition of the reproduction ratio for a SIR model with
heterogeneity in Section 5. This leads to the introduction of within- and between-compartment
reproduction ratios. Section 6 discusses an alternative definition of the reproduction ratio,
called the instantaneous reproduction number, introduced by Fraser (2007), which is based
on a renewal equation for the evolution of infected individuals. This notion is the basis of
a Bayesian estimation approach to the reproduction ratio, implemented in the EpiEstim R
package (Cori et al., 2013). The EpiEstim estimator is usually computed in a rolling way,
but ideally should provide reasonable results in the standard SIR model. We discuss precisely
why this approach considers a parameter of interest that does not correspond to the initial
definition of the reproduction ratio and illustrate this feature by a Monte Carlo study. We
also discuss an alternative approach of the same type based on autoregressions of counts of
newly infected individuals. We present conclusions in Section 7. The Supplementary Material
provides a review of the main properties of the continuous-time, deterministic model and its
Euler time discretization. Proofs of some estimation results, additional Monte Carlo results, and
a summary of methods currently implemented in popular software packages are also given in
the Supplementary Material.
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2. MODEL AND OBSERVATIONS

We consider a discrete-time, stochastic version of the SIR model with three states: S = 1
(susceptible), I = 2 (infected or infectious), and R = 3 (recovered, immunized, or removed). We
also discuss the aggregation of observations and the notion of the reproduction ratio.

2.1. The Model of Individual Histories
The model specifies the joint distribution of individual medical histories. For each individual
i (i = 1,… , n), and date t (t = 0, 1,… ,T), the variable Yi,t provides the state 𝑗 (𝑗 = 1, 2, 3) of
individual i at date t.

Assumption 1. The individual histories (Yi,t ∶ t = 0, 1,… ,T) for i = 1,… , n are such that

(i) the variables Yi,t, for i = 1,… , n, are independent conditional on past histories

Yt−1 =
{(

Yi,t−1,Yi,t−2,… ,Yi,0
)
∶ i = 1,… , n

}
;

(ii) they have the same transition probability matrix Pt = (p𝑗k(t)), where p𝑗k(t) is the probability
of migrating from state 𝑗 at date t − 1 to state k at date t conditional on the past of the
entire population process, Yt−1; and

(iii) the structure of the transition probability matrix is

Pt =
⎛⎜⎜⎜⎝
1 − aN2(t − 1)∕n aN2(t − 1)∕n 0

0 1 − c c

0 0 1

⎞⎟⎟⎟⎠ ,
where N2(t − 1) is the number of individuals in state I = 2 at date t − 1, and a and c are
parameters such that a > 0 and 0 < c < 1.

Assumption 1 requires that we consider a homogeneous segment of individuals. The case
of several segments demands an extension of the SIR model to account for the contagion both
between and within segments. This extension is discussed in Section 5. The structure of the
transition probability matrix characterizes the SIR model.

(i) The last row of the matrix means that state R = 3 is an absorbing state, implying that an
individual cannot be infected twice.

(ii) The zero in the second row means that, after infection, an individual recovers, is immunized,
and then cannot become at risk.

(iii) The zero in the first row means that an individual cannot recover without being infected
first.

(iv) The parameter c is constant and represents the intensity of recovery.
(v) The parameter a characterizes the contagion rate and the intensity of being infected for an

individual at risk and is proportional to the proportion of infectious people.

Under Assumption 1, we can deduce the joint distribution of Yi,t, with i = 1,… , n and
t = 1,… ,T , given the initial conditions Yi,0 for i = 1,… , n. Nothing is said about the initial
distribution of Yi,0, for i = 1,… , n. This conditional joint distribution is parameterized by a and
c, which are assumed to be independent of both n and T . The assumption of a fixed population
size is a simplifying assumption for statistical analysis. In some contexts, this size can vary over
time. If this is the case, it is necessary to model variations due to births and deaths or due to
travel between regions.
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TABLE 1: Aggregate counts.

1 2 3 Total

1 N11(t) N12(t) 0 N1(t − 1)

2 0 N22(t) N23(t) N2(t − 1)

3 0 0 N33(t) N3(t − 1)

Total N1(t) N2(t) N3(t) n

2.2. Aggregated Counts
Under Assumption 1, it is possible to aggregate individual data without losing information on
the parameters a and c. We define

• N𝑗k(t), for 𝑗, k = 1, 2, 3, as the number of individuals transitioning from state 𝑗 to k between
dates t − 1 and t;

• N𝑗(t), for 𝑗 = 1, 2, 3, as the number of individuals in state 𝑗 at date t;
• p̂𝑗k(t) = N𝑗k(t)∕N𝑗(t − 1) as the sample analogue of p𝑗k(t); and
• p̂𝑗(t) = N𝑗(t)∕n, as the proportion of individuals in state 𝑗 at date t.

It is known that the set of aggregates {N𝑗k(t) ∶ 𝑗, k = 1, 2, 3; t = 1,… ,T} is a sufficient
statistic for the analysis (see Appendix A.2 of the Supplementary Material). Therefore, the
analysis can be based on these aggregates only. In the SIR framework, with a constant population
size n, these aggregates are related as shown in Table 1. In particular, the following relation-
ships provide the cross-sectional counts in terms of the transition counts: N1(t) = N11(t),N2(t) =
N12(t) + N22(t),N3(t) = N23(t) + N33(t),N1(t − 1) = N11(t) + N12(t),N2(t − 1) = N22(t) + N23(t),
and N3(t − 1) = N33(t). For the SIR model, these equations can be solved to get the transition
counts in terms of the marginal counts. We have that

N11(t) = N1(t),

N12(t) = N1(t − 1) − N1(t) = −ΔN1(t),

N22(t) = N2(t) + ΔN1(t),

N23(t) = N2(t − 1) − N2(t) − ΔN1(t) = −ΔN1(t) − ΔN2(t) = ΔN3(t),

and

N33(t) = N3(t − 1),

and are able to deduce the following result:

Proposition 1. For the SIR model under Assumption 1, the collection of sequences N(t) =
[N1(t),N2(t),N3(t)]⊤, t = 0,… ,T , is also a sufficient statistic. Moreover, the process (N(t)) is a
homogeneous Markov process.

Thus, we have the same information in the transition counts and in the cross-sectional counts.
That is, the conditional distribution of (N(t)) given Yt−1 is equal to the conditional distribution
of (N(t)) given N(t − 1) only. This property is specific to the SIR model. It is not satisfied in
general, for instance, in models with heterogeneity or with more compartments.
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2.3. Reproduction Ratio
Numerous summaries of the development of a disease have been introduced in the epidemiological
literature. An important concept is the reproduction (or reproductive) ratio (or number). It is
defined by computing the expected number of individuals at risk that a newly infected individual
will infect during his/her infectious period. In our framework with a constant recovery intensity,
the length of the infection/infectious period is stochastic and follows a geometric distribution
with the elementary probability mass function P(X = x) = c(1 − c)x−1, the survival function
P(X ≥ x) = (1 − c)x−1, and expectation EX = 1∕c for x = 1, 2,…. As in Farrington & Whitaker
(2003), we deduce the expected number of individuals infected by an individual who was infected
at date t to be

R∗
0,t =

a
n

∞∑
x=1

Et[N1(t + x − 1)](1 − c)x−1 = a
n

∞∑
x=0

Et[N1(t + x)](1 − c)x]. (1)

This expectation depends on the transmission rate a and the survival function for the infectious
period, but also on the expected proportion of people at risk. For instance, if the population at
risk disappears (i.e., N1(t) ≃ 0), then R0,t = 0. To adjust for the size of the population at risk and
the medical notion of transmission, it is common to also consider

R0,t =
a

N1(t)

∞∑
x=0

[Et[N1(t + x)](1 − c)x]. (2)

The quantities in Equations (1) and (2) are called basic and effective reproduction numbers,
respectively. Under Assumption 1, EtN1(t + x) = g(a, c,N1(t),N2(t),N3(t)) by the homogeneous
Markov property, where g is a nonlinear function independent of time. Therefore, R0,t and R∗

0,t
also depend on time through the marginal counts at time t.

In the literature, this time dependence is often disregarded by focusing on the very early
phase (outbreak) of an epidemic (Hethcote, 2000). At t = 0, the following assumptions are made:

(i) First, we have that N1(0) = n − 𝜀,N2(0) = 𝜀, and N3(0) = 0, where 𝜀 is a very small,
positive number. This 𝜀 corresponds to the number of initially infected individuals or the
size of the first cluster. Without this initial infection, the disease cannot appear in the
population. In other words, the SIR model assumes a “closed economy,” except at the initial
date.

(ii) In the following time, N1(t) = n − 𝜀(t), where 𝜀(t) is also small. An approximate formula for
the reproduction ratio is

R0,0 = R∗
0,0 ≃ a

∞∑
x=0

(1 − c)x = a∕c,

that is, the transmission rate times the expected length of the infection episode. This common
value is called the initial reproduction ratio. However, during the epidemic, this measure can
differ significantly.

2.4. Simulation
The conditional distributions of the count variables are easily deduced from Assumption 1.
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TABLE 2: Simulation scheme.

N 1(0) , N 2(0) , N 3(0)

N 12(1) , N 23(1)

N 1(1) , N 2(1) , N 3(1)

N 12(2) , N 23(2)

N 1(2) , N 2(2) , N 3(2)

· · ·

· · ·

d
s

d

s

d

d

d

s
d

Proposition 2. Under Assumption 1,

(i) N12(t) and N23(t) are independent given the past N12(t) follows the binomial distribution



(
N1(t − 1), a

N2(t − 1)
n

)
, N23(t) follows the binomial distribution 

(
N2(t − 1), c

)
, and

(ii) the process (N1(t),N2(t)) is a Markov process, with a conditional distribution obtained
from that of (N12(t),N23(t)) by the change of variables N1(t) = N1(t − 1) − N12(t) and
N2(t) = N2(t − 1) + N12(t) − N23(t).

That is, under Assumption 1, we obtain a structural dynamic model for the counts in
a homogeneous segment, which implies conditional heteroskedasticity and a set of binomial
distributions that are specific to the count data. This differs from the model inference approach,
which considers a reduced-form regression model with ad hoc errors added to the conditional
means.

These results can be used to simulate aggregate counts given parameter values a and c and
given starting counts N1(0),N2(0), and N3(0), following the simulation scheme in Table 2, where
s
→ denotes a draw from one of the binomial distributions of Proposition 1(i) and

d
→ denotes the

application of one of the deterministic relations in Proposition 1(ii).
For simulations, and by analogy with COVID-19, we set the parameter values c = 0.07,

which corresponds to an expected infection period of approximately 14 days and R0,0 = a∕c
between 0.5 and 1.5, which corresponds to a between 0.095 and 0.105. It is worth noting that,
in the SIR model, the infected and infectious periods are assumed to be the same, which is
not the case with COVID-19. The initial structure of a population corresponding to the city of
Toronto, say, can be n = 3,000,000 with a first cluster of N2(0) = 50 (with N3(0) = 0). Thus

for a ≃ 0.1 at date t = 0, p12(0) ≃
0.1 × 50

3,000,000
= 1

600,000
. We see that p23(t) and p12(t) are small

at the beginning of the epidemic. A simulated path is given in Figure 1, where we observe the
standard patterns:

• A decreasing pattern is seen for the size of the population at risk.
• An increasing pattern is seen for the number of immunized people.
• The peak of the epidemic for the number of infected people occurs at around 250 days in

this simulation. The figure is given for a rather large number of days to highlight asymptotic
behaviour. For this SIR model, there is herd immunity (Allen, 1994). The immunity ratio—that
is, the proportion of those who were infected and subsequently recovered—is around 55%.

Let us now explain how we will compute the population basic and effective reproduction
numbers corresponding to given parameter values. The corresponding theoretical expressions
involve conditional expectations that can be approximated by Monte Carlo simulation. More
precisely, at each date t, we simulate and average several future paths N1(t + x), for x = 1,… , 30,
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0

FIGURE 1: Counts for the different states.

to approximate the basic and effective reproduction numbers at t. These paths are reported in
Figure 2 with S = 100 replications. We observe that even the basic reproduction number, that is,
the number adjusted by the size of the population at risk, is not constant during the epidemic
in the time-discretized version of SIR. We also observe that the final value of the effective
reproduction number is equal to its starting value. Indeed, for large t, the size of the population
at risk coincides with the final size of the epidemic and R0(∞) = a∕c. The evolutions shown in
Figure 2 are obtained with future paths N1(t) with lengths of 100 days. In practice, the sum in the
definition of R0 can be truncated by changing the maximum value taken by x: such a truncation
can have an impact on the evaluation of R0. Figure 3 provides the evolutions of reproduction
ratios computed with 30-, 60-, and 100-day truncations, respectively.

3. ESTIMATION

This section introduces exact and approximate maximum likelihood approaches and discusses
their asymptotic properties. Finite-sample properties are more important in practice and will be
considered in Section 4.

3.1. Challenges
The estimation of a SIR model and, more generally, of any epidemiological model, is challenging
for three main reasons:

(i) The SIR model is a continuous-time, nonlinear, dynamic model with chaotic properties
(see Appendix A.1 of the Supplementary Material). This implies that small changes in the
parameter values a and c can have a strong impact on the evolution of the process in the
medium and long run. It is known (Allen, 1994) that the deterministic, discrete-time version

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11663
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FIGURE 2: Evolution of basic and effective reproduction ratios.

FIGURE 3: Evolution of the reproduction ratio under truncation.
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of the SIR model guarantees herd immunity. However, in our stochastic framework, the
level of herd immunity and the time at which it is reached are very sensitive to the values
of a and c and to the initial conditions.

(ii) The counts of susceptible, infected, and recovered individuals are nonstationary processes,
as seen in Figure 1. If R0,0 > 1, the proportion of infected individuals increases up to a peak
and then decreases towards an asymptotic stationary state. This nonstationarity makes it
difficult to analyze the properties of the estimators as functions of the number of observation
dates T . Moreover, T is usually small, between 20 and 60 days, at the beginning of an
epidemic.

(iii) In contrast to the previous point, the population size n is very large and we expect some
asymptotic results when n tends to infinity and T is fixed. However, Proposition 2 shows
the key role of the binomial distributions 

(
N1(t − 1), p12(t)

)
, and (N2(t − 1), c) for

t = 1,… ,T . For an asymptotic analysis, what matters is not just n, but also the marginal
counts N1(t − 1) and N2(t − 1). Whereas the susceptible population is often very large, at
least at the beginning of an epidemic, the number of infected individuals is much smaller.

However, for large N1(t − 1) and N2(t − 1), we may apply the standard asymptotic results for
a binomial distribution, that is, the possibility to approximate it by either a Poisson or Gaussian
distribution. For example, if the relevant asymptotic results hold, the Poisson approximation
may be preferred because of the fact that it produces closed-form expressions for quantities
of interest (see Section 3.3). This approximation of (N, p) is either (Np) if N → ∞ and
p → 0 such that Np → 𝜆 > 0, where (𝜆) denotes the Poisson distribution with parameter 𝜆,
or N(Np,Np(1 − p)) if N → ∞ with p fixed. In our framework, both p23(t) = c and p12(t) are
small. The choice between the approximations depends on the magnitudes of N1(t − 1)p12(t)
and N2(t − 1)p23(t) for t = 1,… ,T: that is, the numbers of newly infected and newly recovered
individuals, respectively.

For example, if these counts are smaller than 45–50, the Poisson approximation can be
used. Otherwise, one may use the Gaussian approximation. But at the beginning and end of an
epidemic, N12(t) and N23(t) are rather small. These counts are larger around the peak of the
epidemic. Therefore, the approximation will depend on the observation date and also on the
size n of the population of interest. For instance, this size is smaller if we want to consider
a subpopulation of Toronto, say, males older than 75 (see Zhang et al., 2020 for an analysis
restricted to the outbreak on the Princess Diamond cruise ship).

3.2. Mechanistic Model
A major part of the literature is based on a deterministic, dynamic model that implicitly
assumes the possibility of closely approximating the theoretical transition probabilities using
their empirical counterparts, that is, to use the Gaussian approximation. More precisely, under
Assumption 1, we have that

Et−1p̂(t) = P[p̂2(t − 1)]⊤p̂(t − 1).

Therefore if p̂(t) is equivalent to p(t), where p(t) is the vector of state occupancy probabilities,
we get the following deterministic dynamic model for the p(t)s:

p(t) = P[p2(t − 1)]⊤p(t − 1).

This is often called the mechanistic model (see Breto et al., 2009 and Appendix A.1 of the
Supplementary Material for its link with the continuous-time SIR model).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11663
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3.3. (Approximate) Maximum Likelihood Estimator
In our framework, the log-likelihood function L(a, c) can be decomposed as the sum L(a, c) =
L1(a) + L2(c). This allows us to separately estimate a and c by focusing on the first and second
rows of the (observed) transition matrix, respectively (see Appendix A.2 of the Supplementary
Material). Different log-likelihood functions, such as the true one based on the binomial
distributions or approximate ones based on either the Poisson or Gaussian approximations, can
be considered.

3.3.1. Binomial log-likelihood
Following Proposition 2, we can deduce that

L1(a) =
T∑

t=1

{
N11(t) log[1 − ap̂2(t − 1)] + N12(t) log[ap̂2(t − 1)]

}
and

L2(c) =
T∑

t=1

{
N22(t) log(1 − c) + N23(t) log c

}
.

The maximum likelihood (ML) estimator of a is the solution to the first-order condition

−
T∑

t=1

[
N11(t)p̂2(t − 1)
1 − âp̂2(t − 1)

]
+ 1

â

T∑
t=1

N12(t) = 0,

and has no closed-form expression. The ML estimator of c is

ĉ =
T∑

t=1

N23(t)∕
T∑

t=1

N2(t − 1) =
T∑

t=1

{
N2(t − 1)∑T

t=1 N2(t − 1)
p̂23(t)

}

and is a weighted combination of dated transition frequencies.

3.3.2. Poisson approximate log-likelihood
Here we have that

LP
1 (a) ∝

T∑
t=1

{
N12(t) log[aN1(t − 1)p̂2(t − 1)] − aN1(t − 1)p̂2(t − 1)

}
and

LP
2 (c) ∝

T∑
t=1

{
N23(t) log[N2(t − 1)c] − N2(t − 1)c

}
.

We can obtain Poisson approximate maximum likelihood (AML) estimators with closed-form
expressions as

âP = n
T∑

t=1

N12(t)∕
T∑

t=1

[N1(t − 1)N2(t − 1)] (3)
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and

ĉP =
T∑

t=1

N23(t)∕
T∑

t=1

N2(t − 1) = ĉ.

Equation (3) shows that âP is a weighted average of the dated estimated transition coefficients
ât = N12(t)∕[N1(t − 1)p̂2(t − 1)], with weights proportional to N1(t − 1)p̂2(t − 1). We deduce an
analytic formula for the corresponding estimator of the initial reproduction ratio:

R̂0,P =
n
∑T

t=1 N12(t)
∑T

t=1 N2(t − 1)∑T
t=1[N1(t − 1)N2(t − 1)]

∑T
t=1 N12(t)

. (4)

Equation (4) can be used if
∑T

t=1 N23(t) is nonzero, that is, if recovery has been observed.

3.3.3. Gaussian and unfeasible Gaussian approximate log-likelihood
Using the Gaussian approximation to the binomial distribution, we have that

LG
1 (a) ∝ −1

2

T∑
t=1

log
(
ap̂2(t − 1)[1 − ap̂2(t − 1)]

)
− 1

2

T∑
t=1

N1(t − 1)
[p̂12(t) − ap̂2(t − 1)]2

ap̂2(t − 1)[1 − ap̂2(t − 1)]

and

LG
2 (c) ∝ −T

2
log[c(1 − c)] − 1

2

T∑
t=1

N2(t − 1)
[p̂23(t) − c]2

c(1 − c)
.

The unfeasible log-likelihood is obtained by replacing the variance ap̂2(t − 1)[1 − ap̂2(t − 1)]
by the estimate p̂12(t)[1 − p̂12(t)], which may be inconsistent when n tends to infinity. We have
that

LUG
1 (a) = −1

2

T∑
t=1

{
N1(t − 1)

[p̂12(t) − ap̂2(t − 1)]2

p̂12(t)[1 − p̂12(t)]

}
.

From this expression we obtain a closed-form expression for âUG, which corresponds to an
unfeasible, generalized least squares (GLS) estimator of a

âUG =
T∑

t=1

(N1(t − 1)p̂2(t − 1)∕[1 − p̂12(t)])∕
T∑

t=1

[
N1(t − 1)p̂2(t − 1)2

p̂12(t)[1 − p̂12(t)]

]
.

3.3.4. Poisson/Gaussian approximate log-likelihood
When n is large, p is small, and np is large, the Poisson distribution (np) can be approximated
by the Gaussian distribution N(np, np). Thus, compared to the approximations in Section 3.3.3,
the p2 term in the variance is disregarded. In this approach

LPG
1 (a) ∝ −1

2

T∑
t=1

log[ap̂2(t − 1)] − 1
2

T∑
t=1

{
N1(t − 1)

[p̂12(t) − ap̂2(t − 1)]2

ap̂2(t − 1)

}
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and

LPG
2 (c) ∝ −1

2
T log c − 1

2

T∑
t=1

{
N2(t − 1)

[p̂23(t) − c]2

c

}
.

The AML estimates are positive solutions of polynomial equations of degree two, given by

1
T

T∑
t=1

{
N1(t − 1)p̂2(t − 1)

}
a2 + a − 1

T

T∑
t=1

{
N1(t − 1)p̂12(t)

}
= 0

and

1
T

T∑
t=1

N2(t − 1)nc2 + c − 1
T

T∑
t=1

{
N2(t − 1)p̂23(t)

}
= 0.

To summarize, there are as many AML estimators of a, c, and the initial reproduction
number R0,0 = a∕c as there are (approximate) log-likelihoods. This can explain the different
approximations of R0,0 published for the same series of aggregate counts.

3.4. Properties of the AML Estimators
Properties of the AML estimators can be derived by Monte Carlo simulations, as shown
in Section 4. Their asymptotic properties depend on either Poisson or Gaussian asymptotics,
depending on which is the most appropriate, and on the selected estimators. For instance, we may
have chosen a Poisson AML estimator when the Gaussian asymptotic conditions were satisfied.
In this case, (N, p), which is well approximated by N(Np,Np(1 − p)), has been replaced by
(Np), which is close to N(Np,Np). Therefore, we have not used the right approximation and
have neglected the p2 term. Recall that, as outlined in Section 3.1, the appropriate choice of
approximation relies on whether p → 0 or p is fixed. For illustration, we consider

(i) the behaviour of the Poisson AML estimator âP in the case where Poisson asymptotics are
applicable and

(ii) the behaviour of the binomial ML estimator â in the case where Gaussian asymptotics are
applicable.

3.4.1. Poisson AML and Poisson asymptotics
Let us consider the case where T = 1, that is, with two observations of the aggregates. The
main results below are valid for any finite T . We have that âP = nN12(1)∕N1(0)N2(0), ĉP =

N23(1)∕N2(0), and R̂0,P = âP∕ĉP =
N12(1)
N23(1)

n
N1(0)

. Conditional on (N1(0),N2(0)), the estimators âP

and ĉP are independent such that
N1(0)N2(0)

n
âP ∼ 

(
a

N1(0)N2(0)
n

)
, and N2(0)ĉP ∼ (cN2(0)).

We deduce that E0âP = a and E0ĉP = c, which shows that the Poisson AML estimators are
unbiased for T = 1. Their variances are V0âP = an

N1(0)N2(0)
and V0ĉP = c

N2(0)
. In practice,

N1(0) (which is approximately n) and N2(0) are too small (<30 or 40, say) for Poisson
asymptotics to be valid. Therefore, both V0(âP) and V0(ĉP) are not small, even for large n, and
we cannot expect âP and ĉP to be consistent for large n under Poisson asymptotics. Moreover,
at the very beginning of an epidemic, infected individuals have not yet recovered, meaning that
N23(1) = 0. We deduce that R̂0P = âP∕ĉP = âP∕0 = ∞. This illustrates the lack of accuracy of
the basic reproduction ratio during the initial phase of an outbreak.
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Remark 1. The unbiasedness property is specific to the case where T = 1. If T = 2, we have,
by iterated expectation, that

âP =
n[N12(1) + N12(2)]

N1(0)N2(0) + N1(1)N2(1)
, and E0(âP) = nE0

[
N12(1) + aN1(1)N2(1)

N1(0)N2(0) + N1(1)N2(1)

]
,

where the expectation is a complicated nonlinear function of the counts N1(1), N2(1), and N12(1).

3.4.2. Binomial ML and Gaussian asymptotics
When the law of large numbers and the central limit theorem are applicable, the sample
proportions tend to their theoretical counterparts: p̂𝑗k(t) → p𝑗k(t) and p̂𝑗(t) → p𝑗(t), for 𝑗, k =
1, 2, 3 as n tends to infinity. The ML estimators tend to the true parameter values: â → a, ĉ → c,
and R̂0 = â∕ĉ → a∕c at the speed 1∕

√
n. Both â and ĉ are asymptotically independent and

asymptotically normal with variances consistently estimated by

V̂(â) =

{
T∑

t=1

(
N11(t)p̂2(t − 1)
[1 − âp̂2(t − 1)]2

)
+ 1

â2

T∑
t=1

N12(t)

}−1

and V̂(ĉ) = ĉ(1 − ĉ)∑T
t=1 N2(t − 1)

,

respectively.

4. MONTE CARLO STUDY

Even when Gaussian asymptotics can be used, real datasets are finite: a key issue is to know
whether the asymptotic results are accurate in determining confidence intervals for the parameters
a, c, and R0. In this section, we perform a Monte Carlo analysis for some of the estimators
introduced in Section 3. We fix the design as follows: N1(0) = 3,000,000; N2(0) = 100, 1000;
T = 20; c = 0.07; and R0 = 2. This design corresponds to estimators computed on the period
[0,T]. Note that the process of marginal counts is Markov. Therefore, this simulation exercise
also applies to a rolling estimator computed on (t, t + T), where the marginal counts at t are the
counts fixed for N1(0) and N2(0). This explains why we allow a large value of N2(0) in the design.
Figures 4 and 5 correspond to the parameters estimated by the approximated Poisson likelihood
with N2(0) = 100, 1000, respectively. The figures provide the finite-sample distributions of the
parameters a, c, and R0 = a∕c.

Whereas some skewness can be observed in the estimated contagion parameter distribution
in Figure 5, this feature largely disappears for the estimated reproduction number. This is due to
the nonlinear transformation used to compute R0 and the dependence between â and ĉ. The initial
number of infected individuals also has an impact on the width of the estimated distribution of
R0 which is known at ±20% for N2(0) = 100, at ±10% for N2(0) = 1000.

To have more insight into the finite-sample properties of these estimators, we provide
summary statistics for different designs (a, c), N2(0), and T in Tables 3–5. Finite-sample
distributions for the estimators computed using the unfeasible Gaussian approximate likelihood
are given in Appendix A.3 of the Supplementary Material.

5. REPRODUCTION NUMBER UNDER HETEROGENEITY

5.1. Model with Heterogeneity
Another source of variability in estimating R0 is due to latent heterogeneity and concerns
the definition of R0 itself. For illustration, we consider a situation with two homogeneous
populations, population 1 and population 2. The SIR model is replaced by a (SIR)2 model with
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FIGURE 4: Distributions of approximate Poisson ML estimators under N2(0) = 100.

six states: S1I1R1S2I2R2, in the terminology of Appendix 1 of Gourieroux & Jasiak (2020a). The
(6 × 6) transition matrix is block diagonal with the 𝑗th diagonal block

P𝑗,t =

⎛⎜⎜⎜⎜⎝
1 − a𝑗1

N1
2 (t − 1)

N1
− a𝑗2

N2
2 (t − 1)

N2
a𝑗1

N1
2 (t − 1)

N1
+ a𝑗2

N2
2 (t − 1)

N2
0

0 1 − c𝑗 c𝑗
0 0 1

⎞⎟⎟⎟⎟⎠
,

for 𝑗 = 1, 2, where N𝑗

2(t) (respectively, n𝑗) is the number of infected people in population
𝑗 (respectively, the size of population 𝑗). Typically, the two populations can correspond to
two age categories, say, young and old. Now, the contagion parameter has a matrix form

A =
(

a11 a12
a21 a22

)
. Indeed, there are contagions within each population, described by a11 and a22,

and between the populations described by a12 and a21.
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FIGURE 5: Distributions of approximate Poisson ML estimators under N2(0) = 1000.

The (SIR)2 model can be constrained by introducing degrees of infectiveness and of infection
vulnerability, denoted by 𝛼𝑗 and 𝛽𝑗 , respectively. The contagion matrix is A = 𝛽𝛼′. This matrix
has reduced a rank equal to 1. The existence of between- and within-population contagions
modifies the notion of the reproduction number, which now must account for the different
types of contagions. The initial reproduction number now has a matrix form R0,0 = 𝛽�̃�⊤, with
�̃�𝑗 = 𝛼𝑗∕c𝑗 , for 𝑗 = 1, 2. The diagonal elements of R0,0 can be very different. For instance,
if one segment includes super-spreaders, the reproduction number can vary from a value of
around 2 (WHO, 2020) to a value between 4.5 and 11.5 (Kochanczik, Grabowski & Lipniacki,
2020).

5.2. Omitted Heterogeneity
Let us now assume an underlying (SIR)2 model and aggregate the two subpopulations in
S = S1 ∪ S2, I = I1 ∪ I2,R = R1 ∪ R2. There is an aggregation bias, which implies that the

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11663



2021 ESTIMATED REPRODUCTION RATIOS IN THE SIR MODEL 1007

TABLE 3: Select summary statistics for the estimated distribution of â and correlation (𝜌) between â and ĉ.

N2(0) T a c R0 Mean(â) Var(â) Median(â) 𝜌(â, ĉ)

5 20 0.035 0.07 0.5 0.031 0.00046 0.030 −0.112

5 20 0.140 0.07 2.0 0.131 0.00010 0.135 −0.246

5 40 0.105 0.07 1.5 0.097 0.00052 0.101 −0.380

5 40 0.140 0.07 2.0 0.133 0.00045 0.137 −0.489

100 20 0.140 0.07 2.0 0.139 0.00003 0.140 −0.005

100 40 0.070 0.07 1.0 0.069 0.00002 0.070 0.006

200 20 0.070 0.07 1.0 0.070 0.00002 0.070 −0.027

200 40 0.070 0.07 1.0 0.070 0.00001 0.070 −0.009

300 20 0.070 0.07 1.0 0.070 0.00001 0.070 −0.008

300 40 0.035 0.07 0.5 0.035 0.00001 0.035 0.000

TABLE 4: Select summary statistics for the estimated distribution of ĉ and correlation (𝜌) between â and ĉ.

N2(0) T a c R0 Mean(ĉ) Var(ĉ) Median(ĉ) 𝜌(â, ĉ)

50 40 0.035 0.07 0.5 0.0709 0.00007 0.0703 −0.004

100 40 0.070 0.07 1.0 0.0703 0.00002 0.0702 0.006

100 40 0.105 0.07 1.5 0.0702 0.00001 0.0701 −0.007

200 20 0.105 0.07 1.5 0.0701 0.00001 0.0700 −0.007

200 20 0.140 0.07 2.0 0.0701 0.00001 0.0700 −0.007

300 20 0.035 0.07 0.5 0.0701 0.00001 0.0701 −0.004

500 20 0.035 0.07 0.5 0.0701 0.00001 0.0702 −0.003

500 20 0.105 0.07 1.5 0.0701 0.00000 0.0700 0.008

500 40 0.035 0.07 0.5 0.0701 0.00001 0.0702 0.012

1000 20 0.035 0.07 0.5 0.0701 0.00000 0.0704 0.006

TABLE 5: Select summary statistics for the estimated distribution of R̂0.

N2(0) T a c R0 Mean(R̂0) Var(R̂0) Median(R̂0)

5 40 0.035 0.07 0.5 0.433 0.08843 0.430

50 20 0.035 0.07 0.5 0.499 0.01498 0.492

50 20 0.140 0.07 2.0 1.99 0.04052 1.989

100 20 0.070 0.07 1.0 0.999 0.01404 0.994

100 40 0.070 0.07 1.0 0.993 0.00690 0.994

200 20 0.105 0.07 1.5 1.499 0.00917 1.499

300 40 0.035 0.07 0.5 0.499 0.00160 0.499

500 40 0.035 0.07 0.5 0.500 0.00096 0.500

500 40 0.070 0.07 1.0 0.999 0.00137 0.999

1000 20 0.070 0.07 1.0 1.000 0.00138 0.999
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cross-sectional counts N1(t) = N1
1 (t) + N2

1 (t), N2(t) = N1
2 (t) + N2

2 (t), and N3(t) = N1
3 (t) + N2

3 (t)
no longer define a Markov process. However, it is still possible to compute the transition matrix
at a horizon of one. Let us, for instance, consider the probability that an individual who is at risk
at date t − 1 (i.e., in state S at t − 1 denoted as St−1,p where p is subpopulation) is infected at date
t, denoted as It, by a newly infectious individual. By Bayes’ formula

P(It|St−1) = P(It|St−1,1)P(St−1,1|St−1) + P(It|St−1,1)P(St−1,2|St−1)

=
N1

1 (t − 1)
N1(t − 1)

[
a11

N1
2 (t − 1)

N1
+ a12

N2
2 (t − 1)

N2

]

+
N2

1 (t − 1)
N1(t − 1)

[
a21

N1
2 (t − 1)

N1
+ a22

N2
2 (t − 1)

N2

]

=

[
𝛽1

N1
1 (t − 1)

N1(t − 1)
+ 𝛽2

N2
1 (t − 1)

N1(t − 1)

][
𝛼1

N1
1 (t − 1)

N1
+ 𝛼2

N2
2 (t − 1)

N2

]

= at
N2(t − 1)

N
,

where at is the dated transmission parameter in the SIR model with omitted heterogeneity.
Therefore, the use of the standard SIR model when there is heterogeneity implies a time-varying
contagion parameter. A similar effect, known as the mover-stayer phenomenon, exists for
infection state recovery intensity, and leads to a time-varying ct and, therefore, a time-varying
reproduction number R0,0,t = at∕ct. This type of decomposition can easily be extended to more
than two homogeneous subpopulations (Alipoor & Boldea, 2020).

6. INSTANTANEOUS REPRODUCTION NUMBER

There exist different packages on the market for estimating reproduction numbers. These
typically use a rolling calibration window. That is, instead of using the entire history of past
infections, only a subset of the most recent data (e.g., the past week) is used to estimate a
reproduction number. We discuss below two types of estimators. The first, called a generic
estimator, approximates the instantaneous reproduction number, a notion that differs from the
basic reproduction number. An alternative, called the autoregressive estimator, defines R as an
exponential rate of the diffusion of a disease and is usually estimated by either log-regression
or Poisson regression (Wallinga & Lipsitch, 2007). Computation and associated software for
the instantaneous reproduction number can be found in Cori et al. (2013) and the EpiEstim
package (see Appendix A.4 of the Supplementary Material). For the time-dependent reproduction
number, see the RO package (Obedia et al., 2012). These are used, for instance, for the official
reproduction numbers provided by (PHO, 2020). Both the generic and autoregression estimators
use a rolling calibration window and are presented as estimating a time-varying reproduction
number. But, methodologies are expected to work in a framework with a weakly time-dependent
reproduction number. This is why the discussion here is done under the SIR model with constant
parameters.

6.1. The Linearized Mechanistic Model
Both estimation approaches are based on a linearization of the mechanistic model, which assumes
a population of infinite size.
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6.1.1. The mechanistic model
Let us consider a mechanistic model of infection derived from the SIR model. As in Section
3.2, we denote by p1(t) and p12(t) the theoretical probabilities corresponding to the frequen-
cies p̂1(t) = N1(t)∕n and p̂12(t) = N12(t)∕n. We assume that p̂ tends to p when n tends to
infinity. In this case, p(t) is also equal to the (unconditional) expectation of p̂(t). Let us
focus on the mechanistic component of the model for infection, that is, without considering
recovery.

When n varies, we need to appropriately adjust the contagion parameter to derive the
mechanistic model by replacing a with an = a∕n. Then we have that

Et−1

(
N12(t)

n

)
= a

N1(t − 1)
n

N2(t − 1)
n

.

Let us now decompose the count N2(t − 1) as

N2(t − 1) =
t∑

s=1

N2(t − 1; s),

where N2(t − 1; s) is the number of individuals infected at t − s for the first time who are still
infectious at t − 1. In the SIR model with geometric infection durations, we have that

Et−1

[
N2(t − 1, s)

n

]
=

N12(t − s)
n

(1 − c)s−1

and so

E
[

N2(t − 1, s)
n

]
= (1 − c)s−1E

[
N12(t − s)

n

]
.

Making n tend to infinity in these relations and using the fact that the limit of the p is deterministic,
we get the deterministic recursive equation

p∗12(t) = ap1(t − 1)
t∑

s=1

[
(1 − c)s−1p∗12(t − s)

]
,

or equivalently,

p∗12(t) = a

[
1 −

t∑
s=1

p∗12(t − s)

]
t∑

s=1

[
(1 − c)s−1p∗12(t − s)

]
, (5)

where p∗12(t) = limn→∞[N12(t)∕n]. Also, p∗12(t) differs from p12(t) in its denominator: n instead
of N1(t − 1), except at the beginning of the disease. From Equation (5), we see that the series
p∗12(t) = E(N12(t)∕n) satisfies a quadratic recursive equation with an order that tends to infinity
with t.

6.1.2. Linearization
A first-order approximation assumes that p1(t − 1) is close to 1. This approximation is reasonable
and standard at the beginning of the disease, but will induce biases in the medium run

DOI: 10.1002/cjs.11663 The Canadian Journal of Statistics / La revue canadienne de statistique



1010 ELLIOTT AND GOURIEROUX Vol. 49, No. 4

(when looking for the peak) and in the long run (when looking for final size of the epidemic and
herd immunity). Under this approximation

p∗12(t) ≃ a
t∑

s=1

[
(1 − c)s−1p∗12(t − s)

]
= a

c

t∑
s=1

[
w(s)p∗12(t − s)

]
= R0,0

t∑
s=1

[
w(s)p∗12(t − s)

]
(6)

with w(s) = c(1 − c)s−1. The relation in Equation (6) on the expected new infection rates is the
basis of the methodology introduced in Fraser (2007).

6.2. The Generic Estimator
6.2.1. Definitions
A generic approach has been introduced in Fraser (2007) and Cori et al. (2013), following a
similar idea in Wallinga & Teunis (2004). The method requires knowledge of only the sequence
N12(t) of new infections with t varying. The count at time t is written via the lagged counts as

N12(t) ≃
S∑

s=1

𝛾sN12(t − s)

and the regression coefficients can be normalized as 𝛾s = ws𝛾 , where
∑S

s=1 ws = 1.
The estimated “instantaneous reproduction number” is defined in EpiEstim (Cori et al.,

2013) as

R̂i
t =

N12(t)∑t
s=1 N12(t − s)ŵs

, (7)

where the sum in the denominator starts at the first occurrence of an infection, and ŵs is a
Bayesian estimate of the infectiousness profile. The infectiousness profile of ws is not necessarily
estimated, but, rather, chosen by the practitioner, possibly through a prior (see, e.g., Cori et al.
2013 and the discussion below). The estimator in Equation (7) is not necessarily robust: it
depends on the length of the estimation period, the number of lags in the sum appearing in the
denominator, and the choice of the infectiousness profile ws. But more importantly, any generic
approach will work well under some implicit assumptions if the notion of interest is correctly
defined under these assumptions.

6.2.2. Properties of the EpiEstim approach
Let us illustrate the properties of the EpiEstim approach (see Appendix A.4 of the Supplementary
Material for additional details). This estimator is usually computed using a rolling calibration
window. It is based on a Bayesian approach with a prior on the distribution of the serial
interval, that is, the time from symptom onset in a primary case (infector) to symptom onset
in a secondary case (infectee). The log-normal prior depends on two parameters, a mean and a
standard deviation. In our EpiEstim1 setting, we have retained the same log-normal prior with a
mean of 4.5 days and a standard deviation of 2.5 days, as chosen in PHO (2020). This is close to
the prior in Nishiura et al. (2020) with a mean of 4.7 days and a standard deviation of 2.5 days,
based on 18 infector–infectee pairs, but different from the prior in Du et al. (2020) with a mean
of 3.96 days and a standard deviation of 4.15 days, based on 468 pairs.
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FIGURE 6: Comparison using EpiEstim on simulated SIR model data.

In Figure 6, we display different estimates computed from a simulated series satisfying the
SIR model. The EpiEstim1 estimate is calculated using a window of 7 days. The approximate
ML estimates (binomial, Poisson, and unfeasible Gaussian) are computed at each date t using
all the data from the outbreak. The Poisson and binomial estimates cannot be distinguished. All
estimates have poor properties at the beginning, when the number of new infections is rather
small and there are almost no recoveries. The ML estimators exhibit decreasing variability,
which becomes negligible after 30 days. The estimators then converge to the true value of the
basic reproduction number.

Let us now discuss the evolution of the EpiEstim1 estimator. This evolution is strongly
dependent on the Bayesian prior used. Indeed, if the estimate is computed using a rolling
calibration window, only seven observations are taken into account at each date t, which gives
significant weight to the prior. This explains the lack of variability in this estimate over time.
Moreover, the level of the estimate is strongly dependent on the selected prior and clearly does
not vary around the true value of R0, even though it accounts for information in the counts
of newly infected individuals. In EpiEstim1, we have followed the current practice in which
the prior relies on pre-existing estimates of the serial interval distribution. In practice, these
estimates may correspond to a different disease or to the same disease in a different country. In the
case of COVID-19, this distribution has been estimated using a small number of observations:
18 endogenously selected pairs in Nishiura et al. (2020) (12 of these pairs correspond to
transmission within a family and the remaining 6 to short transmissions). Furthermore, these
means and standard deviations are estimated using the definition of the serial interval as the
time between symptomatic cases (Thompson et al., 2019), which underestimates the mean time
between primary and secondary infections and contains uncertainty due to the presence of
asymptomatic infection periods and/or individuals.

DOI: 10.1002/cjs.11663 The Canadian Journal of Statistics / La revue canadienne de statistique



1012 ELLIOTT AND GOURIEROUX Vol. 49, No. 4

The choice of a log-normal prior instead of a gamma prior, that is, of a thin-tailed prior
instead of a fat-tailed prior, can also lead to an underestimation of the level. A further implication
of the Bayesian approach and choice of prior distribution is that the software will generate a
nonzero reproduction ratio estimate whether or not new infections are observed in the data. This
implies that, based on the estimated R0, the disease may appear to be contagious when in reality
it may be that herd immunity has been achieved in the population.

In order to check the role of the prior, we also display in Figure 6 the plot corresponding to
the EpiEstim estimator with a log-normal prior with the same mean and standard deviation as
the geometric distribution with a mean of 14 days. This is an unfeasible estimator, assuming that
the infectivity profile is fixed at its true value (see the discussion in Section 6.1.2, and Eq. (6)).
Convergence to the true value of R0 is now observed. These drawbacks of the EpiEstim approach
have been recently mentioned by some of the authors of the R software package (Thompson
et al., 2019), who propose an improved version. This will be discussed below, although the most
recent version of the package has not yet been implemented.

The objective of the following sections is to discuss the origin of the EpiEstim approach so
as to explain the differences between the estimates observed in Figure 6.

6.2.3. SIR model with stochastic infectious period durations
To understand Equation (7), we have to extend the basic SIR model. We retain a constant
contagion parameter a but introduce a stochastic duration of infectiousness D that is not
necessarily geometrically distributed. The distribution of D is characterized by the survival
function 𝛾(s) = P(D ≥ s) for s = 1, 2,…. The expression of the basic reproduction number is
then easily derived (see Section 2.3) as

R0,t =
a

N1(t)

∞∑
s=0

{
Et(N1(t + s)𝛾(s)

}
. (8)

Let us now write this expression in terms of new infections. We have that

N1(t) − N1(t − 1) = −N12(t)

and then

N1(t + s) = N1(t) −
s∑

k=1

N12(t + k).

By replacing N1(t + s) by this expression in Equation (8), we get, with the convention that∑0
k=1 = 0,

R0,t =
a

N1(t)

∞∑
s=0

{
𝛾(s)

(
N1(t) − Et

[
s∑

k=1

N12(t + k)

])}

= a
∞∑

s=0

𝛾(s) − a
Nt(t)

∞∑
s=1

s∑
k=1

[
𝛾(s)Et(N12(t + k))

]
= a

∞∑
s=0

𝛾(s) − a
N1(t)

∞∑
k=1

[
EtN12(t + k)

∞∑
s=k

𝛾(s)

]
.
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The partial sums of the survival function 𝛾(s) can be rewritten in terms of the moments of the
stochastic duration of infectiousness as

R0,t = aE(D) − a
N1(t)

∞∑
k=1

{
E
[
(D − k)+

]
Et

(
N12(t + k)

]}
, (9)

where x+ = max{x, 0}.

Remark 2. In the standard SIR model, Equation (9) becomes

R0,t = (a∕c)

{
1 −

∞∑
k=1

[
(1 − c)kEt(N12(t + k))

]}
.

Let us now discuss the conditional expectation Et. In the SIR framework, the conditioning
set includes the current and lagged values of N𝑗k(t) for 𝑗, k = 1, 2, 3, or equivalently, of
the cross-sectional counts Nk(t) for k = 1, 2, 3. Therefore, a sufficient summary of the past
information requires two sequences of counts. By considering a single sequence of counts, e.g.,
the counts of newly infected people only, the generic approach changes the information set and
modifies the definition of the dated reproduction number (see the discussion in Section 6.3).
With this restricted information set, the new reproduction number is

RN
0,t = aED − a

N1(t)

∞∑
k=1

{
E[(D − k)+]E

[
N12(t + k)|N12(t)

]}
, (10)

where the superscript N indicates the restriction to new infections. Can we expect a linear
prediction formula for the counts of newly infected people, such as

E
[
N12(t + k)|N12(t)

]
=

∞∑
h=0

𝛽khN12(t − h),

with time-independent coefficients 𝛽kh? Likely not, considering the nonlinear dynamics of the
contagion model during a nonstationary episode.

6.2.4. Which definition of the reproduction number?
To understand the significant difference between Equation (7) for R̂i

t and Equation (10) for RN
0t, it

is useful to come back to the paper in which the notion of the instantaneous reproduction number
was introduced (Fraser, 2007). This notion is based on the renewal equation

I(t) =
∞∑

s=1

𝛽(t, s)I(t − s), (11)

where I(t) is the incidence proportion—see CDC (2012) for different definitions of incidence
depending on the selected denominator—at t, also called the attack rate (approximated by
N12(t)∕N1(t − 1)) and where 𝛽(t, s) is the effective contact rate between infectious and susceptible
individuals, taking into account the generation of newly infected people. Both the SIR model
and the renewal equation appear in Kermack & McKendrick (1927) and are compatible. Under
the SIR model, the contact rate 𝛽(t, s) is a complicated nonlinear function of the sufficient
summary counts, that is, the newly infected and newly recovered counts between dates t − s
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and t. Therefore, in the SIR framework, the renewal equation (Eq. (11)) involves a “lagged
endogenous” contact rate which is, in fact, an equilibrium contact rate.

Let us now give the definitions of the reproduction ratios in Fraser (2007). Two notions, called
the “case reproduction ratio” and the “instantaneous reproduction ratio,” are introduced with
the main objective of getting a ready-to-use measure based on simple analytic formulas. These
notions have new names since they significantly differ from the standard basic and effective
reproduction numbers. Moreover, they do not have the same interpretation. For instance, the
instantaneous reproduction number is defined in Equation (11) by considering what reproduction
can be expected if “conditions remain unchanged,” i.e., I(t − s) = I for s = 1, 2. The ratio is then
defined as (see Eq. (3) in Fraser, 2007)

Ri
t = It∕I =

∞∑
s=1

𝛽(t, s).

This practice disregards the endogeneity of the contact rates. Indeed, the contact rates also
depend on the evolution of the number of newly infected individuals, which is assumed to be
unchanged in the “linear” component of the renewal equation but not in the (nonlinear) contact
rate. Moreover, the assumption of unchanged conditions is not necessarily compatible with the
evolution of infected counts observed in the SIR model and the observations of I(t) or N12(t).

Finally, to derive the Equation (7), a decomposition of the contact rate as 𝛽(t, s) = Ri
tw(s) is

assumed, where the w(s) for s = 1,… , S, sum to 1. By taking into account this reduced rank
condition, the renewal equation (Eq. (11)) is equivalent to

Ri
t = It

/ S∑
s=1

[
It−sw(s)

]
,

which explains the generic estimate in Equation (7)—only if N1(t) is not changing greatly (see
the discussion in Section 6.1)—and its interpretation as the ratio of new infections by the total
infectiousness of infected individuals up to time t − 1. A precise discussion of the assumptions
underlying the generic estimator shows at least three sources of bias whose impacts can be
observed in Section 6.2.2. They are (i) changes in the definitions of the reproduction number;
(ii) endogeneity bias when assuming exogenous contact rates; and (iii) linearization bias when
considering the linearized mechanistic model.

6.3. The Autoregression Estimate
An alternative estimator of the reproduction number can be introduced based on the approximate
asymptotic relation in Equation (6). This estimator depends only on the counts of newly infected
individuals and is easy to compute.

First, select an autoregressive order H, and then regress N12(t) on (N12(t − 1),… ,N12(t − H))
without an intercept by OLS for t = H + 1,… ,T . Defining �̂�(s) for s = 1,… ,H, as the estimated
regression coefficients, the estimator of the reproduction number is

R̂AR
00 =

H∑
s=1

�̂�(s).

This estimator has a variance that will increase with H since more underlying parameters have
to be estimated. This estimator also has the drawback of being computable only after at least
2H + 1 days because of the lag and the minimum number of observations necessary to identify
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H = 7

H = 14

H = 21

FIGURE 7: The autoregression estimate.

the autoregressive parameter. The estimates in Figure 7 have been computed for H = 7, 14, 21
days in a nonrolling way on the same set of simulated data used to generate Figure 6. The
change in variability with H and the infeasibility of using this estimator at the beginning of an
epidemic are clear. Moreover, this estimator does not converge to the true value. This approach
is also subject to both causality and linearization biases, as is observed in Figure 7 with the
underestimation of R0.

7. CONCLUDING REMARKS

The reproduction number is used as a basic tool to follow the progression of an epidemic such
as COVID-19 and monitor the effects of health policy. For instance, specific partial lockdown
policies may be introduced if the estimated R0 is larger than 1. Such policies neglect the variability
in both definitions of R0 and its estimators. We have considered this question in the framework
of a discrete-time SIR model and have shown that this variability can be due to the definition of
R0 itself, which is time-dependent and sometimes author-dependent, or to an omitted underlying
heterogeneity. This variability is also a consequence of the different estimation methods used,
with bias and uncertainty that depend on the available information.

As a by-product, we have shown that the estimate of R0 based on the Poisson approximate
likelihood of the SIR model, used in a rolling fashion and possibly with a prior on model
parameters (see Appendix A.5 of the Supplementary Material for Bayesian estimation), is as
simple as the approach suggested in the standard EpiEstim package, but with two advantages:
the former uses information from both newly infected and currently infected people, and it does
not arbitrarily fix the infectiousness profile. Furthermore, our framework could be easily applied
in a Canadian context using publicly available infection and recovery count data. Given the
structure of the basic SIR model used here, the data currently published by the Government
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of Canada at this stage of the epidemic are sufficient to compute estimates of R0 using our
framework.

As mentioned in the text, Thompson et al. (2019) highlights issues related to the use of
the standard EpiEstim package and proposes an improved version to correct some drawbacks.
They propose to use, in real time, two series of data: the counts of newly infected people, and
“up-to-date observations of serial intervals”. In this approach, there is (as in the rolling approach
based on the SIR model) a larger information set. This update also introduces a path-varying
mean and standard deviation for the serial interval distribution. The two approaches do not differ
greatly in the underlying model on which they are based (see the discussion in Sections 6.1.1
and 6.1.2), but instead by the observations they are using to calibrate the parameters, that is,
the counts of newly infected and currently infected people in the SIR-model-based estimator
and the counts of newly infected people and data on infector–infectee pairs obtained by
tracing.

In general, the choice of approach should largely depend on the availability (and cost) of
data, especially at the beginning of the epidemic, and on the reliability of the data. In particular,
available data can be incomplete if it does not account for undetected, asymptomatic people
(Gourieroux & Jasiak, 2020b) and can be left-or right-censored due to infector–infectee pair
tracing.

The SIR model has been used in this article since different estimation approaches are
implicitly based on this model. This choice has facilitated our discussions and comparisons.
Clearly, to obtain a more complete picture of R0 in the context of the SIR model, similar
experiments should be conducted using a model with more features. The aim of this extended
analysis could be to account for differences between the infection and infectious periods or to
incorporate a stochastically time-varying contagion parameter (Gourieroux & Lu, 2020).
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