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ABSTRACT Adaptation is a fundamental process by which populations evolve to
grow more fit in their environments. Recent studies are starting to show us that com-
mensal microbes can evolve on short timescales of days and months, suggesting that
ecological changes are not the only means by which microbes in complex natural popu-
lations respond to selection pressures. However, we still lack a complete understanding
of the tempo and mode of adaptation in microbiomes given the many complex forces
that natural populations experience, which include ecological pressures, changes in pop-
ulation size, spatial structure, and fluctuations in selection pressures. Advances in model-
ing complex populations and scenarios will allow us to understand adaptation not only
in microbiomes but also more generically in other natural populations that experience
similar complexities.

Aplethora of new mutations enter the human microbiome daily (1), generating a
tremendous amount of genetic variation. These genetic variants confer fundamen-

tal phenotypes not only to microbes but also to hosts, impacting the digestion of food
(2), metabolism of drugs (3), and evasion of antibiotics (4). Given the functional impor-
tance of genetic variation in the microbiome, it is essential to understand the underly-
ing population genetic processes that generate it.

Recent work is starting to show that microbiome genetic variation can change via
adaptation within healthy hosts over a matter of days and months (1, 5, 6). This is excit-
ing because it points us to the hypothesis that adaptation in the human microbiome
may impact human phenotypes on short time scales and possibly is even responsible
for longer-term phylosymbioses observed between microbes and their hosts (7).
However, much remains to be understood about adaptation in the microbiome.

Specifically, how rapid is adaptation in the microbiome? What are the mechanisms
of adaptation that influence its rate? The rates and mechanisms of adaptation are also
known as tempo and mode, descriptors of evolution coined by George Gaylord
Simpson in 1945 (8). The two are inextricably linked, because the mechanisms by which a
population evolves can determine the rate, and vice versa. As a concrete example, HIV (9)
and many other organisms with large census population sizes (10) can rapidly adapt via
the rise in frequency of multiple de novo mutations entering the population almost simul-
taneously or by preexisting genetic variation that becomes beneficial in a new environ-
ment (11, 12). Similarly, in the human gut microbiome, bacteria can evolve rapidly via the
daily influx of new mutations as well as by horizontal gene transfer (1, 5, 6), the latter
which leverages the resources of the broader community.

To quantify the extent of adaptation in the microbiome, we need to incorporate
into our models the many complexities that natural microbial communities experience.
These include their ecological coexistence with hundreds of other species as well as
complex forces such as fluctuating selective pressures, demographic changes, and spa-
tial structure. Some of these features can be approximated in experimental settings,
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but likely not in their entirety (13). By considering more complex and realistic models,
we may be able to identify adaptive events that otherwise may go undetected using
statistics that rely on simpler models.

Complex forces are not unique to the microbiome. Rather, complex forces impact
virtually any natural population subject to living in a community experiencing even
normal seasonal changes in weather. Yet, more broadly, our understanding of adapta-
tion in natural populations is still forming. The microbiome may in fact be one of the
most exciting venues to study adaptation in a natural population because (i) microbes
can evolve rapidly, (ii) we can sample replicate populations across hosts to extrapolate
general principals of evolution, and (iii) we can study multiple species simultaneously.
Thus, the insights made in the microbiome likely hold much relevance to our under-
standing of evolution in natural populations more generically.

Here, I will highlight features of the microbiome that can impact our ability to quan-
tify the tempo and mode of adaptation. Moving forward, incorporating these features
into our models will be important for quantifying adaptation in this complex natural
population.

ECOLOGICAL COMPLEXITY

While much of our knowledge about the evolutionary dynamics of microbes comes
from studying one species at a time, in reality, microbial species are interconnected
through a complex web of interactions in which they share metabolites and genes
with one another (1, 5, 14, 15). These interactions are so important that phenotypes of
a focal species can change depending on whether the species is studied in isolation or
in the context of a broader community (16). Thus, the ecosystem likely modifies the ev-
olutionary dynamics of a focal species, and vice versa. For example, new niches may
form from the presence of multiple interacting players and enable rapid adaptation
(17). Alternatively, community complexity may fill niches, thereby constraining rates of
adaptation. To what extent the mode and tempo of adaptation of a focal microbiome
species is influenced by the broader community is still an open question. New experi-
mental and statistical techniques that can test the effects of community complexity on
rates of adaptation will be needed. Additionally, temporal data in which samples are
collected in dense intervals over long periods of time will be informative in identifying
adaptions and diversifications of resident strains into new ecological players, as has
been previously observed in the laboratory (13).

DEMOGRAPHIC FLUCTUATIONS IN POPULATION SIZE

Natural populations experience a range of demographic forces that include bottle-
necks, migration, and massive population sizes. These demographic factors can influ-
ence modalities and rates of adaptation by changing the input mutation rate and the
amount of available standing genetic variation that can be leveraged for adaptation. In
massive populations, for example, the combination of mutation rate and population
size can result in rapid adaptation mediated by multiple beneficial mutations entering
the population almost simultaneously and rising to high frequencies, also known as a
soft sweep (12). In contrast, hard sweeps are associated with slower adaptation in
which a single adaptive mutation rises to high frequency (12). Soft sweeps may be
common in the microbiome (18), especially given its large census size (19) and abun-
dant genetic diversity (20). Smaller populations that experience constant population
sizes are more predictable and thus arguably easier to model. However, by focusing
only on these more predictable scenarios, we may fail to capture the full extent of ad-
aptation in the microbiome.

SPATIAL STRUCTURE

Microbiomes across a wide range of environments, including oceans (21), rivers
(22), soil (23), and the human gut (24), display complex spatial structure. This spatial
structure has been associated with a number of critical functions, including the biore-
mediation of soils, carbon and nitrogen cycling, and responding to changes in diet and
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drugs. Despite the profound impacts of space on microbiome phenotypes, our under-
standing of how natural populations evolve in spatially structured environments is still
nascent. More generally, while much theory has been developed on evolutionary dy-
namics in spatially structured populations (25), this theory remains to be fully tested in
natural populations due to a general paucity of temporal and spatial data.

For example, in spatially structured environments, adaptive mutations may either
be restricted to local geographic regions due to migration barriers or local niches or
may spread quickly due to drift in smaller subpopulations (26). The range over which
adaptive mutations can spread and the rapidity with which they arise can have impli-
cations for how quickly a population can adapt and the range of phenotypes that
microbes may express across a spatial system. Thus, to fully understand adaptation in
these spatially structured communities, spatially and temporally resolved data as well
as statistics equipped to deal with these dimensions are needed.

RAPID FLUCTUATIONS IN SELECTIVE PRESSURES

Natural populations experience a variety of forces that are not constant over time.
For example, Darwin’s finches have experienced a rapid fluctuation in seasonal avail-
ability in food, which has resulted in an oscillation in beak size over a matter of just a
few years (27). Similarly, Drosophila experience a periodic fluctuation in selective pres-
sures as seasons transition from winter to summer and vice versa (28). These rapid fluc-
tuations in selective pressures suggest that there are temporally dependent signatures
of adaptation that may not be captured in a study examining fixations of adaptive al-
leles over long time scales.

In the human microbiome, we recently observed fixations on short time scales but
found that, on longer time scales, these fixations did not seem to accrue (5). Could
adaptations that appear on short time scales be specific to a given host environment
and thus be purged in novel host environments?

To capture the full extent of adaptation in the microbiome, we might examine
events occurring on both short and long time scales. On long time scales, we might
expect sweeps to achieve fixation, whereas on short time scales, sweeps may reach
only intermediate frequency due to temporal fluctuations in selective pressures (28).
Denser time series data once again will be necessary to identify short-term adapta-
tions, especially since generation times of bacteria can be as rapid as 10 generations
per day (29).

CONNECTING EXISTING MODELS WITH THE DATA

Admittedly, the complexity of natural populations makes them more difficult to
model than simpler more ideal populations. To begin to model the full range of forces
that impact complex populations, we can start by fitting existing models to data and
identifying departures from these models. Any deviations can then subsequently fuel
new modeling innovations.

As an example, recently, we quantified the extent of recombination in the micro-
biome by measuring correlations between pairs of sites by using a common popula-
tion genetic statistic known as linkage disequilibrium (LD) (5). We found that LD decays
over distance between pairs of single nucleotide polymorphisms (SNPs) within a gene
(Fig. 1). This observation indicates that although bacteria asexually reproduce, recom-
bination can be common. However, LD in data decays more gradually than expected
under a simple null model that assumes panmixia, no selection, and a single recombi-
nation rate (30). This deviation between the data and the model suggests that addi-
tional evolutionary forces are needed to fully explain LD in the data. Could positive
selection play a role? What about unaccounted population substructure or uneven
recombination rates across the genome? Possibly, all of these factors and more con-
tribute to this mismatch between theoretical predictions and patterns in the data.

To reconcile discrepancies between data and theory, simulations may be a produc-
tive way forward. By simulating, we may be able to explore a large parameter space
and capture complex interactions between multiple evolutionary forces that we may
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not be able to model with equations or experiments in the lab. Even by simulating one
species at a time and understanding each species in depth, we may start to piece to-
gether the full complexity of forces impacting the entire community. Additionally, new
data, especially long-read data from which we can quantify long-range linkage, can
enable us to identify additional discrepancies between the data and models. Finally,
innovative statistics that enable us to quantify nontraditional signatures of adaptation
will move us closer toward a comprehensive understanding of evolutionary forces
shaping natural populations.

CONCLUDING REMARKS

It is crucial to understand evolution in its natural context. If we only studied evolu-
tion in the lab, then we might never fully understand the full range of evolutionary
forces acting in natural populations. However, the trade-off in studying evolution in
natural populations is that because the populations are so complex, it is challenging to
unravel the many interacting forces acting simultaneously. Thus, a combination of
approaches is needed, as they can inform one another and will yield exciting insights
into the tempo and mode of adaptation in the microbiome.
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