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Abstract 

Proteins' fuzziness are features for communicating changes in cell signaling instigated by binding 

with secondary messengers, such as calcium ions, associated with the coordination of muscle 

contraction, neurotransmitter release, and gene expression. Binding with the disordered parts of a 

protein, calcium ions must balance their charge states with the shape of calcium-binding proteins 

and their versatile pool of partners depending on the circumstances they transmit, but it is unclear 

whether the limited experimental data available can be used to train models to accurately predict 

the charges of calcium-binding protein variants. Here, we developed a chemistry-informed, 

machine-learning algorithm that implements a game theoretic approach to explain the output of a 

machine-learning model without the prerequisite of an excessively large database for high-

performance prediction of atomic charges. We used the ab initio electronic structure data 

representing calcium ions and the structures of the disordered segments of calcium-binding 

peptides with surrounding water molecules to train several explainable models. Network theory 

was used to extract the topological features of atomic interactions in the structurally complex data 

dictated by the coordination chemistry of a calcium ion, a potent indicator of its charge state in 

protein. With our designs, we provided a framework of explainable machine learning model to 

annotate atomic charges of calcium ions in calcium-binding proteins with domain knowledge in 

response to the chemical changes in an environment based on the limited size of scientific data in 

a genome space. 
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I. Introduction 
 

Proteins’ fuzzy structures are features for communicating in biological processes,1-3 

instigated by secondary messengers such as calcium ions (Ca2+). The binding of Ca2+ almost 

always induces local or global conformational changes to the protein due to the alteration of its 

atomic charge or electrostatic interaction. These conformational changes and the dynamics of 

calcium-binding proteins are intimately linked to the function of a calcium-binding protein, 

indicating that the surrounding environments influence its structural dynamics, thereby impacting 

the accessibility of its several calcium-binding loops.2,4,5 The versatility of calcium-binding 

proteins, often characterized by disordered domains, underscores the need of unraveling the causal 

relationship in determining the atomic charge states of Ca2+ and the corresponding protein 

configurations. Ab initio calculations have been employed for this purpose, showing that the 

determination of the atomic charge of Ca2+ requires information on its coordination geometry in 

the binding motif of a calcium-binding protein.6 However, this approach is not only labor intensive 

due to in part the complexity of the protein environment involving water molecules, but also 

computationally expensive, making it infeasible to explore a broad configurational space of 

calcium-binding proteins in a changing environment. Because determining the atomic charge 

states is resource-intensive, it is extremely valuable to develop a machine learning (ML) algorithm 

that quickly identifies and explains the molecular descriptors influencing the atomic charge states 

without the necessity of a large database particularly in a genome space.	

Calcium is a versatile signaling ion that plays a pivotal role in regulating downstream 

signaling targets in numerous biological functions, including muscle contraction, neurotransmitter 

release, and gene expression.2,4,5,7-10 Calcium ion performs these biological functions through its 
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interactions with numerous calcium-binding proteins, including calmodulin (CaM), which serves 

as the main calcium sensor and effectors.11 Upon calcium binding, these proteins undergo 

conformational changes, enabling them to perform specific biological functions.12,13 Additionally, 

the conformational changes reciprocally alter the ion charge state, which deviates from the 

conventional divalent charges (or +2e) observed in the crystal structures of calcium-binding 

proteins, due to the binding affinity that is influenced by the local protein environment and the 

presence of other ions or molecules.14,15 The conformational changes affect the charge state, as 

atomic interactions are primarily dictated by the coordination number of a divalent ion,16-18 in 

comparison to the atomic charges or the polarization effects.19 It is essential for comprehending 

the intricacies of the causal functions,14 such as the reciprocity observed among Ca2+, CaM, and 

the CaM-target proteins in the context of synaptic plasticity.12 

Here, we used a “sandbox” system of Ca2+ and calcium-binding loops from shape-shifting 

CaM20 as a use case to investigate how Ca2+ brings the loops to adapt into distinct geometrical 

shapes dynamically, illustrating the role of their chemistry in the interplay of electrostatic forces, 

conformational changes, and molecular recognition within the biologically complex milieu. The 

calcium-binding loop is an evolutionarily conserved helix-coil-helix EF-hand motif that chelates 

Ca2+ with its oxygen-rich amino acids, such as aspartate and glutamate acids, into a three-

dimensional global form.7 One of the amino acids from the EF-hand motif coordinates the Ca2+ 

through a water molecule. This water molecule complicates the shape of the EF-hand motif14 as if 

it rolls like a ball bearing, transitioning the EF-hand motif into various coordination geometries,21-

23 from octahedral to pentagonal bipyramidal. Alternating through these distinctive geometries of 

a calcium binding loop, Ca2+ interacts with a combinatorial set of conserved and non-conserved 

amino acids that affect the charge state of the Ca2+. 
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Despite a proliferation of ML models that establish the quantitative relations between 

configurational space and atomic charge or between configuration and energy in materials,24-29 

investigations into divalent ions such as Ca2+ in protein environments are limited. This is due to a 

lack of accumulative data that covers a broad parameter space in biomolecules or materials, 

describing the causal relations for model training at the interface of organic and inorganic 

compounds. Among the burgeoning landscape of ML applications in molecular biology,28,30-33 the 

interpretability of model outputs remains a critical challenge because changes in the input features 

nonlinearly contribute to the output. This creates a growing tension between the accuracy and 

interpretability of model predictions.34,35 

To bridge the technical gap, we developed an ML algorithm (Fig. 1) that implements a 

game theoretic approach to explain the output of an ML model with a limited training dataset of 

over 7,000 configurations in our sandbox system. This dataset was curated from a combined ab 

initio calculations14 and the structures of calcium-binding peptides from molecular dynamics 

simulations guided by the chemical coordination of Ca2+. 36,37 We deployed network theory to 

uncover topological features that best capture the molecular descriptors to the charge states of Ca2+ 

within the chemically complex datasets. We evaluated the SHAP (SHapley Additive exPlanations) 

values of these explainable features,34,38 a concept rooted in cooperative game theory, for 

increasing transparencies of individual features that affect the ML models (see Supplementary for 

further description). The chemistry-informed ML algorithm explains the causal relationship 

between the unique characteristics of Ca2+ embedded in various protein environments and their 

charge states.  
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We found that the coordination number of a Ca2+ contributes the most to the determination 

of the calcium atomic charge state in various protein environments. With several other additive 

features, we applied the explainable models to annotate the calcium charge states of Ca2+ binding 

motifs for another dataset of over 400 curated experimentally derived calcium-binding loops 

(Table S1 in Supplementary information). The model annotates the atomic charge state of calcium 

according to the unique molecular descriptors of a configuration. Although the principle of target 

selection in calcium-binding proteins remains unknown due to the astronomical possibilities for a 

shape-shifting calcium-binding protein to connect with a versatile pool of downstream partners,  

we harnessed an explainable, chemistry-informed ML algorithm, to annotate calcium's atomic 

charge state by unraveling the causal features from the coordination chemistry that influence the 

shape of the loop in diverse protein environments, giving rise to robust regulations in calcium 

signaling. 
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Figure 1. Chemistry-informed ML enhances predictive power of atomic configuration-to-charge 

relation for Ca2+. A dataset of over 7000 configurations was curated from a combined ab initio calculations 
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of calcium-binding peptides and the structures of calmodulin-binding targets from molecular dynamics 

simulations guided by the chemical coordination of calcium 36,37 (the middle panel in light blue 

background). The shapes of the loops are categorized as planar, hemi-spheric, and holo-spheric 

coordination geometries. Variation of the loops shifts with the coordination numbers of calcium ions as 

well as the calcium-protein distances, tuning the atomic charge of the Ca2+ (top panel). The graph-derived 

topological features were trained for explainable ML models to increase the transparencies and 

interpretability of features accounted by the many-body interactions. The additive features from many-body 

interactions further improved the accuracy of the ML algorithm compared to those that used only the two-

body and three-body interactions as training features. The explainable XGBoost model computed and 

ranked the key features and relevant physical quantities in the charge state of calcium ions that impact most 

on the constructure of ML model.   

 
 

II. Results 

Overview: Chemistry-informed ML algorithm enhances the predictive power of a 

configuration-to-charge analysis by computing graph-derived topological features. 

 

A single calcium ion is chelated by three to eight oxygen ligand atoms with an average of 

six ligands for all Ca2+ binding loops or seven ligands for only EF-hand loops or by oxygen atoms 

from the nearby water molecules37,39 (Fig. 2a). The chemical coordination of a calcium ion 

involves chelation with various classes of oxygen atoms, including those from the carboxyl groups 

(Asp, Glu), the carboxamide groups (Asn, Gln), and the hydroxyl groups (Ser, Thr) in the 

sidechains, as well as the carbonyl oxygen atoms of most residues in the main chain or cofactors, 

and water molecules, predominantly through electrostatic interactions. These oxygen atoms, in 

turn, are covalently linked to other heavy atoms such as carbon and nitrogen, forming a secondary 

shell. Additionally, a tertiary shell of carbon or nitrogen atoms can be delineated, consisting of 

atoms covalently bonded to the secondary shell.37,39,40 



9	
	

 

The configurations of ligands’ oxygen atoms can be roughly classified into three categories 

based on their geometries: planar, hemi-directed (or hemi-spheric), and holo-directed (or holo-

spheric) (Fig. 1).  In a typical energy-minimized calcium-binding loop where the Ca2+ is tightly 

bound holo-directedly, seven coordinating oxygen atoms are arranged to form a bipyramidal 

pentagonal coordination geometry, as shown in the crystal structure of Ca2+/CaM (Fig. 2a).  These 

concentric arrangements of atoms form a framework that defines the central binding site of 

calcium. Consequently, a set of physical parameters describing the spatial arrangement of atoms 

comprising the binding site can be delineated by the “α_rc” / “αβ_rc” for the radial/angular 

distribution functions. “α” or “β” is the element name (H, C, N, O) of atom surrounding the Ca2+, 

and “rc” is the cutoff distance within the concentric shell. The geometrical arrangement of the 

atom clusters also provides information about the closeness and betweenness centrality of Ca2+, 

allowing for selective differentiation between Ca2+ and other relevant divalent cations (see 

Supplementary Fig. 1 for a complete description of features and the Supplementary Information 

for the definition of parameters).  

 

We aim to use the curated conformations of the calcium-binding motifs in CaM and CaM-

target bound complexes, which provide examples of the coordination geometries as a sandbox 

dataset, to train a chemistry-informed ML model. The domain knowledge of chemical principles 

(or multiple geometries of the calcium motifs) provided explainable molecular descriptors that 

influence the atomic charge state of calcium in various protein microenvironments.  The proposed 

algorithm includes three major steps to capture these unique geometries from the structures: 
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Step 1. Compute the feature of Ca2+ and its coordination with a calcium-binding loop from 

the curated datasets: With the sandbox dataset, we calculated the distribution functions to 

account for the spatial arrangement of the atoms surrounding the Ca2+ and graph-based 

topological parameters to include high-order interactions. Fig. 2b shows pairwise 

interactions in terms of the contact probability map that captures probable interactions 

between the Ca2+ and the conserved residues at the first, third, fifth, seventh, and twelfth 

positions, and the interaction between the ninth and twelfth residues. Featuring two-body 

interactions, we also capture the radial distribution functions around the Ca2+.  To capture 

the higher order interactions in the atom representation involved in the calcium 

coordination in a calcium-binding loop, we used a mathematical graph representation of 

the system and computed their topological parameters. The advantage of using 

measurements from graph theory over atomic contacts is that they capture the shape of the 

data in a complex system with voids and gaps in the structures.41 The betweenness 

centrality of a node contains convoluted information about the entire graph of the calcium-

binding loop, which may not be easily derived from a pairwise interaction map. For 

example, high betweenness centrality of the twelfth residue node suggests that the node is 

critical to maintain the connectivity of the network (Fig. 2c). 

 

Step 2. Establish explainable ML algorithms to evaluate additive features. To assess the 

effectiveness of the extracted features, we designed three algorithms that learn the 

chemistry of many-body interactions in models. Model I: The radial distribution functions 

around the Ca2+, featuring only the two-body pairwise interactions; Model II: In addition 

to Model I, the angular distribution functions around the Ca2+, featuring the three-body 
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interactions; and Model III: in addition to Model II, the topological order parameters from 

the graphs, featuring the higher order interactions. Then, we trained them with the 

XGBoost42 regression models that were evaluated by the mean absolute error (MAE) in the 

calcium atomic charges, the coefficient of determination (r2), and Pearson correlation 

coefficient (R) (see Supplementary Figs. 2 and 3). 

 

Step 3. Explain the feature importance for the interpretation of outcomes from the ML 

models. The XGBoost regression model calculates the importance score according to the 

averaged contribution of a specific feature to the relevant decision trees. We explained the 

importance of each feature by their SHAP values.34 The SHAP value, widely used in game 

theory to evaluate the marginal contribution of each player in a cooperative multiplayer 

game (see Supplementary for the equation and further details),  provides a principled way 

to explain the predictions of nonlinear models common in ML.  Positive (negative) SHAP 

values indicate that the feature positively (negatively) contributes to the model's prediction; 

thus, a higher positive (or negative) SHAP value suggests that the feature has a stronger 

influence on increasing (or decreasing) the prediction for a specific instance. Zero SHAP 

values imply that the feature does not contribute to the prediction for the given instance.  
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Figure 2. Calcium-coordination features extracted to include pairwise and high-order 

interactions among residues in the calcium-binding loops. (a) A schematic representation of 

the calcium-coordination structure. The calcium-binding loop is composed of 12 amino acids, and 

we relabeled the residue indices according to the amino-acid alignment. In this geometry, the 

coordination oxygen atoms come from the carbonyl groups in the sidechains of the 

glutamate/glutamine/aspartate/asparagine at the first, third, fifth, and twelfth position and the 

backbones of the amino acid at the seventh position (middle of the loop). The residues at the ninth 

position usually coordinate a Ca2+ through a water molecule (W). (b) A contact probability map is 
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used for capturing the pairwise interactions between residues/ion/water molecules in the system. 

(c) A mathematical graph representation of the system and selected topological parameters 

captures the higher order interactions involved in the calcium coordination in a calcium-binding 

loop. 

 

Explainable machine learning reveals important additive features in training models 

 To explain the importance of additive features, we constructed three explainable ML 

models while using the Pearson correlation coefficient (R) to test the accuracy of each model. We 

randomly divided the sandbox dataset into subsets for training (70%) and testing (30%), such as 

shown in Supplementary Fig. 2a. We evaluated the performance of the three explainable ML 

models with additive features in predicting charges in the test dataset Fig. 3a. When we used only 

the two-body pairwise interactions as features in Model I, the yielded ML model predicts the 

calcium atomic charge with the mean absolute error (MAE) ~0.07 e; there is a positive correlation 

between the predicted charges and the ab initio charges (R = 0.58). When the three-body 

interactions are also introduced as features in Model II, the accuracy of the ML model improved 

significantly, where R increases to 0.64. In the third explainable machine learning model in which 

the network topological parameters were included as features in Model III, there is a significant 

improvement of the accuracy on the test dataset (R increases to 0.71).  
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Figure 3. ML performance and feature importance in determining the calcium charge. (a) 

Evaluation statistics of models in predicting the calcium charge, r2 is the coefficient of 

determination in the linear fit, R the Pearson correlation coefficient, and MAE mean absolute error. 

Addition of the network features noticeably improves the predicting performance in the test dataset 

when comparing Model I, II and III. (b) For Model III, we showed the ranking of the features that 

contribute most to the prediction of the calcium charge state; (c) for Model III, we showed the 

dependence of calcium charge on the coordination number, which reflects the top two most 

important features plotted against each other;	mean and standard deviation (pink shaded area) of 

the calcium charge are plotted against coordination number of Ca2+. 
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For the rest of analyses, we used only the Model III. We sorted the features by their 

importance scores (Fig. 3b) from the best performing explainable machine learning model with 

network order parameters as additive features. Among the top ten most important features, eight 

are network order parameters. The top two are closely related to the calcium-coordination number. 

The network order parameters about the Ca2+ such as the closeness (i.e. clos_Ca,), which describes 

the average distance between the calcium ion and other coordination residues, and degree 

centrality (deg_Ca), which describes the total number of connections between the calcium ion and 

other coordination residues, appear most decisive to the charges of calcium ions. These two 

features show that calcium plays a central role in the loop by bringing in positive charges while 

other elements in the loop mostly contribute with negative charge. Surprisingly, the third most 

important feature is the network order parameter about the tenth residue node (i.e. deg_r10), a non-

conserved residue in the calcium loops. This residue is not directly involved in the calcium 

coordination.  

 

 We then investigated the dependence of calcium charges on the coordination number (Fig. 

3c), as the charges monotonically increases with the calcium coordination number. When the 

coordination number is less than 3, the mean of the calcium charges is less than 1.80 e and the 

standard deviation is large ~0.30 e. With such low coordination numbers, Ca2+ is loosely bound in 

the loop forming a planar coordination geometry. There exist combinatorial ways to bind with 

oxygen candidates, contributing to the large deviation in the calcium charges. When the 

coordination number is between three and six, corresponding to a hemi-directed coordination 
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geometry, the mean of the calcium charges is ~1.85 e and the standard deviation is ~0.15 e. When 

the coordination number is greater than or equal to six, the mean of the calcium charges 

monotonically increases with the coordination number from 1.87 e to 2.00 e with a small standard 

deviation ~0.07 e, forming a rigid holo-directed coordination geometry. 

 

SHAP values explain the contribution of additive features in annotating the calcium atomic 

charge states 

By interpreting a model trained on a set of features as a value function on a coalition of 

players in a theoretic game, SHAP values provide an intuitive way to evaluate the contribution of 

additive features to a prediction or to the uncertainty of a prediction. We aim to evaluate the 

contributions of the most influential descriptors in predicting the charge states not only globally 

(i.e. across the entire dataset), but also for the groups of high and low charges, which will further 

our functional understanding of the geometries of the calcium-binding loops, such as holo-directed 

and planar, observed experimentally. Therefore, we computed SHAP values on the entire dataset 

(Fig. 4a) and ranked the features based on their importance in predicting the calcium atomic charge 

states. The negative (or positive) Shapley values, indicating an effect of decreasing (or increasing) 

the calcium atomic charge state relative to the mean value. Low values of the deg_Ca and Clos_Ca 

variables have high negative contributions in predicting the calcium charge states, while high 

positive values have almost no contribution. These observations further solidify the central role of 

the calcium in the binding motif. We further computed the SHAP values of the structures of which 

the calcium charge is beyond 90 percentile (Fig. 4b), and the structures of which the calcium 

charge is below 10 percentile (Fig. 4c) to determine the overall importance of each feature in 

annotating the calcium atomic charge states in these subgroups. The top 90 percentile of the 
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structures constitute a category of structures with “charges well above the mean value”, while the 

bottom 10 percentile of the structures constitute a category of structures with “charges well below 

the mean value”.  
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Figure 4. Ranking of the features based on the SHAP values for their global contribution to 

the prediction of the calcium atomic charge state. (a) The SHAP values of most important 

features influencing the calcium charge state prediction; (b) The SHAP values of the most 

important features influencing the charges that are above the 90th percentile; (c) The SHAP values 

of the most important features influencing the charges that are below the 10th percentile. 

 

In examining   Fig. 4(a, c), we noticed a striking similarity among the most important 

features. The closeness centrality of calcium ion (how central is the calcium ion from the other 

atoms in the binding loop) together with its degree centrality (how connected the calcium ion is to 

other atoms in the binding loop) are the most dominant features. Both contribute to decreasing the 

calcium atomic charge state with lower feature values. This is expected, since calcium ion is the 

most valuable player in contributing its own charge state. Interestingly, the next top features are 

those derived from the topological graph network for residues 1, 8 and 10, whose removal in the 

game theoretic approach contributes to decreasing the calcium atomic charge state annotation.  

Similarly, in Fig. 4b, the topological order parameters for residues 7 and 8 contribute to decreasing 

the calcium atomic charge state annotation. These examples signify the importance of the 

geometry of the calcium binding loop to the determination of calcium charge states. 

 

Features that influence calcium charge states can be quite diverse for individual charge 

predictions  

 

In this section, we unraveled the local impact of each feature on the variability and patterns 

observed in calcium ion charge states. We calculated the SHAP values for each feature from Model 
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III (in Fig. 4) for a single instance, i.e., a specific calcium atomic charge state. The features that 

contribute the most to calcium atomic charge above an average value in the database are dominated 

by diverse features derived from the symmetry functions (Fig. 5(a, c)). These features mostly 

contribute to increasing the charges, except the Ca2+ and carbon atoms interactions (carbon atoms 

from the third concentric shell) as well as the angular distribution between hydrogen, oxygen, and 

Ca2+, which both contribute to decreasing the value of the annotated charge (Fig. 5c). On the other 

hand, the features that contribute the most to the charges below an average value (Fig. 5(b, d) are 

dominated by diverse features derived from the topological order parameters. These selections of 

the topological order parameters that contribute to decreasing the calcium atomic charge states, 

however, are quite diverse. These analyses signifying that it’s the overall shape of the calcium-

binding loop, rather than the exact residues, determining the value of calcium charges. 
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Figure 5. Local contribution of the most importance features on the charge state of a single 

conformation. (a, c) represent the structures whose calcium charges are above the averaged 

charge, (b, d) represent the structures whose calcium charges are below the averaged charge. 

 

 

Using the explainable chemistry-informed ML Model III to annotate the calcium charge 

states for the experimentally derived calcium-binding motifs 

Next, we used the chemistry-informed ML Model III to annotate the calcium charge states 

of the experimentally determined calcium-binding loops. We extracted 475 calcium-binding 

motifs from 217 protein structures downloaded from the Protein Data Bank (see Supplementary 

Table 1 and Supplementary Fig. 4). Among these structures, five were solved using the nuclear 

magnetic resonance experimental technique and 212 were solved using the X-ray crystallography 
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experimental technique. Each extracted motif has 12 residues plus Ca2+ (see Supplementary 

information on how to extract EF-hand motifs from the Protein Data Bank structures) to match the 

data format of conformations in the Sandbox (https://github.com/Cheung-group/caXML). We 

provided the annotated charges of all the experimentally derived structures as Supplementary 

Table 1 with the associated calcium motif structures. 

We next evaluated the importance features that influence individual atomic charge state 

annotations. Fig. 6(a, b) show the cartoon representations of the calcium-binding loops annotated 

with an atomic charge above averaged value (Fig. 6a) and another one below the average value 

(Fig. 6b). (see Supplementary Table 1 for the rest of the annotated calcium atomic charges). For 

the conformation in Fig. 6a, the geometry of the calcium binding loop is holo-spheric and its 

charge is close to 2.00 e. We used SHAP to access the most importance features influencing the 

charge in Fig. 6c. We observed the same trend in annotating individual calcium atomic charge 

state in Fig. 5, where the most influential features in a calcium binding are the symmetry functions 

capturing a holo-directed geometry. We analyzed the SHAP values for the other calcium binding 

loop whose calcium charge states is far below average in Fig. 6d. The shape of the calcium binding 

loop follows a planar geometry. The most influential features contributing to decrease of charges 

in this case are mostly topological order parameters. They exemplify the use of the geometry of a 

calcium binding loop to annotate its calcium charge state.  
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Figure 6. Impact of input features on individual calcium atomic charge state annotation of 

the experimentally derived calcium-binding loops varies from charge to another. Cartoon 

representations of the calcium-binding loops showing an annotated charge state (a) above or (b) 

below the average value. (c and d) The most influential features for representation in (a and b). 

 
 
 
III. Discussion 

Calcium-coordination number dictates the geometrical arrangement of the calcium-

binding loop.  

Within calcium-binding loops, certain residues exhibit remarkable evolutionary 

conservation across diverse species. These conserved residues, typically found at positions one, 

three, five, seven, and twelve, play pivotal roles in coordinating Ca2+ effectively21,43,44 (Fig. 2(a, 

c)). Their preservation highlights their indispensable contribution to the structural integrity and 

functionality of calcium-dependent proteins. At position one, acidic residues such as glutamate 
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(Glu) or aspartate (Asp) are prevalent, providing oxygen atoms that form strong electrostatic 

interactions with Ca2+. Similarly, positions three, five, and seven often host residues with oxygen-

containing functional groups, like Asp or serine (Ser), which enhance calcium coordination 

through hydrogen bonding.43 Position twelve specifically features Glu with oxygen-rich side 

chain.18,43 This residue at the twelfth position with a bidentate interaction contributes additional 

coordination sites, ensuring tight binding and specificity of the calcium-binding complex. These 

canonically conserved interactions are captured in the proposed chemistry-informed ML using the 

symmetry function features. The calcium binding loops coordinated by the five conserved residues 

adopt holo-spheric geometries (Figs. 1 and 3). From the cartoon representation shown in Fig. 6a, 

Ca2+ is coordinated by Asp, Asp, Asp, His, and Glu at positions one, three, five, seven, and twelve 

respectively, which explains the holo-directed representation of such structure.   

In contrast to the conserved core residues, calcium-binding loops often exhibit variability 

in other positions, where non-conserved amino acids are prevalent. These non-conserved residues 

introduce diversity into the binding loop, potentially modulating calcium binding specificity, 

affinity, or regulatory properties. Non-conserved amino acids may confer adaptability to 

environmental or physiological changes, allowing calcium-dependent proteins to adjust their 

function accordingly. Their presence could influence binding kinetics, coordination geometry, and 

overall structural dynamics of the binding loop, contributing to the versatility and functional 

diversity of calcium-binding proteins.21 These non-conserved amino acids interact with Ca2+ 

through the high order interactions, which are captured in the explainable chemistry-informed ML 

model using the topological graph features. In such representations, calcium binding loops are 

coordinated by at most three of the conserved residues. They may adopt either hemi-spheric or 

planar geometries (Figs. 1 and 3) depending on the number of coordinating ligands. From the 
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cartoon representation shown in Fig. 6b, Ca2+ is coordinated by Asp at positions one and three but 

is missing the conserved residue at positions five, seven, as well as Glu at the twelfth position. 

Therefore, the structure adopts either a hemi-directed or a planar geometry (Fig. 1). The balance 

between evolutionary conservation and functional diversification not only maintains the essential 

functions of calcium-dependent proteins but also provides the flexibility necessary for adaptive 

responses to cellular cues and environmental stimuli. 

The relative mobility of the calcium reverses the intuitive physical effect of the chelating 

residues. In addition to the effect of mobile sidechains on the calcium charge, the loop backbone 

also presents a strong effect. For example, the oxygen atom from the ninth residue affects calcium 

through a mobile water molecule. The mobility of the water molecules contribute variations to the 

calcium local environment.. Similarly, the high mobility of water renders its contact with calcium 

almost invariant, so it cannot affect the charge. Residues at positions three and twelve, with the 

highest probability of contact (Fig. 2b), hold the calcium between them, and those residues 

determine the local environment of the calcium. 

Since the twelfth residue in the loop, Glu, contributes to selectivity and specificity of 

calcium binding in proteins with EF-hand motifs, extensive studies have been conducted to 

understand its involvement in the structural stability of the EF-hand motif as well as the calcium 

charge state.1,43,45 However, unlike the conserved twelfth residue, the tenth non-conserved residue 

has received less attention. The explainable chemistry-informed ML model showed that the tenth 

residue plays a topological role in maintaining the motif stability due to its position in the loop 

(Fig. 3b). Because this tenth position can be occupied by any other residue, mostly Phe, Val, Glu, 

Ala, Leu, Tyr, or Lys such as shown by Marsden et al.,43 the contribution of this residue to the 

calcium atomic charge is determined by its topological importance rather than its chemistry.  
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Topological network order parameters reveal hidden geometrical arrangement of residues 

in calcium-binding loops.  

It is advantageous to use network theory order parameter over atomic contacts or 

radial/angular distribution (i.e. symmetry functions) for capturing the hierarchical patterns in a 

complex data. In particular, betweenness centrality shows its importance as a critical bridge in 

connecting different nodes, while clustering coefficient indicates how tightly connected its 

immediate neighbors are. Topological network parameters play a critical role in distinguishing the 

calcium-binding loops from holo-spheric, planar or hemi-spheric geometries, such as evidenced in 

Figs. 4c, 5(b, d), and 6d. These topological features signified the importance of the connectivity 

among Ca2+ and the surrounding atoms, the closeness centrality of the Ca2+, and the betweenness 

centrality of some of the non-conserved residues such as in the tenth position. With explainable 

features, we reveal the role of non-evolutionarily conserved residues in tuning the shape of a 

calcium-binding loop. The tenth residue is not directly involved in the coordination of Ca2+ (Fig. 

2a).18 It is, however, critical in determining the geometrical arrangement of residues through the 

shape of the loop that can be modulated by CaM’s interaction with its binding target.11 

 

SHAP explains the significance of additive features influential to the calcium atomic charge 

state.  

The explainable chemistry-informed ML represents a promising alternative to tackle the 

challenges presented by the ab initio representation of electronic structure data. One of the 

advantages of the chemistry-informed ML model over data-driven ML models (such as deep neural 

network) is that the features are tightly related to physical properties and thus are readily 
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interpretable.33,46,47 In the case of calcium atomic charge state, the algorithm learns from ab initio 

calculations data and the disordered fragments from the molecular dynamic simulations that 

contain information about Ca2+ interactions within the different calcium-binding loops in the lobes 

of CaM and CaM/target complexes (Fig. 2). Through the recognition of patterns and relationships 

in the data, the model can be constructed to annotate the charge states of Ca2+ based on features 

such as coordination chemistry and the different geometries of the calcium-binding loops 

accounted by the topological network parameters (Fig. 1). 

In this ever-expanding landscape of ML, the interpretability of models remains a 

paramount concern.48,49 In this context, the application of SHAP34 emerges as a transformative tool 

for shedding light on the opaque inner workings of the algorithm (see Supplementary for further 

details). By decomposing complex predictions into understandable components, SHAP unravels 

the intricate relationships between additive input features and model outputs. Adding features from 

high-order interactions (topological network features) and from the symmetry function 

(radial/angular distribution functions) allows us to capture the loosely bound calcium geometry 

(planar or hemi-spheric) and the tightly bound calcium geometry (holo-spheric), 

One of the most compelling aspects of SHAP lies in its ability to provide both global and 

local explanations34,35 to understand how the combination of these features leads to an accurate 

calcium atomic charge state annotation. Global insights offer a holistic view of feature importance 

across an entire dataset (Fig. 4(a-c)), while local interpretations elucidate the rationale behind 

individual charge predictions (Figs. 5(a-d) and 6(c, d)). This dual perspective enhances trust in 

the construction of ML model for charge annotation. 

	

IV. Conclusion 
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The integration of chemistry-informed ML techniques explains the significant additive 

features in constructing models to annotate the atomic charge states of calcium ions in calcium-

binding proteins, despite a small dataset in the genome or materials space. Combining the domain 

knowledge of chemistry, explainable ML, our approach identifies the explainable molecular 

descriptors in the fuzzy shape of a calcium binding loop that influence the calcium atomic charge 

state. It unveils the intricate patterns and correlations in additive features in a structurally complex 

dataset. With transparent machine learning models, subtle variations in the coordination chemistry 

of calcium ion in a calcium binding loop intricately modulate its charge states. This 

interdisciplinary approach not only enhances our comprehension of fundamental biological 

processes, but also offers invaluable insights into the design and engineering of metalloprotein-

based systems with a limited genome space.	

 

 

 

V. Method 

The procedures of the explainable ML models are shown in the flowchart (Fig. 7), 

including the molecular dynamics data preparation, ab initio quantum-mechanics-based label 

generation, chemistry-informed feature extraction, experimentally derived calcium motifs data 

preparation, and construction and analyses of the ML model. 
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Figure 7. Flowchart of the chemistry-informed feature extraction and ML interpretation. The 

algorithm was trained using data from the combined ab initio electronic calculations and the 

structures of the calcium-binding loops from molecular dynamics simulations. We subsequently 

used one of the constructed ML models to annotate the calcium charge states from the calcium 

bind binding motifs extracted from the experimentally derived structures from the Protein Data 

Bank (Supplementary Table 1 and Supplementary Fig. 4 in the Supplementary). 

 

Data preparation: calcium-binding environments extraction and ab initio calcium charge 

determination.  

We consider a dataset consisting of selected calcium-binding loop structures with bound 

Ca2+ ions and nearby water molecules from molecular dynamics simulations. Simulations of 

Ca2+/CaM in explicit water in the following three conditions were examined: (i) Neat Ca2+/CaM; 

(ii) Ca2+-retaining environment: Ca2+/CaM/CaMKII peptide; and (iii) Ca2+-releasing environment: 

Ca2+/CaM/Ng peptide. Please refer to the Supplementary for details of the molecular dynamics 

simulations. In total, 8,000 snapshots of Ca2+ in EF-hand loops were selected for further analyses. 

Atomic charges were determined by fitting to the electrostatic potential obtained from single-point 
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quantum mechanical calculations of the calcium-binding loop configurations. Detailed workflow 

of the charge determination is described in the Supplementary and in our previous study.14 

 

Topological parameters in the calcium-coordination network highlight many-body 

interactions at the amino-acid level.  

The topology of the calcium-coordination network was described analytically in the form 

of graph theory. The nodes are formed by an amino-acid, Ca2+, or the closet water molecule. An 

edge is assigned when the distance between the closest pair of atoms of C, N, or O in each residue. 

For each residue in a loop, an undirected edge exists between the node representing it and its 

contacting residue with a weight equal to the reciprocal distance of the contact. Analysis of the 

graphs formed under this definition is accomplished in Gephi50 and inherits its definitions of graph 

theoretic measurements. 

Degree centrality, 𝐶!(𝑣), quantifies how well the node connects with the rest of the graph. 

It is calculated as the degree or the connection number (k) of a node v divided by the number of 

other nodes in the graph (n-1), such as shown in Equation (1) 

𝐶!(𝑣) =
𝑘

𝑛 − 1
(1) 

Betweenness centrality, 𝐶"(𝑣), is used to describe how pivotal a node is to bridge the rest 

of the graph. It is calculated as the fraction that the node shortcuts any two other nodes in the 

graph. The mathematical definition of the betweenness centrality 𝐶"(𝑣) of the node v is defined in 

Equation (2) 

𝐶"(𝑣) = * .
#∈%	

#'(	 	#'*	

*.
*∈%

*'(

𝜎#*(𝑣)
𝜎#*

(2) 
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with 𝜎#* representing the number of shortest paths from node s to node t, and 𝜎#*(𝑣) representing 

the number of those paths which go through the node v. The sum is over all pairs of nodes in the 

graph. V is the set of nodes. 

Clustering coefficient, 𝐶𝐶(𝑣), quantifies how well the neighbors of a node are 

interconnected. By definition, the clustering coefficient of a node v, is the fraction of edges to 

possible edges between its neighbors for the node v, as defined in Equation 3 

𝐶𝐶(𝑣) =
𝑇(𝑣)

/𝑘20
(3) 

where 𝑇(𝑣) is the number of edges between the neighbors of the node 𝑣 and 𝑘 is the cardinality 

of the neighborhood (degree) of the node 𝑣. 

Closeness centrality, 𝐶+(𝑣), quantifies the average distance between the node and the rest 

of the graph. Mathematically, the definition is given in Equation 4 

𝐶+(𝑣) =
𝑛 − 1

∑ .,∈%
,'( 𝑑(𝑢, 𝑣)

(4) 

where d(u,v) is the shortest path distance between nodes u and v. 

 

Construction of predictive ML algorithms.  

We used a tree model with gradient boosting, XGBoost42 and Sci-Kit Learn Python 

package,51 to train and test the ab initio charge estimator models. We split the data into training 

(70%) and testing (30%) sets. Quality of the data splitting was justified by the overlap between 

distributions of the representative features and the label generated from the training/testing data 

(Supplementary Figs. 2 and 3). We used fivefold cross-validation by searching exhaustively on a 

hyperparameters grid on high-performance computers to determine the optimized 

hyperparameters. Specifically, we tuned n_estimators (number of gradient boosted decision trees), 
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colsample_bytree (the proportion of features for constructing each tree), subsample (the portion of 

training data samples for training each additional tree), and learning_rate (shrinkage of feature 

weights to make the boosting process more conservative and prevent overfitting, also called "𝜂"). 

Subsequently, we made predictions on the calcium atomic charges using the optimized XGBoost 

regression model, assessed the model accuracy by calculating the coefficient of determination, 

Pearson correlation coefficient, and the MAE between the predicted and ab initio-derived 

reference values. 
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