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Abstract

The natural history of tuberculosis (TB) is characterized by a large inter-individual outcome

variability after exposure to Mycobacterium tuberculosis. Specifically, some highly exposed

individuals remain resistant to M. tuberculosis infection, as inferred by tuberculin skin test

(TST) or interferon-gamma release assays (IGRAs). We performed a genome-wide associa-

tion study of resistance to M. tuberculosis infection in an endemic region of Southern Vietnam.

We enrolled household contacts (HHC) of pulmonary TB cases and compared subjects who

were negative for both TST and IGRA (n = 185) with infected individuals (n = 353) who were

either positive for both TST and IGRA or had a diagnosis of TB. We found a genome-wide sig-

nificant locus on chromosome 10q26.2 with a cluster of variants associated with strong pro-

tection against M. tuberculosis infection (OR = 0.42, 95%CI 0.35–0.49, P = 3.71×10−8, for the

genotyped variant rs17155120). The locus was replicated in a French multi-ethnic HHC

cohort and a familial admixed cohort from a hyper-endemic area of South Africa, with an over-

all OR for rs17155120 estimated at 0.50 (95%CI 0.45–0.55, P = 1.26×10−9). The variants are
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located in intronic regions and upstream of C10orf90, a tumor suppressor gene which

encodes an ubiquitin ligase activating the transcription factor p53. In silico analysis showed

that the protective alleles were associated with a decreased expression in monocytes of the

nearby gene ADAM12 which could lead to an enhanced response of Th17 lymphocytes. Our

results reveal a novel locus controlling resistance to M. tuberculosis infection across different

populations.

Author summary

There is strong epidemiological evidence that a proportion of highly exposed individuals

remain resistant to M. tuberculosis infection, as shown by a negative result for Tuberculin

Skin Test (TST) or IFN-γ Release Assays (IGRAs). We performed a genome-wide associa-

tion study between resistant and infected individuals, which were carefully selected

employing a household contact design to maximize exposure by infectious index patients.

We employed stringently defined concordant results for both TST and IGRA assays to

avoid misclassifications. We discovered a locus at 10q26.2 associated with resistance to M.

tuberculosis infection in a Vietnamese discovery cohort. This locus could be replicated in

two independent cohorts from different epidemiological settings and of diverse ancestries

enrolled in France and South Africa.

Introduction

Tuberculosis (TB) remains a major public health threat worldwide [1]. An estimated 10 mil-

lion people developed TB disease in 2018, of whom 1.45 million died. The causative agent of

TB is Mycobacterium tuberculosis which is transmitted by aerosol from contagious TB patients.

However, not all persons encountering infectious aerosols will become infected with M. tuber-
culosis, defining the first line of human resistance against TB [2,3]. Infection is inferred from

the presence of anti-mycobacterial immunoreactivity, as shown by a positive result in tubercu-

lin skin test (TST) and/or interferon-gamma (IFN-γ) release assay (IGRA). TST is done in vivo
and consists of an intradermal injection of purified protein derivative (PPD) that provokes a

delayed hypersensitivity reaction at the site of injection. IGRAs are performed ex vivo and

measure the secretion of IFN-γ by leukocytes in response to M. tuberculosis-specific antigens.

Both tests have their own limitations and results are not fully concordant [4–6]. Individuals

who score positive by TST and/or IGRA are considered to suffer from asymptomatic latent TB

infection (LTBI). Conversely, persons who score negative despite documented exposure to M.

tuberculosis are considered resistant to infection. Based on TST and/or IGRA results, the inten-

sity of exposure or the duration of follow-up, from 7% to 25% of subjects display the M. tuber-
culosis infection resistance phenotype [2,7–9].

The large inter-individual variability in exposure outcomes supports a major role for

human genetic factors [10]. Various genome-wide approaches have confirmed this hypothesis

by either considering TST and IGRA results as quantitative traits or relying on TST reactivity

(positive/negative) as a surrogate marker for infection[11–14]. Regarding this latter phenotype,

persistent TST negativity was linked to loci on 2q21-2q24, further fine-mapped to ZEB2, and

5p13-5q22 in an Ugandan population [14,15]. A major locus, named TST1 on chromosome

11p14, employing stringently defined TST negativity (0 mm vs.> 0 mm) as phenotype, was

identified in a linkage analysis conducted in South Africa [11]. TST1 was later replicated in a
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household contact (HHC) study of French families [16]. A genome-wide association study

(GWAS) among highly M. tuberculosis exposed HIV-seropositive individuals from East Africa,

identified a locus in the 5q31.1 region near IL9 associated with negative TST [17].

Here, we performed a GWAS of resistance to M. tuberculosis infection using a robust phe-

notype based on both TST and IGRA information. In addition, we used a HHC study design

guaranteeing shared environmental effects and high intensity of exposure to M. tuberculosis.
We found a locus on chromosome 10q26.2 associated with resistance to M. tuberculosis infec-

tion in an East Asian population from Southern Vietnam. Importantly, this locus was repli-

cated in two other cohorts from France and South Africa, representing different ancestries and

epidemiological settings.

Results

Genome-wide association study of resistance to M. tuberculosis infection in

Vietnam

First, we conducted a GWAS in the Vietnamese sample using 185 uninfected and 353 infected

subjects, consisting of 201 individuals with positive TST/QuantiFERON-TB Gold In-Tube test

(QFT-GIT) results and 152 pulmonary TB (PTB) patients. A total of 5,591,951 high quality

variants were tested with a genomic inflation factor (λ) at 0.997, suggesting that effects from

the familial study design were well controlled (S1 Fig). The corresponding Manhattan plot is

shown in Fig 1A. We observed a genome-wide significant association on chromosome

10q26.2, corresponding to a cluster of 12 variants and 6 additional variants in high linkage dis-

equilibrium (LD) with P< 5 × 10−7 in the intronic regions and upstream of C10orf90 (or

FATS, HGNC: 26563) (Fig 1B). The top-associated variant was the imputed rs11245088 (odds

ratio (OR) = 0.42, 95% confidence interval (CI) 0.39–0.45, P = 1.58 × 10−8) while the top-asso-

ciated genotyped variant was rs17155120 (P = 3.71 × 10−8) (Table 1). Each copy of the minor

allele T of rs17155120 conferred protection against M. tuberculosis infection with an OR of

being infected for CT vs. CC or TT vs. CT at 0.42 (95%CI 0.35–0.49) (Fig 1C). The intensity

cluster plot for rs17155120 showed that the genotype calling was of high quality and separated

clearly into 3 genotype groups (S2 Fig). Since all 18 variants in the locus were in high LD (S3

Fig), the imputed variants were likely to have a high imputation quality as suggested by their

info score (S1 Table).

We also performed a GWAS between the 185 uninfected and the 201 infected subjects,

excluding the 152 PTB patients (S4 Fig). Despite a smaller sample size, all the 18 variants of the

locus were still associated with protection against infection with P< 5.0 × 10−6
, with similar

ORs (for rs17155120, OR = 0.40, 95%CI 0.32–0.49, P = 2.55 × 10−7) (S2 Table). Similar find-

ings were also observed when considering only the 152 PTB patients as infection reference,

with an OR for rs17155120 estimated at 0.50 (95%CI 0.41–0.59, P = 2.10 × 10−4). These results

indicate that PTB patients are an appropriate infection reference group in this analysis.

Replication of variants associated with resistance to M. tuberculosis
infection in France and South Africa

We tested the effects of the variants of the 10q26.2 locus in a French multi-ethnic HHC cohort

(30 uninfected vs. 157 infected subjects) and an admixed familial sample from South Africa

(118 uninfected vs. 136 infected subjects). In the French cohort, 17 variants of the cluster

could be genotyped or imputed (including 11 genome-wide significant variants), and 3 were

replicated at the P< 0.025 level with effect sizes in the same direction as in the Vietnamese

cohort. The most significant associated variant was rs56106518 (OR = 0.40, 95%CI 0.30–0.51,
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P = 2.98 × 10−3) (Table 1). In the South African population, 12 variants of the locus were geno-

typed or successfully imputed (including 10 genome-wide significant variants) and 3 of them

showed evidence for replication. The most significant associated variant was rs118037357

(OR = 0.55, 95%CI 0.43–0.67, P = 7.38 × 10−3) (Table 1). The top genotyped variant

rs17155120 was also replicated in the two cohorts (PFrance = 1.51 × 10−2 and PSouthAfrica =

1.74 × 10−2) (Table 1 and Fig 2A).

Interestingly, the variants across the two replication cohorts were in high LD with each

other presenting similar LD patterns as in Vietnam (S5 Fig). The frequencies of the

Fig 1. Genome-wide association study of resistance to M. tuberculosis infection in Vietnam. A) Manhattan plot showing results from a genome-wide association

study between 185 uninfected subjects (negative for both tuberculin skin test and QuantiFERON-TB Gold In-Tube test) and 353 infected subjects (201 infected

individuals positive for both tests and 152 patients with a history of pulmonary tuberculosis) for 5,591,951 variants (minor allele frequency> 5% and info> 0.8) with an

unadjusted additive genetic model. The -log10(P value) for each variant (y-axis) is presented according to its chromosomal position (x-axis, build hg19). The dashed line

indicates the genome-wide significant threshold at P = 5 × 10−8. B) Locus zoom plot showing association for the 10q26.2 locus, in a 500 kb window surrounding the top

imputed variant rs11245088 (purple diamond). Colors represent pairwise linkage disequilibrium (r2) with rs11245088 as calculated for the Vietnamese Kinh population

of 1000 Genomes phase 3. C) Proportion of Vietnamese individuals resistant to M. tuberculosis infection by genotype for the variant rs17155120. Each bar represents the

proportion of uninfected subjects among CC individuals (n = 93/344), CT individuals (n = 76/173) and TT individuals (n = 16/21) for the variant rs17155120 in

Vietnam.

https://doi.org/10.1371/journal.pgen.1009392.g001
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rs17155120 T allele for all 3 cohorts were also similar, ranging from 0.16 to 0.20. The

rs17155120 T allele frequency of 0.20 in the Vietnamese cohort was consistent with the Kinh

allele frequency of 0.18 in 1000 Genomes (1000G) phase 3 (S6 Fig [18], and S3 Table). The

rs17155120 T allele frequency of 0.18 in the multi-ethnic French cohort was also close to the

global frequency of 0.16 in all 1000G populations. However, the frequency of 0.16 for

rs17155120 T allele in the Souh African cohort was higher than in any 1000G African popula-

tion that ranged from 0.05 to 0.11. Discrepancy of allele frequencies between Souh African

subjects and African populations of 1000G was confirmed by different patterns of LD in a 30

kb region around rs17155120 (S7 Fig), which could be explained by the specific ethnic origin

of the Souh African subjects.

Trans-ethnic meta-analysis

Next, we performed a meta-analysis of resistance to M. tuberculosis infection using the GWAS

data of the 3 cohorts. The combined analysis was carried out in 333 uninfected and 616

infected subjects. The only genome-wide significant result was observed with the variants of

the 10q26.2 region (Figs 2B and S8). The most significant signal was observed at the genotyped

variant rs17155120 (OR = 0.50, 95%CI = 0.45–0.55, P = 1.26 × 10−9) and no heterogeneity was

observed across the 3 studies (Phet = 0.31) (Fig 2A and S4 Table).

Functional annotation

The variants of the 10q26.2 region map to the intronic regions and upstream of the tumor sup-

pressor gene C10orf90 (or FATS, for Fragile-site Associated Tumor Suppressor, HGNC:

26563) (Fig 3). According to ENCODE, two associated intronic variants, rs28703703 and

Table 1. Association between an additive genetic effect of variants on chromosome region 10q26.2 and resistance to M. tuberculosis infection in Vietnam, France

and South Africa.

Variant C10orf90 EA Vietnam France South Africa

EAF OR (95%CI) P value EAF OR (95%CI) P value EAF OR (95%CI) P value

rs11245088 upstream C 0.25 0.42 (0.39–0.45) 1.58×10−8 - - - 0.44 0.99 (0.91–1.07) 4.75×10−1

rs72163291 intron ins 0.24 0.42 (0.35–0.49) 1.94×10−8 0.37 0.88 (0.78–0.98) 3.54×10−1 - - -

rs17155143 upstream A 0.20 0.39 (0.31–0.47) 1.98×10−8 0.18 0.63 (0.50–0.77) 1.29×10−1 0.15 0.60 (0.48–0.72) 1.72×10−2

rs7909756 upstream G 0.24 0.42 (0.35–0.49) 2.03×10−8 0.37 0.83 (0.73–0.93) 2.87×10−1 0.36 0.90 (0.81–0.99) 2.77×10−1

rs28703703 intron G 0.20 0.41 (0.34–0.49) 2.52×10−8 0.20 0.59 (0.48–0.69) 4.95×10−2 0.17 0.66 (0.55–0.77) 2.95×10−2

rs56106518 intron C 0.23 0.41 (0.33–0.48) 3.07×10−8 0.30 0.40 (0.30–0.51) 2.98×10−3 - - -

rs75482972 intron A 0.20 0.42 (0.34–0.49) 3.35×10−8 0.20 0.58 (0.47–0.68) 4.38×10−2 0.17 0.68 (0.57–0.78) 3.48×10−2

rs17155120 intron T 0.20 0.42 (0.35–0.49) 3.71×10−8 0.18 0.48 (0.36–0.59) 1.51×10−2 0.16 0.62 (0.52–0.73) 1.74×10−2

rs73370887 intron A 0.20 0.40 (0.33–0.48) 4.05×10−8 0.31 0.78 (0.71–0.85) 1.43×10−1 0.28 0.75 (0.67–0.83) 3.69×10−2

rs79608098 intron T 0.20 0.42 (0.35–0.49) 4.06×10−8 0.20 0.58 (0.48–0.69) 4.50×10−2 0.17 0.66 (0.55–0.76) 2.71×10−2

rs61750007 upstream C 0.24 0.43 (0.36–0.50) 4.30×10−8 0.24 0.53 (0.42–0.64) 3.49×10−2 0.20 0.73 (0.62–0.84) 7.62×10−2

rs77513326 intron A 0.20 0.42 (0.34–0.49) 4.93×10−8 0.17 0.47 (0.36–0.59) 1.61×10−2 0.16 0.63 (0.52–0.75) 2.35×10−2

rs79918233 intron A 0.20 0.41 (0.33–0.49) 5.61×10−8 0.17 0.51 (0.39–0.63) 3.00×10−2 0.16 0.63 (0.52–0.74) 1.95×10−2

rs147584264 upstream C 0.19 0.41 (0.33–0.49) 1.21×10−7 0.22 0.77 (0.62–0.93) 3.00×10−1 - - -

rs191820708 upstream A 0.19 0.41 (0.33–0.49) 1.31×10−7 0.19 0.63 (0.50–0.77) 1.40×10−1 - - -

rs201178890 upstream T 0.19 0.41 (0.33–0.49) 1.36×10−7 0.22 0.79 (0.62–0.97) 3.36×10−1 - - -

rs202189321 upstream T 0.20 0.41 (0.33–0.49) 1.37×10−7 0.18 0.65 (0.52–0.78) 1.44×10−1 - - -

rs118037357 upstream A 0.19 0.41 (0.33–0.49) 1.62×10−7 0.15 0.47 (0.33–0.60) 2.83×10−2 0.14 0.55 (0.43–0.67) 7.38×10−3

CI, confidence intervals; EA, effect allele; EAF, effect allele frequency; OR, odds ratio; ins, insertion

https://doi.org/10.1371/journal.pgen.1009392.t001
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rs77513326, are located in a regulatory genomic region characterized by H3K4me1 and

H3K27ac histone marks and an active enhancer signature in lymphocytes T helper 17 (Th17).

The variant rs77513326 also overlaps ATAC peaks in Th17 cells, memory T cells, natural killer

cells and CD8+ T cells. We further explored the variants in various expression quantitative

trait loci (eQTLs) databases of relevant tissues for the phenotype and found an association

between them and expression of the nearby gene ADAM12. In particular, rs28703703 and the

genotyped variant rs17155120 displayed decreasing expression of ADAM12 with each minor

allele (having a protective effect against M. tuberculosis infection) in monocytes

(P = 2.10 × 10−3 and P = 4.70 × 10−3 respectively) (from https://immunpop.com/kim/eQTL

[19]). No association was observed in other immune cell types.

Discussion

In this study, we explored the genetic determinants of natural resistance to M. tuberculosis
infection after intense exposure. There are no direct tests for established infection because TST

Fig 2. Genome-wide association study of resistance to M. tuberculosis infection in 3 cohorts from Vietnam, France and South Africa. A) Forest plot of the

association between an additive genetic effect of rs17155120 on chromosome region 10q26.2 and resistance to M. tuberculosis infection. Odds ratios and 95% confidence

intervals derived from a linear mixed model, P values, sample sizes and frequency of the effect allele (EAF) are reported by individual cohort and for the random effects

meta-analysis. B) Manhattan plot showing results from a genome-wide association study between 333 uninfected subjects and 616 infected subjects for 3,967,482

variants (minor allele frequency> 5% and info> 0.8) with an unadjusted additive genetic model. The -log10(P value) for each variant (y-axis) is presented according to

its chromosomal position (x-axis, build hg19). The dashed line indicates the genome-wide significant threshold at P = 5 × 10−8.

https://doi.org/10.1371/journal.pgen.1009392.g002
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and IGRAs measure an immune response that does not allow to distinguish between past or

present infection with M. tuberculosis bacilli. Nevertheless, our results show a strong genetic

effect on resistance to M. tuberculosis infection irrespective of infection being persistent or

temporary. TST and IGRA tests have well-known limits [4]. To minimize misclassification of

uninfected and infected subjects in a cross-sectional setting, we therefore relied on negative

results in both tests and defined stringent cut-offs. As exposure to M. tuberculosis is difficult to

quantitate, yet a critical feature of TB studies [21], we focused on individuals at high risk of

infection. We recruited household contacts recently exposed for extended periods to a conta-

gious PTB index, some of whom remained infection-free. We discovered a genome-wide sig-

nificant association between a cluster of variants on chromosome 10q26.2 and resistance to M.

tuberculosis infection in well-characterized Vietnamese subjects. Strikingly, this locus could be

replicated in two independent cohorts with different epidemiological settings from France and

South Africa, resulting in association of the C/T variant rs17155120 across the 3 populations at

an estimated combined odds ratio of 0.50 (95%CI 0.45–0.55) for becoming infected for TC vs.

CC or TT vs. TC individuals.

The cluster of associated variants overlaps intronic and 5’ regions of C10orf90 (or FATS,

HGNC: 26563), a tumor suppressor gene. This gene lies within a common-fragile site, which is

an evolutionarily conserved region among mammals and susceptible to DNA damage [22].

The protein encoded by C10orf90 has been shown to promote p53 activation in response to

Fig 3. Genomic annotation of the locus on chromosome region 10q26.2. The upper panel is adapted from Integrative Genomics Viewer (http://igv.org/app/) and the

lower panel is adapted from UCSC Genome Browser (http://genome.ucsc.edu/). The 3 vertical grey lines represent the associated variants rs1715120, rs28703703 and

rs77513326 (from left to right) that overlap regulatory regions. From top to bottom: H3K4me1 and H3K27ac histone marks from ENCODE, active enhancer in Th17

cells (chromHMM annotation from ROADMAP), chromatin accessibility as represented by ATAC peaks in Th17 cells, memory T cells, NK cells and CD8+ T cells [20].

https://doi.org/10.1371/journal.pgen.1009392.g003
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DNA damage through an E3 ubiquitin ligase activity [23,24]. Several E3 ubiquitin ligases have

already been shown to participate in the defense against M. tuberculosis, in particular through

autophagy[25–27]. The p53 transcription factor is not only a master regulator of autophagy

but also activates apoptosis, another key process for host infected cells to limit the spread of

pathogens as M. tuberculosis [28,29]. Recent studies demonstrated that p53-induced apoptosis

plays a critical role in the inhibition of mycobacteria survival and the macrophage resistance,

possibly mediated by IL-17 [30,31]. However, possible role of C10orf90 during M. tuberculosis
infection or any related immune process remains unknown.

In silico functional annotation of the 10q26.2 associated variants revealed additional regula-

tory features related to lymphocytes Th17. In particular, the A/G variant rs28703703 was iden-

tified as a likely cis-eQTL for ADAM12 in monocytes, with decreased expression of ADAM12
associated with the G allele, protective against M. tuberculosis infection. ADAM12 is located

~280 kb downstream C10orf90, and encodes a matrix metalloprotease linked to a broad range

of biological processes [32]. ADAM12 expression correlates with lung inflammation as it is

overexpressed in cells issued from asthmatic sputum and in the airway epithelium during aller-

gic inflammatory reaction [33,34]. Previous studies also reported ADAM12 expression in Th17

cells [35,36], and ADAM12 knockdown in human T cells was found to increase Th17 cytokine

production (IL-17A, IL-17F, and IL-22) [35]. In South India, TST-negative individuals pro-

duced significantly higher levels of Th17 cytokines than TST-positive individuals [37]. Simi-

larly, significant higher levels of Th17 cytokines were observed in persistent negative IGRA

individuals as compared with IGRA converters in a recent study conducted in the Gambia

[38]. These findings are consistent with our present results showing that the rs28703703 G

allele protective against M. tuberculosis infection is associated with lower ADAM12 expression

that could lead to higher Th17 cytokine production. Overall, these observations support the

view that Th17 cytokines may have a protective role against early stages of M. tuberculosis
infection.

The 3 enrolled samples were of modest size. However, the design of the 3 studies, and the

definition of a stringent and homogenous phenotype across them enabled us to detect a signifi-

cant association with large effects. Interestingly, adding the PTB Vietnamese patients, who are

by definition infected, increased the power of the analysis. Strikingly, the top associated vari-

ants displayed large effects with similar allele frequencies across populations and were in high

LD across multiple ancestries. This observation was not expected because of the various epide-

miological settings and the genetic diversity of the cohorts that included Kinh Vietnamese,

Europeans, North Africans, Sub-Saharan Africans and admixed Western Cape Coloureds.

Such populations are usually under-represented in studies of genetic association while they

could provide valuable insights to understand complex diseases [39].

In conclusion, we demonstrated that rigorous epidemiological design and phenotype defi-

nition with seemingly limited sample sizes can reveal novel genetic factors that offer protection

from major pathogens such as M. tuberculosis. We found that C10orf90 and ADAM12 are

promising candidate genes involved in the natural resistance to M. tuberculosis. Further inves-

tigations are needed to elucidate their role in the process of the initial infection, which could

be a major step to provide new opportunities in the fight against TB.

Subjects and methods

Ethics statement

Signed informed consent was obtained from all the participants, and from the parents of

enrolled minors. The study was approved by the regulatory authorities in Binh Duong, Viet-

nam (1366/UBND-VX), the French Consultative Committee for Protecting Persons in
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Biomedical Research of Henri Mondor Hospital (Créteil, France) and the Stellenbosch Univer-

sity Health Research Ethics Committee (Tygerberg, South Africa).

Study settings and populations

Vietnam. Vietnam is a middle-income country in South-East Asia with a high annual

incidence of TB (130/100,000 at the time of the study [40]), high Bacille Calmette-Guérin

(BCG) vaccination coverage (with reported rates exceeding 95% [41]) and a low population

prevalence of HIV (0.4% in 2015 in the general population and 5% among TB cases [40,42]).

From 2010 to 2015, we recruited, in a M. tuberculosis endemic region of Southern Vietnam,

index PTB adults with persistent cough before the start of treatment (mean duration of cough-

ing = 3.2 months). PTB diagnosis was assessed by clinical presentation, chest X-ray and/or

positive cultures for M. tuberculosis. A total of 1108 HHCs of 466 PTB index cases were invited

to participate in the study and underwent both TST and QFT-GIT (S1 Text). HHCs did not

undergo any further follow-up.

France. As a first replication cohort, we used household TB contacts studied in Val-de-

Marne, a suburban region of Paris, in the context of a general screening procedure. This

multi-ethnic cohort has been previously described [12,16]. Val-de-Marne is an area of low TB

endemicity, displaying an annual incidence of 22/100,000 at the time of the study [43] and

BCG vaccination rates are high [41]. HIV seroprevalence is low in France in the general popu-

lation (0.3% at the time of the study [44]) and was estimated at 7% in the index cases of the

study [45]. For this study, 664 HHCs of 132 PTB index cases were investigated according to

national guidelines that required two screening visits. HHCs were individuals sharing resi-

dence with an index during the 3 months before diagnosis. Briefly, the first visit (V1) included

a physical examination, a chest radiograph, TST and in-house IGRA [12,16] (S1 Text). These

investigations, except for IGRA, were repeated 8–12 weeks later (V2) if the contact subject did

not meet the criteria for infection at V1.

South Africa. As a second replication cohort, we used a large sample (n = 415) of 153

nuclear families from a suburban area of Cape Town, South Africa, which has been previously

described [6,11,12,16]. All individuals belonged to the South African Coloured group, a unique

multi-way admixed population [46]. There was no specific requirement for subjects to be

HHCs of PTB patients. Indeed, TB is hyper-endemic in this area with an incidence of ~800/

100,000 at the time of the study [47] and TB transmission occurs more often outside the house-

hold [48]. BCG vaccination at birth is routine in this area [49]. HIV seroprevalence was esti-

mated at 5.2% in the overall population and less than 2% in the pediatric population at the

time of the study [11]. In addition, individuals who were known to be HIV positive, pregnant,

or using immunomodulatory chemotherapy were excluded at the time of enrollment [11].

TST and in-house IGRA were performed as previously described (S1 Text). Subjects who had

clinical TB disease in the two years preceding the study were excluded. Thus, only healthy chil-

dren and young adults from the area were included and tested for infection.

Genotyping, quality control and imputation

A total of 724 individuals from Vietnam (S9 Fig) and 573 from France were genotyped using

the Illumina Infinium OmniExpressExome-8-v1 chip (960,212 single nucleotide polymor-

phisms, SNPs). For the South African cohort (n = 374), the Illumina HumanOmni2.5–8 Bead-

Chip (~2 million of SNPs) was used. All quality control steps were done in each cohort with

PLINK v1.9 [50]. Autosomal SNPs with a minor allele frequency (MAF) > 0.01, a genotype

call rate> 0.99 and a Hardy-Weinberg (HWE) equilibrium P> 1.00 × 10−5 were retained.

Individuals with a call rate< 95% were excluded (n = 2). Identity-by-descent (IBD) analysis
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was done to detect duplicated individuals and the members of the pairs with the lower call rate

were excluded (n = 1). After the quality control, imputation was performed on 720 individuals

and 598,090 variants from Vietnam and 573 individuals and 886,471 variants from France

using the Michigan Imputation Server [51] with Eagle2 [52] for the pre-phasing and the

1000G Project as reference panel [53]. For the South African cohort (374 individuals and

1,347,846 variants), the imputation was done on the Sanger Imputation Server with Eagle2 for

the pre-phasing and the African Genome Resources as reference panel which includes ~2000

African samples in addition to the individuals from 1000G [54]. Imputed SNPs with an impu-

tation quality info score > 0.8 and MAF > 0.05 were retained for further association analyses

(5,591,951 variants in Vietnam, 7,737,070 variants in France and 6,922,541 variants in South

Africa).

For each cohort, principal component analysis (PCA) was conducted to evaluate population

structure. Genotypes of the individuals from 1000G were used to calculate principal compo-

nents and data for subjects from the cohorts were projected onto the eigenvectors. The Viet-

namese cohort, which was sampled from the Vietnamese Kinh group, was homogenous and

clustered with the 1000G East Asian populations (S10 Fig). By contrast, the families in the Val-

de-Marne sample showed genetic diversity at the population level with a majority of individu-

als of European, North African and Sub-Saharan ancestries (S11 Fig). The admixed Souh Afri-

can subjects, who exhibited genetic diversity at the individual level, were forming a distinct

cluster close to the African populations of 1000G (S12 Fig).

Definition of the M. tuberculosis infection phenotype

The definition of the M. tuberculosis infection phenotype relied on both TST and IGRA results.

In particular, we used a 5 mm cut-off to determine TST status, based on previous studies in

similar settings [7,17] and published guidelines [55]. We explored covariates associated with

our infection definition in the entire cohort of enrolled individuals and the subset of those

with genotype information were retained for the GWAS (S9 Fig).

For the Vietnamese study, resistance to M. tuberculosis infection was defined by the pres-

ence of a negative TST < 5mm and a negative QFT-GIT test result following a protocol sug-

gested by the manufacturer (S1 Text). Infected individuals were defined as subjects presenting

both a positive TST� 5mm and a positive QFT-GIT test result. A total of 188 subjects were

classified as double negative and 512 as double positive (S13 Fig), among which 185 and 201

subjects were genotyped, respectively. In order to increase the sample size, we also added 152

genotyped PTB patients, consisting of 146 index cases and 6 subjects with a history of PTB, to

the infected group (S5 Table). We investigated covariates associated with our infection defini-

tion and no significant association was found (S6 Table). Therefore, we conducted an unad-

justed genetic association analysis of our binary infection phenotype.

For the French study, which included only HHCs and none of their PTB index cases, con-

tacts could have had one or two screening visits (V1 and V2) with a TST measurement (S14

Fig). A TST was considered negative when the skin induration was (i) < 5 mm at both V1 and

V2, (ii) < 5 mm at V1, when only one visit was done. A TST was considered positive when the

skin induration was (i)� 5 mm at both V1 and V2, (ii) < 5 mm at V1 and� 10 mm at V2,

which reflected true conversions. In-house IGRA was used in this study and provided quanti-

tative levels of IFN-γ production upon early secretory antigenic target 6 (ESAT6) stimulation

(S1 Text). A negative IGRA result was defined by a null production of IFN-γ. To determine

the optimal positivity cut-off, we built a receiver operating characteristic (ROC) curve with

TST status as the observed outcome and the corrected IFN-γ levels (ESAT6 response minus

non-stimulated control value) as the predicted outcome among all the contacts enrolled. We
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selected as positivity threshold the highest sum of sensitivity plus specificity, which was equal

to 175 pg/mL (S14 Fig). Then, we defined uninfected subjects as HHCs with a negative TST

and a null IFN-γ production (n = 33) and infected subjects as HHCs who presented both a

positive TST and a positive IGRA result (IFN-γ production > 175 pg/mL) (n = 147) (S14 Fig).

We also looked for covariates associated with our infection definition in this sample of 180

individuals (S7 Table). Age was the only factor significantly associated with our infection defi-

nition and was included as covariate in the genetic association analysis that finally included 30

genotyped uninfected and 127 infected subjects (S8 Table).

For the South African study, a 5 mm cut-off was used to identify negative and positive TSTs

(S15 Fig). In-house IGRA was also based on the production of IFN-γ upon ESAT6 stimulation

(S1 Text). We determined the optimal IGRA positivity cut-off similarly to the French study by

building a ROC curve, leading to a threshold of 20.9 pg/mL (S15 Fig). Then, we defined unin-

fected subjects as HHCs with a negative TST (< 5 mm) and a null IFN-γ production (n = 128),

and infected subjects as those with both positive TST and IGRA result (IFN-γ production> 20.9

pg/mL) (n = 152) (S15 Fig). Age was the only factor significantly associated with our infection def-

inition in the whole cohort (S9 Table) and was included as covariate in the genetic association

analysis that finally included 118 genotyped uninfected and 136 infected subjects (S10 Table).

Covariates associated with our infection definition were investigated using mixed-effects

logistic regression with a random effect per family in each cohort. All the analyses were carried

out using R software (version 3.5.2) and related packages “pROC” and “lme4”[56–58].

Genetic association analyses

We conducted genetic association analyses of uninfected vs. infected subjects in the 3 cohorts

using a linear mixed-model (LMM) assuming an additive genetic model as implemented in

GEMMA v0.98 [59]. To account for the familial relationships, a genetic relatedness matrix (GRM)

was used as random effects. In each cohort, the GRM was estimated using centered genotypes

after the quality control described above. P values from the likelihood ratio test were reported. For

better interpretability, we reported odds ratios (OR) and their 95% confidence intervals (95%CI)

after transforming the regression coefficients of the LMM [60]. Manhattan plots of the -log10(P
values) and quantile-quantile (QQ) plots were generated using “CMplot” package in R [61].

Regional plots were generated using LocusZoom Standalone v1.4 [62]. Haplotype plots were gen-

erated using Haploview [63]. Replication of genome-wide associated variants (P< 5 × 10−8) in the

primary cohort from Vietnam was assessed in the two cohorts from France and South Africa. The

observed LD in France and South Africa was slightly weaker as compared with Vietnam, and two

LD blocks were inferred by Haploview (S5 Fig). We therefore considered variants at a nominal

one sided P value< 0.025 and with a consistent direction of the effect size as replicated.

We also conducted a trans-ethnic meta-analysis by using summary statistics (i.e. beta esti-

mates and their standard errors) from the Vietnamese discovery cohort and the two replica-

tion datasets. We used the random-effects model of Han and Eskin implemented in

METASOFT [64]. This model assumes effect sizes of exactly zero in all the studies (i.e. no het-

erogeneity) under the null hypothesis of no associations and allows the effect sizes to vary

among studies (i.e. heterogeneity) under the alternative hypothesis. The effect size consistency

across studies were determined using the Cochran’s Q statistic. Allelic effect estimates were

also derived on the log-odds scale.

Functional annotation

We used the UCSC Genome Browser [65] to identify associated variants which may overlap

with known regulatory regions: 1) histone marks from the ENCODE project [66], 2)
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chromatin state annotated by ChromHMM on the basis of ROADMAP [67,68] and 3) chro-

matin accessibility determined by assay for transposase-accessible chromatin using sequencing

(ATAC-seq) from immune cell-types [20]. We also looked at the associated variants in eQTL

databases which focused on gene expression in monocytes [19,69], T cells [70], macrophages

[71], and various types of immune cells [72].
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