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SUMMARY
As single-cell omics data sampling and acquisition methods have accumulated at an unprecedented rate,
various data analysis pipelines have been developed for the inference of cell types, cell states and their dis-
tribution, state transitions, state trajectories, and state interactions. This presents a new opportunity in which
single-cell omics data can be utilized to generate high-resolution, high-fidelity computational models. In this
review, we discuss how single-cell omics data can be used to build computational models to simulate bio-
logical systems at various scales. We propose that single-cell data can be integrated with physiological in-
formation to generate organ-specificmodels, which can then be assembled to generatemulti-organ systems
pathophysiological models. Finally, we discuss how generic multi-organ models can be brought to the pa-
tient-specific level thus permitting their use in the clinical setting.
INTRODUCTION

Single-cell sequencing, including transcriptomics, spatial tran-

scriptomics, proteomics, andmost recently, metabolomics, pro-

vides high-resolution insight into the biological mechanisms and

processes occurring within individual cells and their microenvi-

ronments. The recent single-cell ‘‘omics’’ revolution initiated a

cascade of computational efforts for downstream analysis and

understanding of the underlying biological systems. The current

state-of-the-art single-cell analysis pipelines are used to eluci-

date cellular states within a greater cell type population such

that the relative distribution and proportion of these cell states

within the cell type population can then be studied. Here, we

lay out the opportunities and a conceptual framework for using

this rich information toward building high-fidelity computational

models (i.e., ODE-based, Boolean, neural networks) and simula-

tions of biological systems at multiple scales. As a step toward

recognizing these opportunities, it is instructive to note how

the data generation enabled by the single-cell omics technolo-

gies represents a transformative shift from previous practices

of data collection and integration for use in modeling and simu-

lation at a substantively lower scale and throughput. Computa-

tional modeling has been essential and long standing in the field

of biology as a means to study and predict complex biological

systems and their dynamics. For decades these models have

been built and parameterized using data from very targeted

and biased experiments, thereby limiting the scale and resolu-

tion of these models. In the present review, we refer to these

data as ‘‘Not So Big’’ as it is disparate and, therefore must be ob-

tained individually from various literature sources, collated

together, and then integrated for the development of mecha-
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nistic models (Figure 1). Some classical examples of this type

of modeling include the Hodgkin Huxley conductance model,1

the Michaelis-Menten kinetic model,2 and the Tyson (1991) cell

cycle gene regulatory network (GRN) model.3

Our use of the term ‘‘Not So Big’’ data to refer to conven-

tional datasets is to draw a direct contrast to ‘‘Big’’ data,

which is also not a precisely defined term but is widely under-

stood to denote the large volume of high dimensional data-

sets, such as transcriptomics, proteomics, metabolomics,

etc. Another way to refer to the available spectrum of datasets

is to differentiate them as small, medium/mesoscale, and

large. The different collections of many conventional small-

scale datasets can be considered as forming a mesoscale da-

taset that informs computational modeling. In the text below,

we chose to use the terms ‘‘Big’’ and ‘‘Not So Big’’ data based

on the relatively popular use of the term ‘‘Big’’ data to refer to

omics datasets. ‘‘Big’’ datasets can thus provide high dimen-

sional unbiased quantification of >10,000 genes (transcrip-

tomics) and proteins (proteomics) and >100,000 metabolites

(metabolomics) at single-cell, single-molecule, and spatial

resolution within a tissue microenvironment. With the unprec-

edented rise of ‘‘Big’’ data, there is a wide landscape of new

opportunity for analyzing such data for further and deeper

investigation of the inner workings of various biological sys-

tems. In this review, we propose a systematic framework for

‘‘Big’’ data transformation and feature extraction, which can

be further informed by compendia of conventional ‘‘Not So

Big’’ data, to bridge the gap between the collection and anal-

ysis of ‘‘Big’’ and ‘‘Not So Big’’ data and the development and

simulation of high-fidelity, multiscale models of tissues at

various spatiotemporal levels.
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Figure 1. Data sources for advancing computational modeling

‘‘Not So Big’’ and ‘‘Big’’ data sources can be utilized collectively to build computational models of varying complexity. ‘‘Not So Big’’ data are usually disparate,

require extensive data collation, andmust be obtained individually from various literature sources in the form of data tables present in the supplementarymaterial.

The ‘‘Not So Big’’ data are derived from targeted and focused experiments and provides tissue-level detail for mechanistic models such as the first cell cycle gene

regulatory network from Tyson (1991).3 Bulk and single-cell ‘‘Big’’ data are derived from targeted and unbiased assays, and are usually stored in annotated

collections and compendiums such as GEO4 (transcriptomics), ArrayExpress5 (transcriptomics), MetaboLights6 (metabolomics), and PRIDE7 (proteomics). This

‘‘Big’’ data provides genome-scale detail for informing correlation networks and genome scale metabolic models. Single-cell ‘‘Big’’ data from reference atlases,

including The Cancer Genome Atlas,8 the Human Cell Atlas,9 HuBMAP,10 and Tabula Sapiens,11 provide untargeted and unbiased assays at the whole-body

physiological scale. These data can be utilized to inform future virtual humanmodels at various scales, including themolecular level (i.e., Wnt/B-Catenin signaling

pathway), single-cell level (i.e., gene correlation networks), and physiological level (i.e., multi-organ interactions). Figure 1 adapted from Tyson (1991),3 Gus-

tafsson et al. (2023),12 Park et al. (2016),13 Moss et al. (2021).14 Created using biorender.com.
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The data analytical approach for ‘‘Big’’ data are significantly

different from that of the ‘‘Not So Big’’ data as there has been

a significant push for data processing and sharing standards.

For example, the Gene Expression Omnibus (GEO)4 was devel-

oped to standardize storing and sharing policies for bulk and sin-

gle-cell transcriptomics data, among other omics data. Addi-

tional repositories exist for storing transcriptomics, proteomics

and metabolomics data, including ArrayExpress,5 PRIDE,7 and

MetaboLights,6 respectively. Databases for ‘‘Big’’ data storing

then enable automated analysis algorithms and workflows for

feature extraction and downstream use for computational model

building (Figure 1). While experiments yielding ‘‘Not So Big’’ data

are targeted and focused, resulting in highly specified data

derived from the biological question of interest, ‘‘Big’’ data sour-

ces, such as those hosted on databases like GEO, are derived

from targeted, unbiased experimental designs, which cast a

larger net for which biological questions can be formulated and

answered by repurposing the data. The evolution from biased

‘‘Not So Big’’ data to unbiased ‘‘Big’’ data have facilitated new

modeling efforts such as ‘‘Big’’ data informed genome scale

metabolic models (GEMs)12 and correlation network models13

(Figure 1). However, we seek to explore the unique opportunities
2 iScience 27, 111322, December 20, 2024
of computational modeling in biology that explicitly incorporate

and are driven by single-cell omics datasets such that high-fidel-

ity, high resolution, dynamic models of pathophysiological sys-

tems can be developed and simulated.

The conceptual and technological advances from ‘‘Not So

Big’’ data toward ‘‘Big’’ data standards have also initiated the

development of untargeted, unbiased, whole-body physiological

scale data sources such as those from single-cell reference at-

lases. These data are not specific to any single study or disease

state but rather encapsulate information from nearly all single-

cell studies. The reference databases contain large amounts of

data that can be used to query the functionality of a microenvi-

ronment or tissue at single-cell resolution. The growing interest

in single-cell technology led to the formulation of The Human

BioMolecular Atlas Program (HuBMAP), which developed

state-of-the-art and publicly available platforms for mapping

healthy cells in the human body to determine cellular function

and relationships.10 Other cell atlas initiatives, including The Hu-

man Cell Atlas,9 The Tabula Sapiens,11 and The Cancer Genome

Atlas,8 have been developed for similar purposes. Additional sin-

gle-cell atlases specific to tissues, including liver (The Liver

Atlas)15 and white adipose tissue (Single-cell atlas of human

http://biorender.com


Table 1. Molecularly targeted methods for single-cell and spatial transcriptomics

Single-cell transcriptomics

method Spatial? Cell capture efficiency Resolution

Cells captured

per sample

Gene detection per

cell or spot

InDrop26 No �70–80% Single-cell >40,000 500-5000 genes/cell

Drop-seq25 No �10% Single-cell >50,000 �300 genes/cell

Chromium (10X Genomics)27 No �50–70% Single-cell >80,000 500-5000 genes/cell

Visium (10X Genomics) Yes N/A 55 mm spot (multicellular) �5,000 spots �150 genes/spot

Slide-Seq28,29 Yes N/A 10 mm spot (single-cell) �70,000 �150 genes/spot

DBiT-seq30 Yes N/A 10 mm spot (single-cell) �15,000 �2,000 genes/spot

Stereo-seq31 Yes N/A 220 nm spot (subcellular) �280,000 �500 genes/cell

CosMx32 Yes N/A Subcellular >100,000 �100 genes/cell

Xenium (10X Genomics) Yes N/A Subcellular >100,000 �100 genes/cell
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andmouse white adipose tissue),16 have been developed to bet-

ter understand tissue-specific cellular states and their respective

function in health and disease. The Broad Institute also devel-

oped a single-cell portal for the exploration and acceleration of

single-cell research for individuals unfamiliar with data analysis

and computational biology.17 These reference atlases, therefore,

provide an unbiased foundational platform for computational

model building of a virtual human model with physiological,18

cellular,14 and molecular signaling details (Figure 1).

Several efforts have also been made toward generating plat-

forms for large-scale multiscale model building. For instance,

the NIH funded the ‘‘Simmune’’ project, which enables compre-

hensive modeling by providing a suite of software tools that

guide the user through the multiple hierarchical scales of cellular

behavior.19 Such initiatives and software tools can be helpful for

those who want to build computational models using experi-

mental data but lack the skills necessary for model building,

development, and simulation. An additional software developed

for cell-based simulation of multicellular systems, CellSys, im-

plements agent-based modeling that supports simulation

and analysis of virtual tissues.20 A large-scale, agent-based

model of granuloma formation and function in lungs during

M. tuberculosis infection, GranSim, was developed by incorpo-

rating cellular and molecular details and can be utilized for pre-

dicting the pharmacokinetic and dynamics profiles of various

drugs, among many other functionalities.21 While these software

platforms provide a framework for large-scale modeling and

simulation, the growth in the availability of single-cell data have

not been matched by the growth in predictive knowledge gener-

ated by computational models. Additional tools for model devel-

opment are necessary for integrating ‘‘Big’’ data with ‘‘Not So

Big’’ data such that computational models can be built and simu-

lated at a pace that matches data generation.

In the remainder of the review, we first discuss the range of

technological developments for sampling at the single-cell scale.

Next, we explore the available methods for extracting features

from single-cell omics data for use in computational models.

Then, we detail how the features extracted from the ‘‘Big’’ and

‘‘Not So Big’’ data can be utilized collectively to build and test

high-resolution, high-fidelity computational models. We then

propose that these computational models can be expanded to

multi-organ systems pathophysiological models and consider

the implications for patient-specific modeling and simulation
and in silico clinical trials. Lastly, we comment on the possible

opportunities and implications for computational models

informed by single-cell data.

SAMPLING METHODS FOR SINGLE-CELL OMICS DATA
ACQUISITION

Sampling for single-cell and spatial transcriptomics
As the need for single-cell transcriptomics data have rapidly

increased, various sampling methods have been developed to

meet such demands. Prior to droplet-based single-cell RNA-

seq (scRNA-seq) methods, single-cell data were acquired using

methods including fluorescence-activated cell sorting (FACS),22

magnetic-activated cell sorting (MACS),23 and laser capture

microdissection (LCM).24 Thesemethods selectively isolate spe-

cific cell populations based on regions of interest (LCM) or cell

markers (FACS and MACS), which have high sensitivity and ac-

curacy. The throughput of single-cell sampling methods varies;

while LCM throughput is low, FACS and droplet-basedmicroflui-

dics throughput is high.

Several untargeted methods of single-cell sampling for tran-

scriptomics exist, including the microfluidic-based Drop-seq,25

InDrop,26 and 10X Chromium27 methods (Table 1). These three

isolation methods use microfluidics to tag individual cells with

a unique molecular identifier (UMI), resulting in a matrix contain-

ing the absolute number of counts for each transcript in each

cell. The droplet-basedmicrofluidic single-cell isolationmethods

are advantageous as they have high sensitivity and specificity.

These sampling methods have varying cell capture efficiencies

and gene detection rates (Table 1).

While each method of single-cell sampling for transcriptomics

has its benefits and limitations, they all produce high-resolution

sequencing data for single-cells but lack spatial information.

Therefore, sequencing-based and multiplexed immunohisto-

chemistry (IHC)/immunofluorescence (IF)-based technologies

have been developed to spatially profile the transcriptomes of

tissue slices. Fluorescent in situ sequencing (FISSEQ) was

the first available platform for spatial transcriptomics.33 This

method initiated a cascade of other spatial barcoding and in

situ sequencing methods with single-cell and subcellular resolu-

tion. One of these methods, Visium (10x Genomics), produces

lower spatially resolved sequencing data of cell spots (50 mm)

from whole tissue slides (Table 1). Methods that have adopted
iScience 27, 111322, December 20, 2024 3



Table 2. Mass-spectrometry-based methods of single-cell proteomics sampling

Proteomics methods Cell Isolation Method Cells captured per run

Protein or metabolite

detection per cell

CyTOF44 Microfluidics >100,000 �50 proteins/cell

SCoPE-MS37,38 Microfluidics or manual picking �200 �1,000 proteins/cell

nanoPOTS39 Microfluidics or manual picking 10–100 �200–300 proteins/cell

OAD chip40 Microfluidics 1 (per chip) �50 proteins/cell

iPAD41 Syringe pump 1 (24 cells/day) �100–200 proteins/cell

FAIMS42 Microfluidics or manual picking 1 (200 cells/day) >1,000 proteins/cell
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higher resolution include Slide-seq,28,29 DBiT-seq (deterministic

barcoding in tissue for spatial omics sequencing),30 and most

recently, Stereo-seq31 (Table 1). Furthermore, NanoString’s

CosMx32 and 10X Genomics’ Xenium probe-based platforms

for spatial transcriptomics sampling achieve subcellular resolu-

tion (Table 1).

Sampling for single-cell proteomics and metabolomics
Fewer widely utilized sampling methods exist for single-cell pro-

teomics and metabolomics compared to transcriptomics, as the

fields are only just emerging. This is due to the increased diffi-

culty of protein and metabolite quantification at the single-cell

level.34,35 However, mass spectrometry (MS) is very popular in

the proteomics and metabolomics fields, and innovations within

MS have propelled research and our current understanding of

various biological systems. Several methods exist for prote-

omics sequencing of single-cells and are discussed in more

detail in a recent review by Kelly (2020).36 Briefly, we highlight

a few single-cell proteomics methods, including single-cell

ProtEomics by mass spectrometry (SCoPE-MS)37,38 nanodrop-

let processing in one pot for trace samples (nanoPOTS),39 the

oil-air-droplet (OAD) chip,40 the integrated proteome analysis

device (iPAD),41 and high field asymmetric ion mobility spec-

trometry (FAIMS)42 (Table 2). These single-cell protein quantifi-

cation methods have been utilized alone or in conjunction as

part of a larger workflow to quantify over 1000 protein groups

per single.43

Several single-cell sampling methods exist for metabolite

analysis based on ion beams, lasers, probes, or microfluidic de-

vices.45,46 Ion beam-based techniques include cytometry by

time of flight (CyTOF),44 time-of-flight secondary ion MS (TOF-

SIMS)47 and nanoscale SIMS (nanoSIMS),48 which can achieve

resolution as high as 100 nm and have shown significant ad-

vancements over flow cytometry for single-cell proteomic quan-
Table 3. Popular methods for single-cell metabolomics sampling

Metabolomics Method Type Resolution

TOF-SIMS47 Ion beam-based 100 nm to 1 mm

nanoSIMS48 Ion beam-based 50 nm to 1 mm

MALDI-MS49 Laser-based 30–200 mm

LAESI-MS50 Laser-based 10–100 mm

NAPA-LDI-MS51 Laser-based 40 um

nano-DESI52 Probe-based 10–15 mm

4 iScience 27, 111322, December 20, 2024
tification (Table 3). Since SIMS-based methods are more ener-

getic and result in a larger number of fragments produced,

matrix-assisted laser desorption-ionization (MALDI)-based

methods have been more commonly utilized for single-cell MS

experiments, as this method provides high sensitivity and

throughput.45 Some variations of MALDI-based methods of sin-

gle-cell metabolomics quantification include MALDI-MS,49 laser

ablation electrospray ionization MS (LAESI-MS),50 and nanopost

array-laser desorption ionization (NAPA-LDI)51 (Table 3). A pop-

ular probe-based method is nano-desorption electrospray ioni-

zation (nano-DESI)52 (Table 3), while several microfluidic-based

approaches have been introduced by the Yang research

group,53,54 which were designed to allow for higher throughput

analysis.

Sampling for simultaneous transcriptomics-proteomics
collection
Approaches for simultaneous single-cell sampling and transcrip-

tomics-proteomics analysis have been developed. Some of the

discussed methods for transcriptome-proteome collection

methods include proximity extension assay/specific RNA target

amplification (PEA/STA),55 proximity ligation assay for RNA

(PLAYR),56 cellular indexing of transcriptomes and epitopes by

sequencing (CITE-seq),57 and RNA expression and protein

sequencing assay (REAP-seq),58 which permit sensitive and

specific integrative analysis of the transcriptome and proteome

(Table 4).

EXTRACTING SINGLE-CELL SCALE FEATURES FOR
COMPUTATIONAL MODELING

Single-cell omics enables cellular gene expression quantification

with higher resolution, such that cellular heterogeneity and

differential expression across cell states can be revealed.
Molecule size detection limit Limit of Detection

0–10,000 Da Ppm - ppb

0–400 Da Ppm - ppb

0–200,000 Da fmol

0 - > 100,000 Da fmol

0–2,000 Da zmol

0–2000 Da pmol
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Technological advances in multiomics data collection have been

matched with the advancement in computational tools for data

integration and analysis, including those using generative artifi-

cial intelligence and large language models for cell type annota-

tion and statistical modeling.59–62 These emerging methods

differ from previous methods as they utilize high dimensional

single-cell atlases and reference datasets to scale by building

data-driven models of the underlying gene annotation relation-

ships in ways that are not captured by previous approaches.

For example, scGPT is a single-cell foundation model which is

pre-trained on over 33 million cells from various cell atlases,

enabling learnings of cell and gene embeddings, thereby facili-

tating the modeling of various aspects of cellular processes in

addition to cell type annotation, batch correction, multiomic

data integration, genetic perturbation prediction, and gene

network inference.61

State-of-the-art pipelines for cell state identification from

single-cell transcriptomics data involve aligning reads to the

genome, assessing RNA quality, identifying variable features,

and performing dimensionality reduction and clustering (Fig-

ure 2A). For example, the output for the 10X Genomics single-

cell transcriptomics method is transcript reads, which is stored

in a raw FASTQ file. The transcript reads within the FASTQ file

must then be aligned to the genome using tools such as

STAR63 or TopHat2.64 The quality of the data should then be as-

sessed, after which the data can be normalized and utilized for

downstream analysis. A widely used R package for single-cell

and spatial transcriptomics analysis is Seurat,65 which was de-

signed for quality control and data exploration. The Seurat

package provides additional functions for identifying sources

of heterogeneity within the data and integratingmultiple datasets

from various sources. Despite different sampling methodologies

and experimental output, the data must be normalized, after

which data clustering and visualization methods can be applied

(Figure 2A).

Single-cell analysis methods have mainly focused on cell type

and cell state identification by high dimensional data reduction in

the form of t-distributed stochastic neighbor embedding (tSNE)

or UniformManifold Approximation and Projection (UMAP) plots.

tSNE and UMAP plots are two methods for visualizing high-

dimensional omics data in two dimensions, such that a given

sample (individual cell) is represented as a point in space and

cells that are quantitatively similar across the omics profile group

together. Communities of quantitatively similar cell groups can

be detected and then classified by cell type and further by cell

state based on functional similarities within the cell type cluster.

Following cell state identification of each cluster within the

UMAP/tSNE plot, several tools have been recently developed

for predicting cell state interactions, transitions, and trajectories,

which can serve as the substrates for building computational

models of cellular interaction networks (Figure 2B). For instance,

information about cell state interactions or the communication

between and across cell states via receptor-ligands pairs within

a given cell type can be extracted using a variety of publicly avail-

able tools and algorithms. One popular tool for this type of data

inference is NicheNet, which models and predicts ligand-target

links between interacting cells by combining their gene expres-

sion with prior knowledge on signaling and gene regulatory
iScience 27, 111322, December 20, 2024 5



Figure 2. Extracting single-cell features from omics data for network modeling

(A) Raw single-cell datasets may be output in FASTQ file format, which can be fed though data analysis pipelines such as STAR63 or TopHat264 to align reads to

the reference genome. The quality of the data can then be assessed, and variability analysis can be performed to identify highly variable genes in the dataset.

Dimensionality reduction and clustering algorithms can then be applied to visualize the data in two-dimensions in the form of a UMAP plot and identify cell types.

(B) Following cell state identification of each cluster within the UMAP plot, cell state interactions, transitions, and trajectories can be predicted, which may serve

as the substrates for building and simulating computational models of cellular interaction networks. Created using biorender.com.
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networks.66 Cells may also transition from one state to another,

which can be vital in a variety of biological processes including

tissue development and cancer. MuTrans (multiscale method

for transient cells) is one method for investigating and identifying

the underlying stochastic dynamics within transitioning cells.67

Since single-cell omics data are static and only captures a snap-

shot of the underlying biology at a single point in time. Therefore,

computational methods have been developed to determine the

progression of cells along a trajectory in pseudotime and space.

A popular method for inferring cell lineage and pseudotime

from single-cell transcriptomics data are Slingshot.68 Each of

these computational methods discussed for inference of cell

state transitions, interactions, and trajectories can be used

collectively to extract features from the single-cell omics data

for structuring and parameterizing computational models that

can be simulated.

UTILIZING ‘‘BIG’’ AND ‘‘NOT SO BIG’’ DATA FOR MODEL
BUILDING

Single-cell omics methods for inference of cell types, cell states

and their distributions, state transitions, state trajectories, and

interactions provide a perspective into biological processes
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occurring at various scales including the tissue, microenviron-

ment, cellular, and subcellular level. This opens up a unique op-

portunity for biologists to utilize the single-cell information for

structuring and parameterizing dynamic computational models

of various biological systems. Conventionally, sophisticated

computational models have been built using ‘‘Not So Big’’ data

sources. An early example of this type of modeling is the clas-

sical GRN model of the sea urchin developmental process.69

The model was generated using specific targeted and directed

experiments to perturb the regulatory genes and alter the

signaling process of the developmental pathway. Subsequent

quantitative PCR (qPCR) was performed and utilized for con-

structing the GRN. Additional early GRN models that utilized

‘‘Not So Big’’ data sources for model construction and parame-

terization include that from Novak and Tyson (1993), who con-

structed a model of cell cycle control in Xenopus oocytes,70

and Forger and Peskin (2003), who generated a model of the

mammalian circadian clock.71 The process of constructing and

generating GRN’s has drastically changed with the unprece-

dented rise in omics technologies and the availability of publicly

available omics datasets. Now, correlative GRN models have

been generated using omics data as many algorithms have

streamlined the process of single-cell data analysis to GRN
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Figure 3. Computational models informed

by experimental data

The components, interactions, correlations, and

patterns extracted from ‘‘Big’’ data (multi-omics

data including transcriptomics, proteomics, me-

tabolomics, and spatial omics) and the compo-

nents, interactions and mechanisms extracted

from ‘‘Not So Big’’ data (i.e., western blots,

immuno-staining, and qPCR) can be utilized to

generate and inform molecular signaling networks,

putative cellular networks, and gene regulatory

networks. For instance, while the MAP kinase

pathway was discovered using ‘‘Not So Big’’ data

sources (solid line) many ‘‘Big’’ data sources

(dashed line) have confirmed and further explained

and complemented these initial findings. Similarly,

while gene regulatory networks have been mainly

developed using ‘‘Big’’ data (solid line), ‘‘Not So

Big’’ data (dashed line) can also be informative

when generating such networks. For example, Park

et al., (2016) modeled neurons during the circadian

cycle.13 First, five neuronal groups were identified

according to their unique transcriptional land-

scapes with marker genes shown for each of the

groups. A gene regulatory network was then

developed based on the major molecular in-

teractions between key neuropeptides (VIP, AVP,

PROK2, and PACAP) and the neuronal groups.13

‘‘Big’’ and ‘‘Not So Big’’ data (solid lines) have be analyzed in combination to identify putative cellular networks. Cell types can be identified within the ‘‘Big’’ data

by using information from ‘‘Not So Big’’ data. Then, cell states within each cell type community can be determined bymolecular markers. The cell types and states

can then be used to infer cell state transitions, trajectories, and interactions. A greater influence of ‘‘Big’’ and ‘‘Not So Big’’ data on developing the various

networks is shownwith solid lineswith lesser influence shown by dashed lines. GF: growth factor, GFR: growth factor receptor, VIP: Vasoactive Intestinal Peptide,

AVP: Arginine Vasopressin, PROK2: Prokineticin 2, PACAP: Pituitary Adenylate Cyclase-Activating Polypeptide. Fig. adapted from Park et al., (2016).13 Created

using biorender.com.
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model construction and simulation72–74; a subset of which are

discussed in more detail futher.

While molecular signaling networks, such as the MAP kinase

pathway, have classically been informed by the components, in-

teractions, and mechanisms elucidated from ‘‘Not So Big’’ data,

the components, interactions, correlations, and patterns from

‘‘Big’’ data have provided an additional cell-type specific level

of detail to such network models (Figure 3). Both ‘‘Big’’ and

‘‘Not So Big’’ data can be collectively analyzed to extract and

identify putative cellular networks. These cellular networks can

be elucidated by identifying cell types and cell states, which

are informed by molecular markers. Cell state transitions, trajec-

tories, and interactions can then be inferred from the cell types

and cell states to further understand cellular heterogeneity and

the organization of the tissue’s microenvironment (Figure 3).

GRN’s are also being developed using ‘‘Big’’ data in which

gene-gene interactions are inferred from correlations and pat-

terns within the omics data. However, these networks only

contain structural details and are not utilized for dynamic simula-

tions. Therefore, we instead choose to focus on GRN’s that have

been generated for simulating the dynamic behavior of a biolog-

ical system. For instance, a neuronal GRN of the circadian cycle

was developed in Park et al., (2016) to explore how neurons

with asynchronous behavior and transcriptional heterogeneity

generate a coordinated response that synchronizes the body

to the circadian cycle13 (Figure 3). We propose that the informa-

tion gained from the molecular signaling networks, putative
cellular networks, and GRN’s can then be utilized collectively

to parameterize and structure multiscale pathophysiological

computational models with spatial resolution.

BUILDING COMPUTATIONAL MODELS INFORMED BY
SINGLE-CELL OMICS DATA

Computational models based on ODE formalizations are

commonly utilized to describe the dynamic behavior of biological

systems and consist of a system of equations used to describe

the quantity or concentration of different biological species

over time.75,76 While ODE-based models can capture the

detailed dynamics of biological species, the models have been

classically limited by the breadth of knowledge and available

literature detailing, which biological species interact, proliferate,

and transition. Further, many assumptions are made, and simpli-

fications are introduced when parameterizing the model with

specific kinetic descriptions. Boolean modeling techniques are

also frequently utilized in the biological context.75,77 Boolean

models are constructed by using binarized variables in either

an on or off state representing gene/protein/metabolite activa-

tion or inhibition. The variables can be combined to form logic

rules such that simulations of the transitions between the on

and off state are possible. Boolean models require less parame-

terization, making them simpler to construct and analyze, how-

ever, this modeling technique is limited as it neglects to model

the intermediate states between on and off. Additionally, neural
iScience 27, 111322, December 20, 2024 7
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Figure 4. Computational models informed by single-cell omics

(A) Single-cell omics, including transcriptomics, proteomics, and metabolomics can be used for modeling tumor cell differentiation dynamics. The specific cell

types of interest that were identified within the tumor tissue include stem, progenitor, and differentiated cell types. State transitions, trajectories, and interactions

between these cell types can then be inferred such that a network model can be generated. The tumor cell differentiation model can then be simulated to

determine how the individual cell populations within the tumor change over time.

(B) Single-cell omics experiments can be performed on the liver following resection to elucidate liver-specific cell types including Kupffer cells, Stellate cells and

hepatocytes. For simplicity, we only show the hepatocyte cell states (replicating, quiescent, and primed), which are informed by molecular markers from the

single-cell data. State transitions, trajectories and interactions can then be inferred from the cell states. A systems networkmodel of liver regeneration can then be

developed using the features extracted from the single-cell data and the model can be simulated for liver mass recovery and cellular dynamics. The total mass

recovery as well as the populations of primed and replicating hepatocytes populations during regeneration are shown. Additionally, the populations of pro- and

anti-regenerative stellate cell populations during regeneration are shown. Figure 4A adapted from Nazari et al., (2018).80 Figure 4B adapted from Cook et al.,

(2018).81 Created using biorender.com.
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networks and other machine learning algorithms have been

developed for analyzing, modeling, and simulating various bio-

logical processes.78,79 Neural networks consist of an input layer,

one or more hidden layers, and an output layer where each

neuron is connected to one another and holds a particular weight

and threshold. The network learns by examining individual re-

cords from a training set, generating a prediction for each record,

and then adjusting the weights when a prediction is incorrect.

This process is repeated until the network improves its predic-

tions tomeet the desired stopping criteria.While neural networks

can be highly automated and adaptable to various data types,

they require an abundance of high-quality data for training and

risk being overfit i.e., the model performs well on the training

data but poorly on the testing data. In all these cases, computa-

tional modeling efforts may use single-cell data in a multitude of

ways to elucidate biological mechanisms at various levels,

including the subcellular, cellular, microenvironment, tissue,
8 iScience 27, 111322, December 20, 2024
and overall physiological scale. In each case, the model struc-

ture and parameterization can be informed and constrained by

both ‘‘Big’’ and ‘‘Not So Big’’ Data (Figure 3). In this section,

we discuss how ‘‘Big’’ data can be utilized in computational

modeling of pathophysiology.

Computational models informed by single-cell transcriptomic

data are most common, as data sampling and analysis methods

are the most widely utilized and accepted. However, high-

dimensional proteomics and metabolomics data sources can

also be utilized for model building and simulation. For example,

single-cell omics, including transcriptomics, proteomics, and

metabolomics can be used for modeling and simulation of tumor

cell differentiation dynamics, as presented in Nazari et al.

(2018)80 (Figure 4A). First, the various cell types and states are

identified in the data such that cell state transitions, trajectories,

and interactions can be extracted. In this example, the specific

cell types of interest that were identified within the tumor tissue
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include stem, progenitor, and differentiated cell types. In this

ODE-based computational model, stem cells can transition to

progenitor cells which can then transition to differentiated cells.

Additionally, both stem and progenitor cells can replicate, and

the transition from a progenitor to differentiated cell is reversible.

The predicted cellular trajectory begins with stem cells progress-

ing to progenitor cells and finally to differentiated cells. Increased

expression of ligands such as IL6, CCL5, and CXCL13 in progen-

itor cells and increased expression of their receptors IL6R,

CCR5, and CXCR5 in stem cells would allude to ligand-receptor

interactions between the stem and progenitor cells. A network

model can then be constructed based on the analyzed single-

cell data. Specifically, a single stem cell can transition to a pro-

genitor cell, which can transition to two differentiated cells. The

model can then be simulated to determine how the individual

cell populations within the tumor change over time. For example,

the fraction of IL6R on stem cells increases over time until a

steady state is reached, while the total population of stem cells

decreases toward a steady state of zero. The network model

can be extended in multiple ways based on results from addi-

tional single-cell transcriptomics, for example, toward a more

comprehensive characterization of tumor microenvironment

with multiple cell types and their states, state transitions and

interactions.

In a recent study, a group utilized a similar pipeline to that

presented in Figure 4A to generate a multiscale model of

epithelial-to-mesenchymal transition (EMT) using scRNA-seq

data.82 Prior to modeling, the researchers first detected transi-

tion cells and then subsequently identified intermediate cell

states (ICS) such that transition trajectories could be con-

structed. The multiscale agent-based model of EMT was

extended from previous models to include the heterogeneous

ICS populations identified from the single-cell data to deter-

mine how the fate of this intermediate cell state may be

affected. Following the EMT model simulation, the authors un-

covered the roles of ICS on adaptation, noise attenuation, and

transition efficiency in EMT.

Single-cell omics can also be utilized to develop more specific

computational models of biological processes such as that of the

liver during regeneration (Figure 4B).81,83 For example, scRNA-

seq time series data have been collected following 70% liver

resection in mice as well as from mice exposed to acetamino-

phen (acute liver injury).83 The data on cell types and states, as

well as predicted cell state transitions from such time series

omics experiments can provide rich information on the dynamics

of the molecular regulatory networks operating in the liver tissue

microenvironment during liver repair and regeneration. Integra-

tion of such high-resolution single-cell data and statistically pre-

dicted state distributions and transitions into an already estab-

lished model of liver regeneration81 can be performed to add

more detail on the cell states, their transition kinetics, and cell-

cell interactions within the tissue-scale network model. For

instance, in the previously published ODE-based network model

of liver regeneration,81 Kupffer cells are considered as distrib-

uted between quiescent and active states, whereas hepatic stel-

late cells are distributed between quiescent, pro-regenerative,

and anti-regenerative states, and hepatocytes are modeled

across quiescent, primed, and replicating states. For illustrative
purposes, we focus on the hepatocyte cell states and their in-

ferred transitions in Figure 4B. Hepatocyte state transitions

within the systems network model include quiescent to primed

to replicating states. While replicating hepatocytes can prolifer-

ate and transition back to the quiescent state, primed hepato-

cytes can only transition back to the quiescent state. The Kupffer

and stellate cell populations show separate trajectories toward

the hepatocyte cell population, which exhibit a progression

from the quiescent to primed to replicating state. As an example

of receptor-ligand interactions within the liver during regenera-

tion, Kupffer cells with high expression of TGFB ligand and he-

patic stellate cells with high expression of the TGFB receptor

are likely to interact within a tissuemicroenvironment. The result-

ing systems network model would then include the various

Kupffer, stellate, and hepatocyte cell states, their state transi-

tions as well as the molecular interactions between these cell

states. Themodel can then be simulated to elucidate the propor-

tion of relative cell types (i.e., stellate cells that are pro vs. anti-

regenerative) and their effect on overall liver mass recovery

and repair (Figure 4B).

While this section focused on computational models informed

by single-cell omics data, the next section discusses the advan-

tageous implications of incorporating spatially resolved omics

data into computational models.

INCORPORATING SPATIAL INFORMATION INTO
SINGLE-CELL OMICS-INFORMED MODELS

Single-cell spatial omics data can provide computational models

with further details on tissuemicroenvironments, cellular proxim-

ities, and paracrine interactions in additional to the cell state

transitions, interactions and trajectories, which can be inferred

from non-spatial data. Single-cell and spatial multi-omics data

from heterogeneous tumor samples can be utilized collectively

to develop multiscale cell-biology-based tumor models (Fig-

ure 5A). As in Figure 4, cell types, cell states, state transitions,

trajectories, and interactions can be elucidated from the sin-

gle-cell data. However, with the addition of spatial omics data,

individual spatial features can be extracted, and the heterogene-

ity of the cell population within the tumor can be further uncov-

ered. Interactions within the tumor microenvironment, such as

cellular proximities and paracrine interactions, can be elucidated

within a spatial region of interest. These details can then aid in

the parameterization and structuring of either graph-based or

agent/partial differential equation (PDE)-based network models.

Graph-based models implicitly incorporate the spatial organiza-

tion of a tissue and depend on an adjacency matrix that deter-

mines which cells interact with one another. Then, a system of

ODEs can be solved for the state of an individual cell with respect

to its interactions with adjacent cells. An example of a spatial,

graph-based network model is that of resistant tumor clones,

as presented in Waclaw et al., (2015),84 which shows that the

size of the tumor increases over time until treatment begins (Fig-

ure 5A). Once treatment has been initiated, the tumor size signif-

icantly decreases, but resistant clones are left behind. The resis-

tance clones can then continue to proliferate despite the patient

continuing treatment, resulting in a growing tumor that may in-

crease in size beyond that of the tumor before treatment. The
iScience 27, 111322, December 20, 2024 9



Figure 5. Computational models informed by single-cell and spatial omics

(A) Cell types, cell states, state transitions, trajectories, and interactions can be inferred from single-cell omics data from a tumor sample. Additional spatial omics

profiling of the tumor sample allows for extraction of spatial features that provide an additional level of detail to the model. Spatial information from a region of

interest in a tissue sample can elucidate information about the microenvironment, cellular proximities, and paracrine interactions. Graph-based modeling can be

utilized for instance, when modeling resistant clones within the tumor over time.84 Agent or PDE-based modeling techniques also may be used for spatial

modeling, such as that of heterogeneous growing tumor over time.85

(B) Single-cell and spatial omics data of the liver also permits extraction of cellular and spatial features as in Figure 5A. Graph-based models may then be

developed for simulating a model of hepatic calcium signaling,86 while agent/PDE-based models have been developed for modeling acetaminophen (APAP)

toxicity in the liver lobule.87 Figure 5A adapted fromWaclaw et al., (2015)84 and Jagiella et al., (2016).85 Figure 5B adapted from Dichamp et al., (2023).87 Created

using biorender.com.
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spatial information from the omics data can provide a level of

detail to themodel such that the tumormicroenvironment and in-

teractions between resistant and non-resistant cells can be

simulated. Agent/PDE-based modeling explicitly accounts for

the spatial organization of the cells (or agents) within the three-

dimensional model. An example of a spatial, agent-based model

is that of a growing tumor, as in Jagiella et al. (2016).85 As the size

of the tumor increases, the distribution of various cell popula-

tions changes; there is an increase in necrotic debris and quies-

cent cells compared to proliferating cells, which contribute more

to the tumor in the initial stages.

A similar methodology can be utilized to generate multiscale

physiology-based models of the liver. For instance, spatial fea-

tures on the microenvironment, cellular proximities, and para-

crine interactions can be extracted from liver-specific spatial

omics data, while cell types, states, transitions, trajectories,

and interactions can be obtained from the liver-specific single-

cell data. Then, graph-based and agent/PDE-based network
10 iScience 27, 111322, December 20, 2024
models can be generated and parameterized using the features

extracted from the data. An example of graph-basedmodeling is

present in Verma et al. (2018), in which a 2DODE-basedmodel of

calcium propagation across a liver lobule was developed by uti-

lizing an adjacency matrix.86 In this model, calcium molecules

form waves, which begin at the portal triad and terminate at

the central vein of the liver lobule. This model was also integrated

with a model of glucose metabolism in Verma, Manchel et al.

(2021).88 Since hepatic glycogenolysis is governed by metabolic

zonation of the liver lobule, single-cell omics data can be utilized

for modeling the molecular interactions between cells. This

model can be extended into three dimensions using spatial

omics data such that the microenvironment and cellular interac-

tions along the zonated liver lobule can be simulated. Model sim-

ulations are consistent with those from the 2D model in that the

calcium waves still progress from the portal triad to the central

vein (Figure 5B). An example of a PDE-based model utilizing

spatial omics data are that of hepatic acetaminophen (APAP)
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toxicity. Figure 5B shows the distribution of the toxin throughout

the liver lobule after a 281mg/kg dose of APAP.87 The APAP con-

centration is highest in the portal region and lowest in the central

region of the sinusoid. The portal hepatocytes, however, already

begin to eliminate a fraction of the APAP before reaching the

central region. Additional spatial models of the liver have been

generated for several functions, including regeneration following

CCl4 intoxication,89 regeneration following resection,90 and

various disease states, including non-alcoholic steatohepati-

tis.91 Future implementations of these models may utilize spatial

transcriptomics to incorporate additional detail of the liver

microenvironment.

As an illustrative example of spatial modeling, consider PDE-

based spatially resolved model of liver fibrosis introduced by

Friedman and Hao 2017.92 The model was utilized to explore

the efficacy of currently available drugs for treating liver fibrosis.

PDE-based spatially resolved models are beneficial for explicitly

modeling and simulating the 3D interactions between cells and

molecules in a user-defined space, while graph-based methods

are limited by the bounded space of the adjacency matrix. A

model that utilized the graph-based spatial modeling approach

previously discussed but applied to amodel of embryonic devel-

opment is present in Cang et al. (2021).93 They developed a mul-

tiscale spatial model of the mammalian embryo using scRNA-

seq data and single-cell qPCR data to identify robust patterning

mechanisms early in development.93 Their model utilized gene

regulatory, cell-cell communication, and physical interaction in-

formation from single-cell transcriptomics data. Using the gener-

ated model, the authors identified two processes critical to the

formation of the later epiblast and primitive endoderm, namely,

a cell-cell adhesion mechanism and a temporal attenuation

mechanism. In an additional model of the liver, ADViSOR, the

spatiotemporal molecular underpinnings of hepatic regeneration

were studied using time-interval principal-component analysis

and sliding dynamic hypergraphs.89 This novel modeling meth-

odology was applied to spatial transcriptomics data assayed

serially through the liver regeneration process post partial hepa-

tectomy in mice and was utilized to identify key functional gene

modules of cell signaling and cell-cell interactions.94

Various algorithms have been developed to generate compu-

tational models informed by single-cell and spatial omics data.

These computational models may be generated using different

methodologies and formalisms including ordinary differential

equations (ODE’s), Boolean networks, neural networks, etc.

based on the desired functionality of the model. For example,

SCODE was developed to ease the integration of scRNA-seq

data with dynamic models of cellular function to infer regulatory

networks and describe expression dynamics with ODE’s.74

However, one limitation of SCODE is that it does not consider

the zero-inflation problem with scRNA-seq data, which may

affect the parameter tuning of the model, leading to false

modeling predictions. In an additional modeling algorithm,

scBONITA infers Boolean regulatory rules and logical gates

for developing executable network models from single-cell

omics data.90 The methodology is limited by the requirement

of a prior knowledge network. In Table 5, we highlight these

computational algorithms as well as several others that can

be utilized for building and simulating models that elucidate
functional cell-cell interactions and communication within het-

erogeneous tissues.

SCALING TO MULTI-ORGAN, PHYSIOLOGY-BASED
MODELS INFORMED BY SINGLE-CELL OMICS

Single-cell and spatial omics data may also provide a powerful

means for developing and parameterizing multi-organ, physi-

ology-based models. Publicly available omics databases, such

as HuBMAP,10 Tabula Sapiens,11 The Human Cell Atlas,9 and

SPARC,103 have been developed for a wide range of tissue

and organ types and can be utilized for developing multi-organ

network models with organ-specific cellular and molecular inter-

actions (Figure 6A). Classically, our understanding of the physi-

ology of organs and tissues has come from ‘‘Not So Big’’ data.

This knowledge can be supplemented with information from

publicly available cell atlases which provide single-cell transcrip-

tomics, proteomics, andmetabolomics data, aswell as other da-

tabases that provide physiological data on human tissues from a

diverse background of patients. Once the data have been

collated from their individual sources, organ-specific cell types

can be further investigated. For illustrative purposes, we high-

light a few cell types that may be extracted from the clusters of

brain (neurons, microglia, and astrocytes) and heart (neurons

and cardiomyocytes) cells. Once cell types have been identified

for the organs of interest, the functionality of each cell type/state

can be deciphered based on the average across patient samples

from the cell atlases. Then, generic cellular and molecular inter-

action network models can be developed and integrated to build

a higher-level multi-organ model with cellular interactions (Fig-

ure 6A). Within the brain module of the multi-organ model,

cellular interactions exist between astrocytes, neurons, and mi-

croglia and within the neuronal cell submodule, there exist mo-

lecular interactions between various cytokines, i.e., TNFa,

TGFb, and IL-10. Organ models interact with each other in one

of two ways: via the blood supply or neural input. While the brain

can interact with all other organs through neural innervation, the

heart can interact with all organs through the blood supply. A

similar methodology is proposed in Anderson and Vadigepalli

(2016) for modeling cytokine regulatory network dynamics

driving neuroinflammation in the central nervous system.18 Illus-

trative studies that systematically use ‘‘Big’’ and ‘‘Not So Big’’

data from end to end for structuring, parameterizing and tuning

high-fidelity multiscale, multiorgan models of pathophysiology

are hard to find in the existing literature. Here, we discuss a

framework for building such models by harnessing the data re-

sources of multiple scales.

Scaling further toward multiple organs, Thiele et al. (2020)

developed a whole-body metabolic model, which captured the

metabolism of 26 organs and 6 blood cell types.106 The model

was parameterized using physiological, dietary, and metabolo-

mic data and could recapitulate known inter-organmetabolic cy-

cles and energy use. Similarly, Zhang et al. (2020) developed a

method that utilizes multi-organ single-cell data from mice to

systematically simulate cellular metabolism through constraint-

based, context-specific, genome-scale metabolic modeling

(GEM).107 The Tabula Muris scRNA-seq dataset, which includes

data from nearly 100,000 cells from 20 organs and tissues in
iScience 27, 111322, December 20, 2024 11



Table 5. Highlighted algorithms for computational modeling informed by single-cell and spatial omics data

Algorithm Name Modeling Type Input Data Type/s Algorithm Features

SCODE74 ODE scRNA-seq To infer regulatory networks and

describe expression dynamics

GRISLI95 ODE scRNA-seq To infer regulatory networks and

describe expression dynamics

scGNN96 Neural Network scRNA-seq To provide a hypothesis-free deep

learning framework for modeling

heterogeneous gene expression

patterns and cell-cell relationships

scFEA97 Graph Neural Network scRNA-seq To estimate cell-wise metabolic flux,

metabolic stress, and the effect of

metabolic gene perturbances

DeepVelo98 ODE/Neural Network scRNA-seq To formulate transcriptome dynamics

on different time scales, measure the

instability of cell states, and identify

developmental driver genes via

perturbation analysis

scBONITA99 Boolean scRNA-seq To infer executable dynamic pathway

models and perform perturbation

analyses to identify high impact genes

SCNS73 Boolean Time course scRNA-seq/qPCR To reconstruct and analyze executable

models that drive cell transitions and

make predictions about the effect of

gene perturbations

CellNOptR72 ODE/Boolean Single-cell proteomics To build predictive logic models of

signaling networks

SOTIP100 Graph-based Spatial transcriptomics/

proteomics/metabolomics

To generate a unified graph of tissue

microenvironments and their interactions

to quantify spatial heterogeneity, identify

the spatial domain, and perform differential

microenvironment analysis

SPACE-GM101 Neural Network Spatial proteomics To model tumor microenvironments as

local subgraphs to capture the distinctive

cellular interactions associated with

different clinical outcomes

MISTy102 ODE/Random Forest

Machine Learning Model

Spatial transcriptomics/

proteomics/metabolomics

To extract relationships about cell-cell

interactions and communication in a

tissue microenvironment at various levels

of resolution (within the local cellular

niche and at the level of tissue structure)
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mice,108 was utilized for context-specific modeling of each tis-

sue type and cell ontology class and subsequent metabolic

flux prediction. RNA-seq profiles of a selected group of cells

are then converted into gene expression confidence scores

and assigned to each gene to represent the likelihood that the

gene is expressed in that group of cells. The authors found

that simulation of NAD+ biosynthesis activity in 7 different mouse

tissues, namely the heart, liver, brain, kidney, lung, skeletal mus-

cle, and spleen, showed a significant linear correlation with

experimental measurements.

A recent study also highlights the power of multi-organ, multi-

scale modeling informed by single-cell omics and physiological

data105 (Figure 6B). Briefly, single-cell qPCR data from the nu-

cleus tractus solitarius (NTS), a region of the brainstem respon-

sible for integrating sensory information, was collected and

used to define cellular subtypes in a model of the NTS.109,110
12 iScience 27, 111322, December 20, 2024
At the physiological level, neurons project from the NTS to the

dorsal motor nucleus of the vagus (DMV) and nucleus ambig-

uous (NA), both of which then project to the intrinsic cardiac ner-

vous system (ICN) at the heart. The ICN then integrates sensory

information and regulates beat-to-beat contractions of the heart

(Figure 6B). Recently, our group proposed the concept of cardio-

vascular health controlled by two differing sources: DMV input

mediated by muscarinic receptors that activate over 10’s of sec-

onds (‘‘slow’’ lane) and NA input mediated by nicotinic receptors

that activate in milliseconds (‘‘fast’’ lane). Subsequently, a multi-

organ cellular and physiologically informed network model of the

fast and slow lanes of cardiovascular control was developed to

predict the influence of the two lanes on heart health.104,105

The closed-loop model comprises multiple organs, including

the brain, heart, lungs, and vasculature, thus, the organs, their

subregions of interest, and the organ-specific cell types can



Figure 6. Computational models informed

by physiology

(A) A multi-organ model can be developed by first

gathering physiological information from the or-

gans of interest. Publicly available databases can

be utilized to extract single-cell information for

each organ. Processing the single-cell data for

each organ permits identification of organ-specific

cell types of interest. Molecular interactions from

the organ-specific cell types can be inferred from

the data sources. A multi-organ network model

with organ-specific cellular and molecular in-

teractions can then be generated.

(B) Cellular and physiological information can be

integrated to generate a multi-organ cellular and

physiologically informed network model of the

‘‘fast’’ and ‘‘slow’’ lanes of cardiovascular con-

trol.104 Single-cell data can be obtained for brain

regions of interest and electrophysiology experi-

ments on neuronal responses to perturbations can

be performed. A model of neural control of the

heart can then be generated with information on

multi-organ and cellular interactions derived from

the performed experiments. NTS = nucleus tractus

solitarius, DMV = dorsal motor nucleus of the vagus, NA = nucleus ambiguus, Symp. = sympathetic, LCN = local circuit neurons, PN = principal neurons, SA =

sinoatrial. Figure 6B adapted from Gee et al., (2023)104 and Gee et al., (2023).105 Created using biorender.com.
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communicate with one another via neural input as well as the

blood supply.

A study from Nandi et al. (2022) utilized single-cell transcrip-

tomics data to validate a library of single cortical neuron electro-

physiology models developed using morphology and electro-

physiology data.111 Individual cell types were identified using

an approach that integrated transcriptomic, morphological,

and electrophysiological data. Subsequently, single-cell models

of voltage-gated ion channels were developed and simulated.

The authors found that the differences inmodel conductance ex-

plained the electrophysiological discrepancies observed be-

tween the cortical cell subclasses. In an additional study, a

computational model of Purkinje fiber single-cell electrophysi-

ology was developed utilizing collected experimental data from

human voltage-gated channels.112 Model simulations were

able to recapitulate the unique electrical properties of the Pur-

kinje fibers, and simulating selective ion channel blockades re-

produced responses to pharmacological challenges character-

istic of isolated Purkinje fibers in vitro.112 While these models

with physiological detail do not explicitly incorporate multi-organ

interactions, they can be assembled with higher level generic

multi-organ models to develop multi-organ models with neural

specificity.

PATIENT-SPECIFIC MODELING, DIGITAL TWIN
MODELS, AND IN-SILICO CLINICAL TRIALS

Computational models are utilized to study biological systems in

health and disease contexts and elucidate the heterogeneity and

variability across patients within a given disease state by incor-

porating patient-specific omics data. For instance, Verma et al.

(2019) shows that there exists a wide range of variability in the

liver’s ability to regenerate following partial resection.113 This

suggests the need for personalized modeling and simulation to
predict the regulatory and functional behavior of tissues in health

and disease in a patient-specific manner.

Genome-scale metabolic models (GEMs) provide a unique

and necessary modeling framework for developing context and

patient-specific models informed by single-cell multiomics

data.114,115 The metabolic functionalities of the models can

then be assessed to further understand howmetabolic pathways

may be dysregulated with disease. Several software suites,

including MATLAB’s cobra and RAVEN toolboxes, provide all

functions necessary for modeling, analyzing, and predicting

GEM phenotypes.116,117 A generalized GEM, namely Hu-

man1,114 Recon2,115 etc., may be integrated with both liver-spe-

cific transcriptomics and proteomics data from a patient such

that a GEM specific to the individual patient’s liver can be gener-

ated (Figure 7A). For this purpose, Gustafsson et al. (2022) devel-

oped fast tINIT (ftINIT), a method for generating context-specific

GEMs from pools or clusters of scRNA-seq profiles.12 Using this

methodology, the Human1 metabolic network is minimized by

solving for the gene-protein reaction (GPR) rules using the sup-

plied scRNA-seq data. The network is optimized using mixed

integer linear programming (MILP), and the gaps in the network

are filled by providing a list of essential metabolic tasks.

Following the generation of a context-specific GEM, metabolic

fluxes can be predicted by flux balance analysis (FBA). When

solving for the metabolic fluxes, FBA assumes that there is no

change in metabolites over time (i.e., the system is at steady

state), despite the dynamic fluctuations of metabolites seen in

nature. A user-set optimization function is then optimized, and

the fluxes can be further bounded by experimentally observed

constraints such as collected liver metabolomics data (Fig-

ure 7A). Given the strict steady state assumption in FBA,

Chandrasekaran et al. (2017) developed an in-house systems

approach to relax the assumption, resulting in metabolic fluxes

that can be solved dynamically.118 The algorithm assumes that
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Figure 7. Patient-specific models informed

by omics data

(A) Metabolomics, transcriptomics, and prote-

omics data can be collected from a patient’s liver

sample. A patient-specific genome scalemetabolic

model (GEM) of the liver can then be generated by

integrating the transcriptomics and proteomics

data with a generic GEM (i.e., Human19 or

Recon2115). Metabolic fluxes are constrained using

the metabolomics data and predicted by flux bal-

ance analysis.

(B) Bulk and single-cell RNA-seq data can be uti-

lized to generate context-specific metabolic

models in health and disease (i.e., liver disease).

Metabolic fluxes can be predicted by flux balance

analysis and significantly perturbed metabolic

pathways/subsystems can be identified in health

vs. disease. For example, our analysis of liver

transcriptomics data from alcoholic liver disease

identified significant metabolic dysregulation in the

glutathione (GSH) metabolic pathway. Specifically,

the metabolic flux activity of specific solute

transporters (LAT1, BAT1, OATP1A2) within the

GSH pathway decreased with liver disease, while

healthy livers showed an increase in flux along the

pathway.

(C) Zone-specific hepatocyte populations can

be elucidated from single-cell omics data sources.

The metabolic expression for genes in the

B-oxidation and gluconeogenesis pathways de-

creases from zone 3 to zone 1, while it increases

from zone 3 to zone 1 for genes in the glycolysis

and lipogenesis pathways. Marker expression for

each of the zonated hepatocyte populations within

the ‘‘Big’’ data can be utilized in conjunction with ‘‘Not So Big’’ experimental data (i.e., neural tracings, calcium imaging, and glycogenolytic distribution analyses)

to parameterize and structure a computational model of liver innervation, calcium signaling, and glycogenolysis. Additionally, the extent of innervation to the liver

can be tuned in the model to the species of interest based on physiological evidence from the literature. Figure 7B adapted from Manchel et al., (2022).119

Figure 7C adapted from Verma, Manchel et al., (2021).88 Created using biorender.com.
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the rate of change of each metabolite in the FBA equation is pro-

portional to the measured rate of change of the metabolites from

time course metabolomics data.118

A semi-automated tool that utilizes a similar methodology to

that of Figure 7A is XomicsToModel.120 This tool integrates

transcriptomic, proteomic, and metabolomic data with a

generic GEM to extract a context-specific model that is stoi-

chiometrically, thermodynamically, and flux consistent.120

The enzyme activity within the metabolic model is computed

using the proteomics and transcriptomics data, while the

metabolite constraints are obtained from the metabolomics

data. In Ambikan et al. (2022), a similar approach was also

used to develop patient-specific COVID-19 GEMs.121 The

GEMs were generated by integrating whole blood transcrip-

tomics data with a generic GEM, and subsequent FBA was per-

formed by constraining the model’s exchange reactions with

plasma metabolomics data.

Our group utilized a variation of ftINIT, namely tINIT,122 which

integrates bulk omics data with the generic Human1 metabolic

model to generate context-specific metabolic models. We

developed liver disease-state-specific metabolic models using

publicly available bulk RNA-seq data from the livers of patients

with liver disease.119 Subsequently, the SPOT algorithm was uti-
14 iScience 27, 111322, December 20, 2024
lized to calculate a suitable objective function by maximizing the

Pearson correlation between a flux vector and its corresponding

gene expression data.123 Next, E-Flux2 was used to perform

standard FBA andminimize the Euclidean norm of the flux vector

such that a unique solution is found.123 This methodology can be

applied to single-cell transcriptomics data to generate context-

specific metabolic models of specific cell types/states and the

plausible flux solution space is constrained according to the

metabolic gene expression in these cell types/states (Figure 7B).

Changes in predicted metabolic fluxes can be compared across

cell types/states to identify significantly perturbed metabolic

pathways/subsystems in health vs. disease. For example, our

analysis of liver transcriptomics data from alcoholic liver disease

identified significant metabolic dysregulation in the glutathione

(GSH) metabolic pathway. Specifically, the metabolic flux activ-

ity of specific solute transporters (LAT1, BAT1, OATP1A2) within

the GSH pathway decreased with liver disease, while healthy

livers showed an increase in flux along the pathway (Figure 7B).

Previously developed models can be informed by ‘‘Big’’ and

‘‘Not So Big’’ data resulting in models with patient-specificity.

For example, a computational model of liver innervation, calcium

signaling, and glycogenolysis, as described in Verma, Manchel

et al. (2021),88 can be further parameterized and structured by

http://biorender.com


Figure 8. Patient-specific modeling for the clinic and in silico clinical trials

(A) Patient-specific blood and liver tissue samples can be collected and various ‘‘Big’’ and ‘‘Not So Big’’ data can be sampled such that cell types, cell states, state

transitions, trajectories, and interactions can be elucidated from the non-spatial data and information about the microenvironment, cellular proximities, and

paracrine interactions can be elucidated from the spatial data. Patient-specific liver models can then be developed for a multitude of different functions such as

metabolic zonation, innervation, or toxicity. The patient specific liver model can then be integrated with a generic multi-organ model such that a patient-specific,

multi-organ model with liver specificity is generated.

(B) Data can be collected from the livers of various patients within a population. These data can then be integrated with a generic populationmodel of the liver and

population-informed data such as organ anatomy, physiology, pathology, genetics, age, and sex such that the patient-specific models can be utilized for in silico

clinical trials. Created using biorender.com.
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patient-specific omics data (Figure 7C). Liver biopsies can be

taken from a range of individuals and subsequent single-cell

RNA-seq seq can be performed. Dimensionality reduction of

the data will reveal inter-patient variability, but the hepatocytes

will continue to cluster together based on their location within

the liver lobule. Cells nearest the periportal region are termed

zone 1, cells in the mid-lobular region are zone 2, and cells near-

est the pericentral region are zone 3. Further analysis of the

differentially zonated single-cells will show decreasing expres-

sion of beta-oxidation and gluconeogenesis-related genes

from zone 3 to zone 1, consistent with experimental data. Oppo-

sitely, there will be increasing expression of glycolysis and lipo-

genesis-related genes from zone 3 to zone 1. Specific genes

markers for the three zones can be determined and these gene

expression values may be utilized for tuning the patient-specific

parameters in the model. For example, Glul and Cyp2e1 peak in

zone 3, Hamp and Igfbp2 peak in zone 2, and Alb and Cyp2f2

peak in zone 1, however, there exists variability across cells.

The computational model can then be generated by combining

the information gained from single-cell omics (‘‘Big’’) data with

pre-existing ‘‘Not So Big’’ data resulting from neural tracing, cal-

cium imaging, and glycolytic distribution experiments. While the

‘‘Not So Big’’ data are important for structuring the model, the

‘‘Big’’ data are useful for model parameterization, which can

be adjusted after collecting and analyzing new patient-spe-

cific data.
While it would be advantageous to collect or have access to

multiple omics data sources for a single patient to bring deeper

specificity to an individualized patient model, this is usually infea-

sible and impractical in the clinical setting. Therefore, we pro-

pose a way forward to generate organ-specific models that are

embedded in a broader, more generally applicable manner that

can be tuned to individual patients. Multi-organ models with pa-

tient-specific organ specificity can also be generated utilizing

both ‘‘Big’’ and ‘‘Not So Big’’ data, as in Figure 8A. For instance,

if one were to develop a patient-specific multi-organ model with

liver specificity, one could utilize the vast range of publicly avail-

able patient-specific multiomics data (transcriptomics, prote-

omics, metabolomics, spatial). In addition to collating the ‘‘Big’’

data, ‘‘Not So Big’’ data (i.e., western blots, immunostaining,

and qPCR experiments) can be extracted from relevant literature

to enhance our understanding of the liver-specific cell types, cell

states, state transitions, state trajectories, and state interactions.

Additional spatial information about the tissue microenviron-

ment, cellular proximities, and paracrine interactions can be ex-

tracted from spatial transcriptomics datasets to generate a

model of liver functionality specific to metabolic zonation, inner-

vation, toxicity, etc., depending on the purpose of the study. This

model can then be brought to the patient-specific level when

additional measurements that are commonly collected in the

clinic are utilized to tune (restructure or reparameterize) the

model. A generic multi-organ model (proposed in Figure 6) can
iScience 27, 111322, December 20, 2024 15
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then be integrated with the patient-specific, liver-specific model

(proposed in Figure 7), resulting in amulti-organmodel with a pa-

tient-specific liver (Figure 8A).

Patient-specific models may also be developed for the pur-

pose of in silico clinical trials (Figure 8B). Extensive diversity

and variability exist between the livers of patients within a popu-

lation. The variability can be accounted for in large scale

modeling studies by generating patient-specific liver models of

integrated individualized omics data with a generic model of

the liver. The model can be further refined by population-

informed data including but not limited to liver anatomy, physi-

ology, pathology, genetics, age, and sex. This results in a pa-

tient-specific liver model with population-informed data, which

can then be utilized for in-silico clinical trials of various medica-

tions (Figure 8B). While in silico clinical trials are in the very early

stages of development and have still yet to be utilized in the

clinic, one group showed the potential of such modeling efforts

in accurately recapitulating the relapse rates among variousmul-

tiple sclerosis patient cohorts.124

The concept of digital twin models, or surrogate models that

can generate data for a target patient, has recently sparked inter-

est in the field of biology as there are direct translatable opportu-

nities in bringing computational models with patient-specificity

to the clinic. Such computational models may begin to bridge

the gap between the clinician and the biologist as they can pro-

vide the clinician with patient-specific information that can be

used to aid medical diagnoses and guide medication manage-

ment. Digital twin models can also be used as ameans for imple-

menting closed-loop control for reprogramming an existing

faulty physiological system such as the pancreas in diabetic pa-

tients125 or the immune system in sepsis patients.126 In a recent

study, Vodovotz (2023) discusses the possibilities and chal-

lenges of integrating single-cell omics data analysis and mathe-

matical modeling concepts to describe multi-organ disease

pathophysiology toward the development of digital twin

models.127 Importantly, Vodovotz (2023) addresses the signifi-

cant gap between disparate single-cell data-driven models,

which assess and visualize inter-relationships among variables

of ‘‘Big’’ data, andmechanistic models, which are typically equa-

tion-based and allow for mechanism-based reproduction of bio-

logical variables from ‘‘Not So Big’’ data. In this review, we pro-

pose that data driven models informed by both single-cell and

spatial ‘‘Big’’ data in combination with ‘‘Not So Big’’ data can

yield information about cell state transitions, interactions, and

trajectories at the tissue microenvironment level. These features

can then be extracted from the data-driven models and serve to

intermediate the parameterization and structuring of multiscale,

multiorgan, mechanistic models.

Several efforts, including the Virtual Physiological Human

(VPH) and EDITH European Virtual Human Twin (VHT) initiatives,

have developed in silico patient-specific physiological and path-

ological models in the form of digital twins.128,129 The VPH and

VHT models can begin to incorporate patient-specific variability

by utilizing data from the Human Pangenome Project,130 which

was developed to represent the global genomic variation across

individuals. These patient-specific models can be further

detailed by incorporating patient-specific single-cell and spatial

omics data and then utilized for the diagnosis, prognosis, pre-
16 iScience 27, 111322, December 20, 2024
vention, and treatment of diseases in a patient-specific manner.

Digital twin modeling and simulation may therefore allow clini-

cians to predict a patient’s transition from a healthy to a diseased

state at various levels of specificity, including the single-cell,

microenvironment, and tissue levels.

POTENTIAL GAPS AND EMERGING OPPORTUNITIES

While significant strides have been made in the field of biology

toward computational modeling and simulation of various bio-

logical systems, there are still necessary obstacles that must

be overcome to generate systems pathophysiological models

informed by ‘‘Big’’ and ‘‘Not So Big’’ data before bringing these

efforts to the clinic. Firstly, the single-cell omics experimental

design is crucial for properly quantifying cell populations within

the tissue of interest. For instance, the single-cell sampling and

subsequent experimentation may not result in cell state clusters

that are quantitatively representative of the tissue microenviron-

ment as different cell types have different susceptibilities for sur-

vival through the experimental process. Emerging methods

based on single nuclear RNA sequencing (snRNA-seq) allow

for dissociation of tissues that may otherwise not be readily

dissociated into single-cell suspensions. Additionally, snRNA-

seq methods have high sensitivity and perform well for cell

type classification but do not contain spatial information.131

Therefore, it is essential that the single-cell data are used prop-

erly to develop models that are accurately built, parameterized,

and simulated.

Single-cell omics data are also sparsewith a high dropout rate,

which introduces a challenge in downstream data analysis as

observed zeros in the data may represent true biological zeros

or technical noise. However, methods of imputing data have

shown a vast amount of variability in their accuracy.132 Another

option for addressing the issue of data sparsity is by using statis-

tical models that explicitly account for the data sparsity, sam-

pling variation, and noise.133 When integrating single-cell omics

data across samples or patients, batch effects may be intro-

duced as an additional challenge. Various batch correction algo-

rithms have been developed to correctly align the different data-

sets, while preserving the key biological variations.134 Therefore,

the patient-specific variation can be preserved for parameteriza-

tion and structuring of computational models.

Following single-cell data analysis and visualization in the form

of a UMAP or tSNE plot, groups of cells can be clustered to iden-

tify the cellular communities within the tissue. One gap in this

step is the parameterization of the clustering algorithm that de-

tects the number of cell type communities or clusters in the

data. The resolution parameter within the clustering function

can be tuned and adjusted such that there are more or less clus-

ters depending on the user’s input. For instance, if one is

clustering macrophages, a low-resolution input value may only

identify the M0, M1, and M2 macrophage states, while a high-

resolution input value may identify the subsets of M2 macro-

phage states, namely theM2a,M2b, andM2c states.While vary-

ing the resolution input values is more intuitive for identifying

macrophage states, cluster and cell type/state identification

may not be as simple for other datasets. However, there is power

in course graining and tuning the resolution parameter as the
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computational model can then be pruned to the desired

resolution.

Patient-specific computational models of cellular andmolecu-

lar networks with spatial resolution can be additionally informed

by imaging data at various length scales. For example, radiolog-

ical imaging modalities including magnetic resonance imaging

(MRI) and computerized tomography (CT) can be utilized to

inform computational models at the whole-body physiological

scale, while microscopic and molecular imaging modalities

such as bright field microscopy, light sheet microscopy, and sin-

gle molecule fluorescence in situ hybridization (smFISH) can be

utilized to inform computational models at the tissue, cellular,

and subcellular level.135 Imaging data can be acquired from indi-

vidual patients and then integrated with a single-cell omics-

informed computational model to build executable surrogate

models that can predict the static and dynamic behavior of

various organs during disease progression, treatment, and

post-surgical assessment.

Furthermore, there are significant challenges in sampling data

when scaling computational models across different spatial and

temporal scales. The data necessary for building and parameter-

izing models at distinct scales may be vastly different, necessi-

tating strict and specific guidelines for experimental sampling

at various time scales and resolution. Furthermore, proper simu-

lation practices must be adhered to in terms of model develop-

ment and credibility such as those presented in Viceconti and

Emili (2024).136 However, one may utilize the single-cell refer-

ence datasets (i.e., HuBMAP,10 Human Cell Atlas,9 The Tabula

Sapiens11) as a starting point for modeling at various spatial res-

olutions from patient-specific, inter-organ cell type interactions

(low resolution) to patient-specific, tissue-specific cell state in-

teractions (high resolution). One modeling approach is to utilize

low resolution data to first develop a higher-level organ model

for which themodel can be taken into various biological contexts

once further biological complexities are incorporated (as in Fig-

ure 8). Oppositely, one may include the biological intricacies of

a specific biological process and then scale it to the organ level.

The omics revolution led to the advancement of many high-

resolution single-cell and spatial omics technologies that can

be integrated to inform computational models of various biolog-

ical systems at different scales. At the whole-body, physiological

scale, multi-organ models can be generated by assembling

various organ-specific models together such that a single-cell

omics informed, patient-specific, multi-organ model is devel-

oped. For example, we propose that organ-specific computa-

tional models can be built individually but can interact with one

another to generate a multi-organ model that can inform

higher-level physiology (Figure 6). Furthermore, we propose

that an individualized patient-specific model of the liver that is

parameterized and structured by spatial, multi-omics data can

then be utilized to inform models for in silico clinical trials (Fig-

ures 7 and 8).

Single-cell data provides a window into the functionality of in-

dividual cell types and cellular communication, which is pertinent

to our understanding of tissues as a whole. Furthermore, the

functionality of individual cells can be traced back to the

signaling molecules which regulate them. Utilizing this informa-

tion and other features extracted from ‘‘Big’’ and ‘‘Not So Big’’
data, we propose that systems pathophysiological computa-

tional models can be built at various scales including the tissue,

microenvironment, cellular, and subcellular level. Model simula-

tion will then facilitate our deeper understanding of the regulatory

and functional behavior as well as heterogeneity within and

across cell types in the tissue. In this review, we propose that

single-cell omics data with spatial resolution can be utilized for

informing, structuring, and parameterizing various types of

computational models including those with patient-specificity.

Furthermore, computational models of individual organs can

be assembled to generate multi-organ models that can predict

overall physiology. Additionally, we discuss the implications of

digital twin and personalized models in the clinical setting and

how they can be used for in silico clinical trials. Altogether, the

future of single-cell and spatial multi-omics informed computa-

tional modeling and simulation is vast and has the potential to

shape the future of healthcare and aid clinicians in pertinent de-

cision making.
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