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The dynamic re-organization of cellular membranes in response to extracellular stimuli

is fundamental to the cell physiology of myeloid and lymphoid cells of the immune

system. In addition to maintaining cellular homeostatic functions, remodeling of the

plasmalemma and endomembranes endow leukocytes with the potential to relay

extracellular signals across their biological membranes to promote rolling adhesion and

diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and

effete cells. Phosphoinositides, signaling lipids that control the interface of biological

membranes with the external environment, are pivotal to this wealth of functions.

Here, we highlight the complex metabolic transitions that occur to phosphoinositides

during several stages of the leukocyte lifecycle, namely diapedesis, migration, and

phagocytosis. We describe classical and recently developed tools that have aided our

understanding of these complex lipids. Finally, major downstream effectors of inositides

are highlighted including the cytoskeleton, emphasizing the importance of these rare

lipids in immunity and disease.

Keywords: phosphoinositides, inositol lipids,macrophage, neutrophil, chemotaxis, phagocytosis, lipid biosensors,

lipid signaling

INTRODUCTION

Chemotaxis and phagocytosis are fundamental processes employed by myeloid cells of the
immune system to protect the body from harmful invading microorganisms and maintain tissue
homeostasis. Neutrophils, which are prototypical of myeloid cells, are the dominant circulating
leukocytes; every day billions of neutrophils enter and exit the circulation (Teng et al., 2017). Their
importance is revealed in cases of neutropenia –a decrease in the number or quality of circulating
neutrophils—which results in recurrent bacterial infections (Leliefeld et al., 2016).

When pathogens break through the epithelial barriers of the host, circulating neutrophils are
rapidly recruited to the site of infection. Upon invasion, pathogens cause the local release of
molecules such as formyl peptides, peptidoglycans or lipoproteins. Further, proximal tissues are
flagged for recognition by the production of inflammatory mediators (Nathan, 2006). Neutrophils
sense these pathogen-associated molecules and inflammatory signals through various receptors
including Toll-like receptors (TLRs) and G protein-coupled receptors (GPCRs). Upon receptor
activation, neutrophils undertake diapedesis to exit blood vessels and migrate toward the site of
infection within the tissue parenchyma to deploy antimicrobial functions, including but not limited
to phagocytosis (Mayadas et al., 2014). They generate reactive oxygen species, release antimicrobial
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peptides and other cytotoxic granule components, and form
neutrophil extracellular traps, all of which are effective in
creating a microbicidal environment intended to eliminate
pathogenic organisms (Segal, 2005). The multistep process of
rolling adhesion, paracellular extravasation through endothelial
junctions, migration, and ultimately the deployment of
antimicrobial functions demands great morphological and
functional diversity of leukocytes.

Importantly, the roles of neutrophils and other myeloid cells
extend far beyond the clearance of pathogenic microorganisms.
Excellent reviews are available that highlight their roles in cancer
(Coffelt et al., 2016), auto-immunity (Thieblemont et al., 2016),
and overall health and disease (Liew and Kubes, 2019).

Here, we describe the dynamic receptor-mediated processes
of leukocyte chemotaxis and phagocytosis, two responses that
are highly dependent on lipidic signals. We highlight the role
that phosphoinositides, key signaling lipid molecules, play in
regulating the complex series of events involved in the actin
re-organization that underlies cell migration and phagocytosis.
Furthermore, we describe the current tools used to study and
manipulate phosphoinositides and, when possible, offer insights
of their relevance to health and disease.

Part I: Introduction to Phosphoinositides
Cellular processes, such as signal transduction, endocytosis,
exocytosis, and cell migration are dependent on cellular
membranes. These membranes (plasmalemmal and
endomembranes) are dynamic entities that constantly undergo
remodeling events, typified by fusion, budding and fission.
Understandably, regulation of membrane dynamics is critical
for cellular physiology. Pivotal to this regulation is the timely
recruitment of effector proteins to specific membranes and to
sub-domains therein. Phosphoinositides (PPIns) contribute
importantly to this recruitment.

Phosphoinositides are phosphorylated derivates of
phosphatidylinositol (PtdIns). They represent a minor fraction
of the cellular phospholipids, yet they regulate a plethora of
biological responses. PtdIns consists of a diacylglycerol (DAG)
linked to D-myo-inositol-1-phosphate ring by a phosphodiester
linkage. Phosphorylation can occur in the 3-, 4-, and 5-hydroxyl
groups of the inositol ring, giving rise to the seven naturally
occurring PPIns species. The interconversion of PPIns into
other lipid species or other secondary messengers is facilitated
by numerous kinases, phosphatases, and lipases which possess
refined activities toward a subset of the 1-, 3-, 4-, or 5-moieities of
the inositol ring. As a result, PPIns are differentially distributed
among cellular membranes and within distinct membrane
sub-domains, where they selectively recruit effector proteins and
act as landmarks for membrane identity (Balla, 2013).

Phosphoinositides exert their functions by interacting with
membrane resident molecules such as transporters and ion
channels, or by selectively recruiting signaling molecules in
a reversible manner. These interactions are facilitated by
stereospecific inositide-binding domains present in the signaling
molecules that get recruited by PPIns. The first of these domains
was identified in pleckstrin (Harlan et al., 1994) and since then,
the term pleckstrin homology (PH) domain has been used to refer

to these homologousmodules. A vast array of regulatorymodules
bear PH domains (Cozier et al., 2004). However, it is worth
mentioning that not all PH domains bind phosphoinositides and
that many also have protein-binding properties. Other classes
of PPIns-binding domains have been identified: these include
FERM domains that link the actin cytoskeleton to PPIns of the
plasma membrane (PM) (Chishti et al., 1998), BAR and EHD
domains that can sense and induce membrane curvature, and
FYVE and PX domains that target several protein families to
endolysosomal membranes (Chishti et al., 1998; Frost et al.,
2009).

The discovery of such domains has been instrumental for
studying the function and localization of PPIns (Hammond and
Balla, 2015) in situ. As discussed below, the use of specific PPIns-
binding domains as biosensors has been crucial in gaining insight
of the distribution, dynamics and function of PPIns. These
probes have made it possible to establish that different PPIns
mark distinct membranes. Thus, PtdIns(4)P, PtdIns(4,5)P2,
PtdIns(3,4,5)P3, and PtdIns(3,4)P2 are present almost exclusively
at the PM, whereas PtdIns(4)P is recognized as the signature
PPIns of the Golgi complex, and pools of PtdIns(3)P and
PtdIns(4)P are present in early and late endosomes, respectively.
Given the fact that many PPIns-binding proteins exhibit low
affinity for their ligand, recruitment of these proteins often
requires coincident detection of other binding determinants such
as specific protein motifs (Simonsen et al., 1998; Wijdeven et al.,
2015) or by sensing membrane curvature (Carlton et al., 2004).

Part II: Methods to Monitor
Phosphoinositides in Leukocytes
Classical biochemical techniques provided the first insight into
PPIns biology in leukocytes. The discovery of PtdIns(3,4,5)P3
(Traynor-Kaplan et al., 1988) and PtdIns(3,4)P2 (Traynor-
Kaplan et al., 1989), two species formed de novo following the
stimulation of neutrophils with formylated chemotactic peptides,
was possible by loading large numbers of cells with radiolabeled
[3H]inositol or [32P]phosphate. Following acid extraction,
inositol headgroups were deacylated by enzymatic or chemical
means allowing the water-soluble radiolabelled headgroup
to be isolated and analyzed. Following nuanced separation
by thin-layer chromatography or by high-performance liquid
chromatography (HPLC) the relative amounts of different
inositide species could be inferred. Alternatively, the deacylated
headgroups can be quantitatively analyzed by radioreceptor
assays (Várnai and Balla, 1998), or without radiolabeling
by anion-exchange HPLC coupled to conductivity detection
(Nasuhoglu et al., 2002).

More recent developments in the field of lipidomics are based
on ultra-high-pressure HPLC coupled to mass spectrometry
(HPLC-MS/MS) (Wenk et al., 2003; Clark et al., 2011; Bui
et al., 2018). Following methylation of inositol headgroups to
render them electroneutral, ionization and subsequent detection
allows for sensitive quantitation of the amount of different
PPIns in parallel with other phospholipids. Quite importantly,
although early iterations of this technique could not resolve
regio-isomers (e.g., PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2)
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(Kielkowska et al., 2014), harnessing differences in isomer-
specific methylation patterns now allows the separation of such
isomers, with the exception of PtdIns(4)P and PtdIns(5)P (Wang
et al., 2016). These mass spectrometry approaches have the
additional benefit of reporting fatty acyl chain length and degree
of saturation, and have even been extended to analyze PPIns
in whole organs (Wang et al., 2016). However, all the above
biochemical readouts suffer from a major limitation: as they
analyze extracts of multiple whole cells, small changes occurring
asynchronously in subcellular compartments cannot be resolved.
Subcellular fractionation could in principle be performed
to refine the detection, but the inevitable exposure of the
membranes to kinases, phosphatases and phospholipases during
the lengthy fractionation schemes distorts the composition of
the samples.

The sub-cellular distribution and relative levels of specific
PPIns species can instead be monitored by immunostaining with
specific antibodies coupled to fluorescent or chemiluminescent
secondary antibodies. Originally developed by immunizing mice
with immunogen-cationized inositides (Chen et al., 2002) or
with liposomes containing specific PPIns (Thomas et al., 1999),
this antibody collection is carried today by Echelon Biosciences.
It is important to note, however, that PPIns do not contain
primary amines and, therefore, cannot be easily cross-linked
and stabilized during traditional fixation with paraformaldehyde.
A great deal of time has been invested to develop and
understand which PPIns pools can be reliably detected by
immunostaining and under what conditions (Hammond et al.,
2006, 2009; Yip et al., 2008). For example, preserving plasma
membrane integrity requires careful adjustments to standard
immunostaining methods such as the addition of the fixative
glutaraldehyde, careful buffering of pH, the use of reduced
temperatures and saponin for permeabilization. Unfortunately,
in attempting to preserve one membrane, conditions may fail
to recognize the lipid of interest in another, possibly important,
cellular organelle (Hammond et al., 2009, 2012). As such, these
tools should be employed only with a clear experimental focus
(e.g., a defined organelle of interest in mind) and great caution.
Nonetheless, immunostaining aided in revealing the presence
of PtdIns(3,4)P2 in clathrin-coated pits (Posor et al., 2013),
PtdIns(4)P in the plasma membrane (Hammond et al., 2009),
and PtdIns(3,4,5)P3 at the leading edge of migrating leukocytes
(Wang et al., 2002).

The dynamic and localized responsiveness of living organisms
to stimuli presents several challenges to biologists interested
in PPIns signaling: the spatiotemporal nature of events, rapid
turnover, and low abundance of PPIns cannot be properly
appreciated by any one of the techniques discussed above.
Indeed, many cellular processes necessitate the ability to
track organelles or sub-domains of organelles on a second-to-
second basis. The introduction of genetically-encoded biosensors
based on high-affinity PPIns-binding domains provided a
way to address many of these shortcomings, and led to an
explosion of knowledge and interest in the field of PPIns
biology (Hammond and Balla, 2015; Wills et al., 2018). PPIns
biosensors exploit high-affinity, stereospecific interactions of
protein domains with available lipids, an interaction that drives

protein recruitment to biological membranes (Figure 1A). The
PH domain of phospholipase C (PLC) δ1 was the first to
demonstrate clear stereospecificity for PtdIns(4,5)P2 and soluble
Ins(1,4,5)P3 (Ferguson et al., 1995; Lemmon et al., 1995).
Soon after, the fusion of PH-PLCδ1 to a fluorescent protein
created a reporter that has been widely utilized as an indicator
of PtdIns(4,5)P2. The potential of GFP-tagged PH-PLCδ1 to
monitor PtdIns(4,5)P2 in real time was demonstrated by its
dynamic relocalization in response to platelet-activating factor
treatment of leukocytes (Stauffer et al., 1998), and to calcium
ionophore or hormone treatment of fibroblasts (Várnai and
Balla, 1998). The growing knowledge of PPIns-binding domains
rapidly expanded the repertoire of tools to monitor PPIns
at a single-cell level (Table 1). Our toolbox today allows for
monitoring of PtdIns(4,5)P2 (Stauffer et al., 1998; Várnai and
Balla, 1998), PtdIns(4)P (Brombacher et al., 2009; Dolinsky
et al., 2014; Hammond et al., 2014; Weber and Hilbi, 2014),
PtdIns(3)P (Gaullier et al., 2000; Ellson et al., 2001; Kanai et al.,
2001), PtdIns(3,4,5)P3/PtdIns(3,4)P2 (Frech et al., 1997; Gray
et al., 1999; Watton and Downward, 1999; Manna et al., 2007),
PtdIns(3,4,5)P3 (Klarlund et al., 1997, 2000; Venkateswarlu et al.,
1998a,b; Várnai et al., 1999, 2005; Cronin et al., 2004; Manna
et al., 2007), PtdIns(3,4)P2 (Thomas et al., 2001; Goulden et al.,
2019), and PtdIns (Pemberton et al., 2020) with great selectivity,
although several cautionary notes discussed below should be
considered before working with these reporters.

Many inositide-binding domains found in nature are not
selective for a single PPIns species or have too low an affinity
to direct protein localization. As well, some domains exhibit
protein-protein or protein-lipid interactions other than their
PPIns binding and impact their localization (Hammond and
Balla, 2015). Therefore, the task of generating a successful lipid
biosensor is not a straightforward one. It is important and
obvious that a successful biosensor must demonstrate selectivity
for the lipid species of interest and depend on the lipid for
its localization to the membrane. However, less obvious is the
fact that the sensor should demonstrate sufficiency to recognize
the lipid in a membrane where the lipid is not normally found
(Hammond and Balla, 2015; Wills et al., 2018). Sufficiency
for biosensor recruitment has been elucidated elegantly in
vivo by several methods, including chemical dimerization and
optogenetic activation (discussed further below) that induce
ectopic synthesis of the lipid of interest in its non-native
organelle. Unfortunately, several first-generation PtdIns(4)P
probes did not comply with the latter requisite in that their
membrane targeting required both PtdIns(4)P and active Arf1
resulting in a biased localization to the Golgi (Levine andMunro,
2002; Godi et al., 2004; Balla et al., 2005). Similarly, several
biosensors developed for PtdIns(3,4,5)P3 based on domains
of cytohesin-family proteins require Arf/Arl GTPase and/or
adjacent polybasic regions for successful membrane targeting
(Cohen et al., 2007; Hofmann et al., 2007; Li et al., 2007).
Similarly, the PH domain from Bruton’s Tyrosine Kinase
which recognizes PtdIns(3,4,5)P3 can be influenced by direct
interaction with heterotrimeric G proteins (Tsukada et al., 1994)
and protein kinase C (Yao et al., 1994). The complexities that
may arise because of these compounding variables should not
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FIGURE 1 | Principles of operation of phosphoinositide biosensors in leukocytes. (A) Model of a generic phosphoinositide-specific biosensor in equilibrium between

the cytosol and membrane following activation of the kinase that generates the target lipid, or its disappearance due to phosphatase activation, or pharmacological

kinase inhibition. (B) Dynamic redistribution of the PH-AKT biosensor in response to changes in 3-phosphorylated species. PH-AKT was co-transfected with class I

PI3K-CAAX into RAW264.7 cells, leading to constitutive production of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 at the plasma membrane. PI3Ks were then inhibited

pharmacologically with wortmannin (100 nM). Note both the decrease in plasma membrane fluorescence and the concomitant increase in cytosolic GFP intensity

over time.

fully preclude researchers from utilizing these tools, however.
For example, first-generation sensors for PtdIns(4)P provided
useful insights to the functions of this lipid in the Golgi, despite
being “blind” to other PtdIns(4)P pools (Szentpetery et al., 2010).
Likewise, mutations can be introduced into binding domains
to prevent protein-protein interactions while preserving PPIns-
specificity (Várnai et al., 2005; Cohen et al., 2007; Hofmann et al.,
2007; Goulden et al., 2019). Such considerations will be critical in
the continued development of improved PPIns biosensors.

Part III: Tools to Manipulate
Phosphoinositides in Leukocytes
Along with the rapid expansion of tools to monitor PPIns came
developments that enabled researchers to selectively disrupt these
lipids. Many of these experimental approaches can serve “double-
duty” by either validating the ability to monitor a specific PPIns
pool (Part II) and/or to assess the consequences on downstream
effector signaling (Part III). These tools revolve around the
manipulation of the kinases, phosphatases, and phospholipases
that control phosphoinositide metabolism.

Pharmacological approaches to inhibit PPIns synthesis or
degradation are a simple and widely accessible method. As

exemplified in Figure 1, membrane-targeted, constitutively-
active class I phosphoinositide 3-kinase α (PI3Kα) can be utilized
to increase PtdIns(3,4,5)P3 in the membrane; this is evinced
by the strong membrane enrichment of the AKT PH domain
sensor. The addition of the fungal metabolite wortmannin, which
can potently inhibit the activity of PI3Ks (Arcaro and Wymann,
1993; Ui et al., 1995), causes the abrupt release of PH-AKT
from the membrane (Figure 1B). This simple approach validates
the notion that PPIns products of PI3K-activity are required to
recruit and retain the biosensor at the plasma membrane, while
also demonstrating that the toxin is active against PI3K.

Inhibitors of class I PI3Ks have been a major class of
candidates for the treatment of solid and blood-borne cancers.
This has resulted in the development of several pan- and isoform-
specific class I PI3K inhibitors [reviewed in (Burke, 2018)].
Specific inhibitors have also been developed for several PI4K
(Knight et al., 2006; Tóth et al., 2006; Bojjireddy et al., 2014; Li
et al., 2017) and PIP5K isoforms (Semenas et al., 2014; Wright
et al., 2014). On the other hand, useful inhibitors have also
been described for several PPIns phosphatases including those
of the SHIP (SH2 domain-containing inositol polyphosphate
5-phosphatase) family which dephosphorylate PtdIns(3,4,5)P3
to PtdIns(3,4)P2 (Brooks et al., 2010; Fuhler et al., 2012), and
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TABLE 1 | Summary of phosphoinositides, effectors in leukocytes, and

biosensors used for their detection.

Phosphoinositide Effectors Biosensors (Fixable) Biosensor source

PtdIns(4,5)P2 - WASP/N-WASP

- PLC (β, δ isoforms)

- Dynamin

- AP2, Epsin, CALM

(clathrin-adaptor proteins)

- FCHo, FBP17, Amphiphysin

(BAR-domain proteins)

- Spectrin

- ERM proteins

- GRAF1

- PTEN

PH-PLCδ1 (+)

PH-PLCδ4 (?)

Stauffer et al., 1998;

Várnai and Balla,

1998; Lee et al.,

2004b

PtdIns(4)P - OSBP and ORPs

- CERT

- FAPP1/2

- GOLPH3

- SKIP/PLEKHM2

P4M (±)

P4C (±)

Hammond et al.,

2014; Weber and

Hilbi, 2014

PtdIns(3,4,5)P3 - WAVE1/2/3

- GRP1, ARNO, Cytohesin-1

(Cytohesin family)

- PLC (β, γ isoforms)

- Protein Kinase B/AKT

- PDK1

- BTK

- SNX9/18/33 (PX-BAR domain

proteins)

- Vav1/3, Tiam1/2, P-rex1,

Dock2 (RhoGEFs)

- ARHGAP12, ARHGAP25,

and SH3BP1 (RhoGAPS)

- ARAP3, GBF1 (ArfGEFs)

- Sos (RasGEF )

PH-ARNO(2G)I303E (+)

PH-BTK (+)

PH-AKT (+)

Gray et al., 1999;

Várnai et al., 1999;

Watton and

Downward, 1999;

Goulden et al., 2019

PtdIns(3,4)P2

- TAPP1/2

- Protein Kinase B/AKT

- SNX9/18/33 (PX-BAR domain

proteins)

- FCHSD1/2 (F-BAR-domain

proteins)

- Lamellipodin

- RasGAP2*

- RapGAP3*

cPH (+)

PH-AKT (+)

Gray et al., 1999;

Watton and

Downward, 1999;

Goulden et al., 2019

PtdIns(3)P - EEA1

- Hrs (ESCRT-0)

- WDFY2

- Rabankyrin

- SNX1/2

- DFCP1, WIPI1 (Autophagy)

- p40phox, p47phox (NADPH

Oxidase)

- PIKfyve

FYVE (+)

PX (+)

Gaullier et al., 2000;

Ellson et al., 2001;

Kanai et al., 2001

Effectors of each phosphoinositide species are listed in Column 2. To provide context

where possible, the relevant isoforms, protein family, and biological pathways are italicized

in parentheses. Please note that protein effectors may require additional coincident signals

for their recruitment to cellular membranes and/or additional co-factors in addition to

the listed interacting lipid. In some instances, proteins can be recruited to sub-domains

of biological membranes independently of phosphoinositides but be activated by the

lipid allosterically. Effectors reported in Dictyostelium but not yet tested in mammalian

leukocytes are marked with an asterisk (*). Selective lipid-binding domains are listed

in Column 3 that form the basis of phosphoinositide-specific biosensors utilized in

leukocytes and other cell types. All domains are from mammalian origin except for

P4M and P4C, which are derived from the Legionella pneumophila effectors SidM and

SidC, respectively. The ARNO PH domain-containing biosensor specifically encodes the

diglycine (2G) splice variant which exhibits strong selectivity for PtdIns(3,4,5)P3 over other

phosphoinositide species. Additionally, interactions with host Arl GTPases are predicted

to be disrupted by mutation of Isoleucine at position 303. The cPH domain-containing

biosensor encodes the isolated C-terminal PH domain from TAPP1. Whether biosensor

localization is retained following chemical fixation with paraformaldehyde is indicated in

parentheses (+, localization retained; ±, partial disruption; ?, untested), based on the

experience in our laboratory.Column 4 provides the primary reference to the development

of each biosensor, many of which have been deposited and are freely available on

Addgene (https://www.addgene.org/). PH, Pleckstrin-homology domain; BTK, Bruton’s

Tyrosine Kinase; FYVE (Fab1, YOTB, Vac1, and EEA1); PX, Phox homology domain; PLC,

phospholipase C.

several for the INPP5 family (Pirruccello et al., 2014) that
dephosphorylate both PtdIns(3,4,5)P3 and PtdIns(4,5)P2 in the
5-position. The mechanism by which these compounds inhibit
SHIP phosphatase activity is unclear, while the INPP5-specific
inhibitors bind directly to the catalytic domain. Several PPIns 3-
and 4-phosphatases are members of the redox-sensitive protein
tyrosine phosphatase family. Oxidizing compounds containing
vanadate (e.g., bisperoxovanadate) or the addition of hydrogen
peroxide acutely and potently inhibit their activity (Rosivatz
et al., 2006; Ross et al., 2007). The acute and reversible nature of
this inhibition has been harnessed to understand SAC1 activity
in the endoplasmic reticulum (ER) (Zewe et al., 2018) and
derivatives have even been applied in vivo (Zhang et al., 2017).
Lastly, it is possible to deliver PPIns to the cytosol of intact
cells by utilizing membrane-permeable acetoxymethyl esterified
derivatives. In the cytosol, endogenous esterases cleave the
acetoxymethyl group, releasing intact PPIns that then partition
into the cytosolic leaflet of organelles.

In addition to pharmacological manipulation, PPIns-
metabolizing enzymes can be genetically manipulated by
over-expression, RNA interference-mediated depletion,
genetic knockout or knock-in mutations, or by exploiting
mutations from human samples or model systems. In contrast
to pharmacological approaches, these methods are generally
chronic in nature and can be susceptible to cellular compensation
that may cloud the interpretation. Nonetheless, they represent a
valuable way to tease out biological mechanisms when effective
and specific pharmacological inhibition is not available for
an enzyme of interest (Zunder et al., 2008; Huw et al., 2013).
Knock-in mutations incorporated directly into the lipid-binding
domains of cellular proteins or PPIns-metabolizing enzymes
is a particularly clever way to understand their regulation by
phospholipids. Indeed, mutations in amino acids that coordinate
the inositol headgroup within biosensors are often included to
control for non-lipid-mediated localization (Stauffer et al., 1998;
Várnai and Balla, 1998; Várnai et al., 1999, 2005). Conversely,
relatively high expression of biosensors or tandem domains of
biosensors that have higher avidity can be utilized to effectively
occlude downstream signaling by PPIns. Although normally
avoided during routine experiments, this approach has been
useful in understanding the roles of PtdIns(4,5)P2 in controlling
cortical actin networks (Raucher et al., 2000; Ueno et al., 2011)
and of PtdIns(3)P during resolution of endocytic compartments
(Freeman et al., 2019).

PPIns-metabolizing enzymes and their activity can be targeted
to virtually any cellular organelle constitutively or acutely to
manipulate local PPIns signaling. Constitutive targeting can be
accomplished by including defined, well-characterized motifs in
the primary sequence of kinases, phosphatases, or phospholipases
that dock the enzyme onto the organelle of choice (Figure 1B).
Targeting motifs are often transmembrane domains of integral
membrane proteins or tail-anchored proteins but electrostatic
interactions can also mediate targeting of domains to the plasma
membrane (Won et al., 2006; Yeung et al., 2006). PPIns enzyme
domains can be recruited to the cytosolic leaflets of specific
organelles more acutely (within seconds) by chemically-induced
dimerization. The first such system developed was based on the
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domains from FK506 binding protein (FKBP) and mTOR (FRB
domain) that undergo heterodimerization in the presence of
rapamycin (Spencer et al., 1993; Inoue et al., 2005). The elegance
of this method quickly gained traction for cell biologists as it
can allow the tightly controlled depletion of phosphoinositide
pools from specific organelles, while largely bypassing any
adverse effects of chronic over-expression of PPIns-metabolizing
enzymes (Fili et al., 2006; Suh et al., 2006; Varnai et al.,
2006; Szentpetery et al., 2010; Hammond et al., 2014). As
an alternative to rapamycin-based dimerization, analogous
systems have since been developed utilizing the gibberellin plant
hormone GA3 (Miyamoto et al., 2012), and photoactivation-
induced dimerization (Idevall-Hagren et al., 2012). The rate
and magnitude of depletion of PPIns can be monitored by
co-expression with biosensors and monitoring fluorescence
intensity changes or changes in Förster resonance energy transfer
(FRET) with fluorophore pairs in the organelle of interest (Varnai
et al., 2006; Hammond et al., 2014). In these complex multi-
variable experiments, several controls should be implemented for
robust conclusions: visualization of the pre- and post-stimulated
localization of the protein of interest, recruitment of domains
lacking the active cargo (i.e., without the PPIns-metabolizing
enzyme) or encoding catalytically-inactive enzymes to control for
non-lipid-mediated effects.

Lastly, recent developments have enabled the optogenetic
activation of enzymes by incorporating unnatural amino acids
(Luo et al., 2014; Courtney and Deiters, 2018). In this case,
“caged” (inactive) versions of PPIns-converting enzymes can be
expressed in cells at high levels without adverse effects, that can
then be activated acutely (Goulden et al., 2019).

PHOSPHOINOSITIDES IN LEUKOCYTE
CHEMOTAXIS

The ability of immune cells to migrate is fundamental to
embryonic development, infection control, sterile wound
healing, the clearance of transformed cells, and tissue
regeneration. Its aberrant activation can, however, contribute
to inflammatory diseases, tissue necrosis, atherosclerosis, and
hematological cancers (Ley et al., 2018; Weavers and Martin,
2020). During chemotaxis, leukocytes extend pseudopods at
their leading edge that are directed toward chemoattractants like
formyl-peptides, leukotrienes and complement fragments, or
away from chemorepellants (Andrew and Insall, 2007; Westman
et al., 2019). Through an iterative process, extremely shallow
concentration differences (often < 5% from leading-to-trailing
edge) of the attractants are detected across the plasmalemmal
surface and amplified intracellularly. The periodic extension,
bifurcation and retraction of leading-edge pseudopodia
are driven by dynamic remodeling of the underlying actin
cytoskeleton and supported by adherence to the underlying
substratum via integrins (Kinashi, 2005; Renkawitz and Sixt,
2010; Weavers and Martin, 2020). In contrast, the trailing edge
uropod –which is comprised of more stable actin networks–must
simultaneously release from the substratum and retract (Hind
et al., 2016). The polarized gliding movement that results can

attain speeds >10 µm/min in some leukocytes. The information
directing actin polymerization and ongoing feedback for its
remodeling are communicated by several parallel pathways
involving PPIns that are in turn responsive to the extracellular
gradient of the chemoattractants.

Broadly speaking, pseudopod formation requires activation
of the Rho-family GTPases Rac and Cdc42 to drive F-actin
polymerization into protrusions that drive forward motion
(Kraynov et al., 2000; Itoh et al., 2002; Ridley et al., 2003; Willard
and Devreotes, 2006; Yang et al., 2016). Conversely, the sides
and uropod contain active RhoA, myosin light chain kinase,
and ezrin-radixin-moesin (ERM) protein scaffolding to support
actomyosin-based contraction of the trailing edge and stabilize
adhesion to the endothelium during extravasation (Yoshinaga-
Ohara et al., 2002; Xu et al., 2003; Lee et al., 2004a; Hind et al.,
2016).

Pseudopod Organization by
3-Phosphorylated Inositides
The 3-phosphorylated species PtdIns(3,4,5)P3 and PtdIns(3,4)P2
are markedly enriched at the leading edge of migrating
cells (Figure 2A). This hallmark of polarized migration has
been recognized across numerous subsets of leukocytes,
though the first identification occurred in the social amoebae
Dictyostelium (Meili et al., 1999; Dormann et al., 2002). Robust
signaling through class I PI3Ks is the principal determinant of
accumulation of 3-phosphorylated species at the leading edge. Of
note, PtdIns(3,4,5)P3 and/or PtdIns(3,4)P2 are polarized toward
chemoattractants despite depolymerization of the underlying
actin cytoskeleton (Servant et al., 2000; Dormann et al., 2002;
Janetopoulos et al., 2004; Xu et al., 2005) demonstrating that
gradient sensing and PPIns polarization are upstream of
the cytoskeletal rearrangement and morphological changes.
Evidence for the role of PI3Ks in chemotaxis came from
pharmacological treatment with wortmannin or LY294002,
which effectively block PtdIns(3,4,5)P3 production and
recruitment of PH-AKT to the inner leaflet of the PM in
response to several chemoattractants (Knall et al., 1997;
Niggli and Keller, 1997; Servant et al., 2000). Further, the
importance of 3-phosphorylated species has been highlighted
by the sufficiency of exogenously delivered PtdIns(3,4,5)P3
(Niggli, 2000; Weiner et al., 2002) or the synthetic activation
of endogenous PI3Ks (Inoue and Meyer, 2008) to polarize
neutrophils, signal downstream actin polymerization, and elicit
random leukocyte migration.

Class I PI3Ks are activated in response to chemokines via
two major pathways: signaling through G protein βγ subunits
liberated from αi downstream of activated GPCRs, and by the
small GTPase Ras through Ras-binding domains in several PI3Ks
(Figure 2B, left) (Suire et al., 2006; Kurig et al., 2009; Surve
et al., 2014). Of the four class I PI3K isoforms which are
expressed in leukocytes, the class IB isoform PI3Kγwas identified
as the chief kinase generating PtdIns(3,4,5)P3 in response to
chemotactic stimuli in leukocytes. Neutrophils andmacrophages,
natural killer (NK) lymphocytes, and T lymphocytes that are
deficient in PI3Kγ do not migrate efficiently toward various
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FIGURE 2 | Polarization of phosphoinositide signals during chemotaxis. (A) A representative confocal micrograph of PH-AKT expressed in a RAW264.7 monocytic

cell undergoing chemokinesis (random motion) in the presence of growth factors from fetal-bovine serum. PH-AKT bi-specifically recognizes PtdIns(3,4,5)P3 and

PtdIns(3,4)P2. The image has been pseudocolored to reflect the abundance of the probe. (B) Phosphoinositide signaling controlling “frontness” during leukocyte

chemotaxis. A signal arising from the stimulation of cell surface GPCRs and associated activation of G-proteins (β, γ) by chemokines lead to the activation of class I

PI3Ks to produce PtdIns(3,4,5)P3 from PtdIns(4,5)P2. Together with PtdIns(3,4)P2, the product of dephosphorylation of PtdIns(3,4,5)P3, 3-phosphoinositides in the

leading-edge membrane mediate a feed-forward loop that activates Rho- and Arf-family GTPases and Lmpd to drive actin polymerization and locally amplify

PI3K-signaling. (C) Engagement of substratum by leukocytes favors the “backness” signals PtdIns(4)P and PtdIns(4,5)P2. PI4KA mediates the synthesis of PtdIns(4)P

from PtdIns, which is necessary for the activation of PIP5KIγ90 and the generation of PtdIns(4,5)P2. RhoA signaling networks and ERM proteins regulated by

PtdIns(4,5)P2 are critical for leukocyte rolling adhesion, diapedesis, and uropod contraction during migration. (D) A representative confocal micrograph of 2xP4M

expressed in a RAW264.7 cell undergoing chemokinesis (random motion) in the presence of growth factors from fetal-bovine serum. The P4M domain derived from

Legionella’s SidM specifically recognizes PtdIns(4)P. The image has been pseudocolored to reflect the abundance of the probe in the Golgi, endolysosomes, and the

plasma membrane including in the region of the uropod. GPCR, G protein-coupled receptor; PI3K, phosphoinositide 3-kinase; SHIP, SH2 domain-containing inositol

polyphosphate 5-phosphatase; Lmpd, Lamellipodin; ERM, Ezrin-Radixin-Moesin.

chemoattractants in vitro or to sites of inflammation in vivo
(Hirsch et al., 2000; Li et al., 2000; Sasaki et al., 2000; Hannigan
et al., 2002; Reif et al., 2004; Suire et al., 2006; Ferguson
et al., 2007; Nishio et al., 2007; Saudemont et al., 2009).
Interestingly, substantial positive crosstalk exists between PI3K,
its initial PtdIns(3,4,5)P3 synthesis, and cytoskeletal regulators.
A secondary activation of PI3Ks has been posited to amplify
and sustain this important signaling node during chemotaxis
(Niggli, 2000; Sadhu et al., 2003; Boulven et al., 2006). One way
this occurs is by initiating a feedback loop between PI3Ks and
Rho-family GTPases (Figure 2B, center circle), which activates
additional PtdIns(3,4,5)P3 synthesis (Servant et al., 2000; Wang
et al., 2002; Weiner et al., 2002; Srinivasan et al., 2003; Park
et al., 2004; Inoue and Meyer, 2008; Kuiper et al., 2011).
The pre-treatment of cells with Clostridioides-derived toxins
(which inactivate several Rho-family GTPases) or interference
with Rho-family activating proteins can strongly reduce the
polarization of PH-AKT in response to chemokines (Weiner
et al., 2002; Srinivasan et al., 2003; Kunisaki et al., 2006).
How does this occur mechanistically? Both active Rac1 and

Cdc42 can directly associate with PI3Kβ and stimulate its
lipid kinase activity (Fritsch et al., 2013). Additionally, the
activation of PI3Kβ by G-protein βγ subunits (Figure 2B,
center) when GPCRs and receptor tyrosine kinases (RTKs)
are co-stimulated (Houslay et al., 2016) could mechanistically
explain the contribution of PI3Kβ to leukocyte migration
(Vanhaesebroeck et al., 1999; Ferguson et al., 2007). In parallel,
genetic or pharmacological inhibition of the hemopoietic-specific
class IA PI3Kδ revealed a pronounced role of this isoform in
PtdIns(3,4,5)P3 synthesis, polarization, and directed migration of
neutrophils, lymphocytes, and NK cells (Sadhu et al., 2003; Reif
et al., 2004; Saudemont et al., 2009). The activation of PI3Kδ is
likely secondary to the PI3Kγ-mediated activation of Rho-family
effectors or occurs downstream of Ras activation (Figure 2B)
(Burke, 2018). Importantly, despite similar enzymatic activity,
distinct PI3K isoform-specific roles have been revealed in vivo:
PI3Kγ mediates early extravasation and chemotaxis, while PI3Kδ

sustains long-term chemotaxis into inflamed tissues (Liu et al.,
2007). Lastly, effectors of Rac1 recruited by the products
of PI3K (discussed further below) can in turn support the
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polarization of 3-phosphorylated inositides in the pseudopod
(Kunisaki et al., 2006).

Beyond the edges of the leading pseudopod, PtdIns(3,4,5)P3
is limited in abundance and distribution by the PPIns 3-
phosphatase, PTEN (phosphatase and tensin homolog)
(Ferguson et al., 2007; Nishio et al., 2007), and by the action
of the Type III 5-phosphatases SHIP1 (Nishio et al., 2007)
and SHIP2 (Lam et al., 2012). Collectively, the 5-phosphatases
convert PtdIns(3,4,5)P3 to PtdIns(3,4)P2, while PTEN terminates
signaling by hydrolyzing both PtdIns(3,4,5)P3 and PtdIns(3,4)P2
to generate PtdIns(4,5)P2 and PtdIns(4)P, respectively (Malek
et al., 2017; Goulden et al., 2019). Although data on the role of
PTEN in mammalian leukocytes is somewhat discrepant (Nishio
et al., 2007; Wang, 2009; Balla, 2013), the phosphatase has been
localized to the trailing uropod of neutrophils (Li et al., 2005),
similar to its polarized localization in Dictyostelium (Iijima and
Devreotes, 2002). The depletion of PTEN in both systems causes
abnormal actin polymerization into multiple pseudopods and
prolongs the duration of AKT signaling (Funamoto et al., 2002;
Iijima and Devreotes, 2002; Huang et al., 2003; Subramanian
et al., 2007; Li et al., 2019). Although the resulting migration is
error-prone and often fails to prioritize between chemotactic
signals, migration speed actually increases, augmenting the
number of PTEN-null neutrophils that enter inflamed tissues
in vivo (Subramanian et al., 2007; Heit et al., 2008b; Sarraj
et al., 2009). Recruitment of PTEN to the membrane, which is
critical for its lipid phosphatase activity, occurs largely through
its interaction with PtdIns(4,5)P2 (Rahdar et al., 2009), but
also by front-to-back signaling networks involving PI3Kδ and
RhoA (Li et al., 2005; Papakonstanti et al., 2007) (Figure 2C).
Unlike Dictyostelium, mammalian cells are also regulated by
SHIP1 and SHIP2. The deletion of SHIP1 in neutrophils and
macrophages severely inhibits their speed and ability to polarize
their actin cytoskeleton toward various chemoattractants in
vitro, phenocopying cells lacking PI3Kγ (Ferguson et al., 2007;
Nishio et al., 2007). PtdIns(3,4,5)P3 levels are elevated at rest
and during stimulation in these cells and SHIP1−/− cells have
multiple broad, distorted lamellae marked by the AKT biosensor.
This implies an important regulatory role for SHIP phosphatases
and their enzymatic activity in organizing the pseudopod (Nishio
et al., 2007).

It is nevertheless important to note that although PI3Ks
and their downstream products are critical for many aspects
of chemotaxis –such as speed and initiating morphological
polarization—PI3Ks do not comprise the basis for the “biological
compass” that orients cells toward or away from the chemical
stimulus itself. In many settings, the deletion or inhibition of
PI3Ks does not ultimately eliminate the ability of cells to bias their
motility in the direction of a chemotactic signal; PI3Ks merely
help to get them there (Loovers et al., 2006; Hoeller and Kay,
2007; Nishio et al., 2007; Takeda et al., 2007; Heit et al., 2008a).
Studies of leukocyte recruitment in vivo have revealed that several
other pathways operate in parallel or in conjunction with PI3K-
related pathways to properly resolve the complex collective of
endogenous and exogenous chemotactic signals (Heit et al., 2002,
2008a,b).

PtdIns(4)P, PtdIns(4,5)P2, and the Control of
“Backness”
In contrast to 3-phosphorylated species, PtdIns(4)P and
PtdIns(4,5)P2 are sustained in an opposing back-to-front
gradient (Figures 2C,D) which has important consequences
for extravasation and to establish the “biological compass” of
migrating leukocytes. In addition to its phosphorylation by
class I PI3Ks, PtdIns(4,5)P2 is selectively hydrolyzed at the
leading edge by PLC. The activation of G proteins βγ by
chemokines triggers several isoforms, including PLCβ2 and
PLCβ3, to be activated at the leading edge of migrating leukocytes
(Tang et al., 2011; Balla, 2013). PLCβs possess N-terminal
PH domains that interact with PtdIns(4,5)P2 and Ins(1,4,5)P3,
as well as a polybasic C-terminal region (Balla, 2013) that
likely favors association with negatively charged lipids [i.e.,
PtdIns(3,4,5)P3] at the leading edge. Interestingly, PLCβ2 is
also regulated by Rho-family GTPases, as exemplified by its
binding to Rac and sequestration into subdomains of the PM
(Illenberger et al., 2003; Gutman et al., 2010; Tang et al., 2011).
Together, these membrane-targeting mechanisms support PLC-
mediated hydrolysis of PtdIns(4,5)P2 to diacylglycerol (DAG)
and Ins(1,4,5)P3 in the pseudopod (Keizer-Gunnink et al.,
2007; Nishioka et al., 2008)—two intermediates with important
consequences on the activation of integrin-based adhesiveness
(Kinashi, 2005; Herter and Zarbock, 2013). In combination with
PI3K activity, PLCβ2 and β3 enzymes are clearly important
for establishing the back-to-front gradient of RhoA signaling
and myosin contractility in leukocytes (Gao et al., 2015), which
ultimately impact chemotaxis greatly (Tang et al., 2011).

Within the uropod, several type I PIP5Ks (PIP5KI) are
activated to generate a modest enrichment of PtdIns(4,5)P2,
which can be visualized with the biosensor PH-PLCδ (Figure 2C)
(Lokuta et al., 2007; Xu et al., 2010). The engagement of αLβ2
and αMβ2-integrins triggers the polarization of PIP5KIγ90 (also
called PIP5K1C90) to the uropod of migrating cells (Xu et al.,
2010), likely supported by the ability of the kinase to bind anionic
lipids within the PM (Fairn et al., 2009). PIP5KIβ also has been
localized to the uropod of migrating leukocytes, supported by
its interaction with ERM proteins (Lacalle et al., 2007; Mañes
et al., 2010). PtdIns(4,5)P2 produced by PIP5KIs was initially
posited to be sufficient to control “backness” by positively-
regulating RhoA-signaling and ERM-mediated linkage to the
plasma membrane (Xu et al., 2010) –both critical features of
the uropod (Figure 2C, center). However, more recently it was
realized that the PIP5KI-mediated synthesis of PtdIns(4,5)P2
is accompanied by an enrichment of its substrate, PtdIns(4)P,
within the uropod (Ren et al., 2019) (Figure 2D). An innovative
study by Ren et al. revealed that not only is plasmalemmal
PtdIns(4)P polarized toward the uropod during extravasation but
depleting the inositide destroys the polarization to the uropod
of several proteins including PIP5KIγ90 itself and active myosin
light chain. The resulting PtdIns(4)P-depleted neutrophils are
defective in their ability to bind to inflamed endothelium as a
result of these polarization defects.

PtdIns(4)P is maintained in multiple sub-cellular
compartments including the Golgi, late endosomes/lysosomes,
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and the PM by the activity of four PI4-kinases (Balla, 2013;
Hammond et al., 2014). In the uropod membrane, PtdIns(4)P
is synthesized by PI4KA following its activation by srGAP,
an inverted F-BAR protein that senses increased membrane
curvature (Ren et al., 2019). These studies present an interesting
paradigm in which the polyanionic lipids PtdIns(4)P and
PtdIns(4,5)P2 positively influence each other, orchestrate the
stereospecific and electrostatic recruitment of effector proteins
that scaffold the uropod, and ultimately the adhesion and initial
directionality of leukocyte migration.

Phosphoinositide Effectors During
Chemotaxis
The actin cytoskeleton receives multiple inputs via PPIns. One
important cytoskeletal effector at the leading edge is the five-
membered WAVE (SCAR/WASP family verprolin-homologous
protein) regulatory complex. WAVE is one of several nucleation-
promoting factors (NPFs) necessary for the full activation of
the Arp2/3 complex that generates branching actin filaments
(Takenawa and Suetsugu, 2007). The importance of WAVE for
migration is supported by numerous studies in different cell
types and organisms (Krause and Gautreau, 2014) including
leukocytes, where WAVE complex members rapidly localize
to the leading pseudopod (Weiner et al., 2006, 2007; Millius
et al., 2009). Although the WAVE complex can be recruited and
activated directly by receptors (including possibly the CXCR5
chemokine receptor) (Chen et al., 2014), this complex is generally
recruited and activated at the membrane by factors such as lipids.
Within the WAVE complex, WAVE1, WAVE2, and WAVE3
possess a carboxy-terminal basic region that has a higher affinity
for PtdIns(3,4,5)P3 over other inositides and can promote its
membrane recruitment (Oikawa et al., 2004). Normally inhibited
in trans by other complexmembers (Eden et al., 2002), theWAVE
complex can be activated by GTP-bound Rac on PtdIns(3,4,5)P3-
containing liposomes (Lebensohn and Kirschner, 2009) and by
Arf GTPases that synergize with Rac in the presence of this
inositide (Koronakis et al., 2011).

Supporting these notions, a number of guanine nucleotide
exchange factors (GEFs) and GTPase-activating proteins (GAPs)
for Rho-, Arf-, and Ras-families of GTPases are recruited to
membrane domains by PPIns-binding domains that recognize
PtdIns(3,4,5)P3 and/or PtdIns(3,4)P2 (Krugmann et al., 2002;
Rossman et al., 2005; Campa et al., 2015; McCormick et al., 2019).
GEFs aid in the exchange of GDP for GTP, thereby promoting
effector association, while GAPs enhance their intrinsically low
GTPase activity. Therefore, the recruitment of Rac, Cdc42, and
Arf GEFs and GAPs to the leading edge can indirectly regulate
effectors of cytoskeletal remodeling. Prototypical examples have
been reported for several Rac GEFs such as Vav1/3, Tiam1/2,
and P-rex1, which are recruited to the pseudopod membrane
in a PI3K-dependent manner to stimulate chemotaxis via Rac
[see (McCormick et al., 2019) and (Campa et al., 2015)].
Leukocytes also express several atypical Rac GEFs from the Dock
family that function through association with Elmo proteins
(Sanui et al., 2003). These bipartite GEFs specifically associate
with PtdIns(3,4,5)P3 for activation (Côté et al., 2005) but,

conversely, are also required for full PI3K activation and 3-PPIns
polarization during chemotaxis (Kunisaki et al., 2006). Similarly,
the recruitment to the pseudopod of several Arf GEFs, including
ARAP3 (Krugmann et al., 2002; Gambardella et al., 2013) and
GBF1 (Mazaki et al., 2012), occurs via 3-PPIns.

The recruitment and activation of the WAVE complex is
independently promoted by PtdIns(3,4)P2 and its binding
partner, lamellipodin (Lmpd) (Figure 2B, right). Initially
described during fibroblast migration, Lmpd recruitment to
activated RTKs is dictated by its PH domain, that has affinity
for PtdIns(3,4)P2, and by its Ras-association domain which can
interact with both active Ras and Rac (Krause et al., 2004; Law
et al., 2013); these determinants promote the direct interaction
between Lmpd and the WAVE complex at the leading edge that
controls migration speed and directional persistence. Lmpd can
also promote actin filament elongation at the leading edge by
recruiting Ena/VASP proteins (Krause et al., 2004; Michael et al.,
2010; Hansen and Mullins, 2015; Carmona et al., 2016). This
molecular axis has since been extended to other settings which
include leukocyte migration: the depletion of PtdIns(3,4)P2 by
overexpressing the PPIns 4-phosphatases INPP4A/B severely
inhibits the migration speed and ability of lymphocytes to
orient toward chemokines (Li et al., 2016). The details of how
Lmpd is activated downstream of G proteins in leukocytes is
unclear, but a mechanism can be gleaned by analogy with its
activation by RTKs. Not only are class IA PI3Ks and SHIP2
activated by RTKs to produce PtdIns(3,4,5)P3 and PtdIns(3,4)P2,
respectively, but so too are several GEFs for Rac and Ras
GTPases. Lmpd could sense similar inputs downstream of
GPCR activation.

Lastly, in addition to directly regulating the actin cytoskeleton,
a tantalizing possible function of PtdIns(3,4)P2 and Lmpd in
leukocyte migration may be that they regulate the selective
endocytosis of activated GPCRs via a pathway termed Fast
Endophilin-Mediated Endocytosis, or FEME for short (Boucrot
et al., 2015) (Figure 2B, right). This clathrin-independent
pathway relies on the localized synthesis of PtdIns(3,4)P2 sensed
by Lmpd, to engage endophilin and pre-localize this endocytic
complex at the leading edge of migrating cells (Chan Wah Hak
et al., 2018). In the event of receptor activation, PtdIns(3,4)P2
synthesis can trigger the downregulation of PI3K-signaling by
endocytosis of activated cell surface receptors. Although the
FEME pathway is active in lymphocytes, the role of endophilin
and FEME in leukocyte chemotaxis and GPCR trafficking are yet
to be explored.

Pathogens Interfere With Phosphoinositide
Signaling During Chemotaxis
Considering the fundamental role that PPIns play in various
cellular processes, it is not surprising that certain pathogens
have developed strategies to hijack inositide signaling to create
or sustain their replicative niche (Kumar and Valdivia, 2009;
Pizarro-Cerdá et al., 2015; Walpole and Grinstein, 2020).
The deployment of PPIns-specific metabolizing kinases and
phosphatases into the host cell by several pathogens is one
exemplary case.
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The Gram-negative obligate anaerobe Treponema denticola
(T. denticola) is a key bacterial pathogen in the development
of oral periodontitis (Sela, 2001), the leading cause of tooth-
loss worldwide (Darveau, 2010). In addition, periodontitis has
been increasingly implicated as a driver of other systemic
diseases, underscoring the importance of understanding its
pathogenesis. T. denticola is normally a minor component
of the diverse microbial community within the oral cavity,
but can opportunistically take hold during dysbiosis and
contribute to the inflammation-mediated breakdown of soft
tissues, bone resorption, and resulting tooth loss. Following its
attachment to the extracellular matrix, the spirochete expresses
a major outer membrane sheath protein known as Msp that
targets PI3K-signaling in neutrophils. Specifically, Msp reduces
neutrophil PI3K activity (Visser et al., 2013) and hyperactivates
PTEN (Jones et al., 2019), reducing cellular PtdIns(3,4,5)P3
and PtdIns(3,4)P2 levels. Consistent with its hyperactivation,
PTEN is constitutively recruited to the plasma membrane in
Msp treated-neutrophils (Jones et al., 2019). Because of the
aberrant PPIns signaling, Msp potently blocks the activation
of Rac1 and precludes the necessary actin rearrangements
that drive effective chemotaxis (Thomas et al., 2006; Jones
et al., 2019). The C-terminus of Msp is necessary for such
effects (Jones et al., 2017), but how or if the effector is
delivered into the host cell cytosol to manipulate PPIns-
metabolizing enzymes remains an unresolved question in
periodontal research.

PHOSPHOINOSITIDES DURING
PHAGOCYTOSIS

Phagocytosis is the process whereby cells internalize and dispose
of solid particles. Specific cell surface receptors recognize
phagocytic targets and deliver them into vacuoles known
as phagosomes. Phagocytosis plays essential roles throughout
the body and can be carried out by multiple cell types.
Phagocytosis carried out by myeloid cells such as macrophages,
neutrophils and dendritic cells, constitutes the first line of defense
against invading microorganisms and is also essential for the
development of the adaptive immune response through antigen
presentation. These myeloid cells are collectively known as
professional phagocytes. Secondly, phagocytosis is fundamental
for the daily clearance of billions of apoptotic cells, maintaining
homeostasis within an organism. Professional, as well as non-
professional phagocytes such as fibroblasts, epithelial, endothelial
and mesenchymal cells, can clear apoptotic cells. Finally,
phagocytosis of effete cells plays a pivotal role in wound
healing, tissue development, morphogenesis and regeneration.
The elimination of effete cells is carried out by both professional
and non-professional phagocytes.

Given this variety of biological functions and the myriad
phagocytic ligands, a sizeable number of receptors are required
to recognize and discriminate the diversity of phagocytic targets
(Flannagan et al., 2012). Amongst these receptors are: (1) pattern-
recognition receptors (PRRs) like MARCO that bind pathogen-
associated molecular patterns (PAMPs) present on microbial

surfaces; (2) receptors like TIM-4 that bind phosphatidylserine
and other apoptotic corpse markers; and (3) opsonic receptors
such as FcGR and iC3b that recognize immunoglobulin-
opsonized pathogens or complement-opsonized foreign and self-
antigens, respectively. The most studied of these is by far the
FcG receptor family, which we will use as a prototype throughout
this review.

The diversity of phagocytic targets and receptors entails
patently different molecular mechanisms of phagosome
formation, maturation and resolution. Despite these differences,
all types of phagocytosis share an inherent dependence on the
rearrangement of the actin cytoskeleton and on the dynamic
remodeling of the plasma membrane, as the phagosome evolves.

Phagocytosis can be divided into three main stages:
phagosome formation, phagosome maturation and phagosome
resolution. The formation of the phagosome involves probing
for potential targets by plasma membrane ruffling, followed
by target binding, pseudopod progression around the target,
and scission of the phagosome from the plasma membrane
(Hoppe and Swanson, 2004; Levin et al., 2016). During the
maturation stage nascent phagosomes convert into early
phagosomes that in turn evolve into late phagosomes and then
to phagolysosomes (Vieira et al., 2002; Canton, 2017; Levin et al.,
2017). The ultimate resolution of phagolysosomes entails their
shrinkage and recycling of membrane and luminal components
(Levin-Konigsberg et al., 2019).

Phosphoinositides in the cytosolic leaflet of the phagosomal
and plasma membrane orchestrate the changes in membrane
composition and actin cytoskeleton during each stage of
phagocytosis. The phosphoinositides with documented
essential roles during phagocytosis are PtdIns(3)P, PtdIns(4)P,
PtdIns(4,5)P2 and PtdIns(3,4,5)P3 (Bohdanowicz and Grinstein,
2013; Swanson, 2014; Levin-Konigsberg et al., 2019); these will
therefore occupy center-stage in this section of the review. The
following pages describe the dynamics of phosphoinositides
during phagosome formation, maturation and resolution
(Figure 3).

PHAGOSOME FORMATION

The formation of the phagosome can be divided into three main
stages: (1) Ruffling and probing for targets; (2) binding of the
target particle and pseudopod progression, and (3) phagosomal
scission. The following pages provide a detailed description of the
role of phosphoinositides during these sub-stages.

1. Ruffling and target probing: elevated PtdIns(4,5)P2
and PtdIns(3,4,5)P3.

Phagocytic cells, such as macrophages and dendritic cells,
constantly probe for targets by ruffling their plasma membrane
and extending pseudopods (Bohdanowicz et al., 2013). As
described in the chemotaxis section, these membranous
protrusions are driven by actin polymerization, which is
facilitated by elevated PtdIns(4,5)P2 levels. Additionally,
accumulation of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 at the
leading edge of ruffling membranes control actin assembly and
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FIGURE 3 | Phosphoinositide fluxes drive phagosome formation, maturation, and resolution. (A) Graphic representation of the process of phagocytosis. The three

main stages (phagosome formation, phagosome maturation and phagosome resolution) are depicted. (B) Representative confocal micrographs of some of the

biosensors used to detect phosphoinositides during the three main stages of phagocytosis, color-coded to match (C). (C) Temporal distribution of five major

phosphoinositides and the enzymes involved in their metabolism during phagosome formation, maturation and resolution. During these stages the levels of PtdIns4P

(green), PtdIns(4,5)P2 (blue), PtdIns (3,4,5)P3 (orange), PtdIns(3,4)P2 (red), and PtdIns(3)P (purple) in the cytosolic leaflet of the phagosome undergo drastic changes,

as indicated. These changes are mediated by a series of kinases (ovals), phosphatases (rounded rectangles/capsules), and phospholipases (rectangles) that

accumulate and are activated at the phagosomal membrane at distinct timepoints during the process of phagocytosis. PI4K, phosphoinositide 4-kinase; PI3K,

phosphoinositide 3-kinase; PLC, phospholipase C; SHIP, SH2 domain containing inositol polyphosphate 5-phosphatase; INPP, inositol polyphosphate phosphatase;

OCRL, oculocerebrorenal Lowe syndrome protein; PTEN, phosphatase and tensin homolog; MTM, myotubularin.

disassembly. PtdIns(4)P is also present in the plasma membrane
of resting phagocytes and during phagosome formation, however
its role during this stage is undefined.

At rest, PtdIns(4,5)P2 is localized in the cytosolic leaflet of
the plasma membrane primarily, where it accounts for about 1–
2% of the total phospholipid content (McLaughlin and Murray,
2005). The elevated levels of PtdIns(4,5)P2 in rufflingmembranes
are generated by PIP5KI, which phosphorylate PtdIns(4)P at the

D5 position of the inositol ring. Type II phosphatidylinositol
phosphate kinases could conceivably phosphorylate PtdIns(5)P
at the D4 position and generate PtdIns(4,5)P2. Moreover,
dephosphorylation of PtdIns(3,4,5)P3 by PTEN would also yield
PtdIns(4,5)P2. However, the contribution of the these latter
pathways to PtdIns(4,5)P2 formation in the resting state is
thought to be insignificant (Mondal et al., 2011; Bohdanowicz
and Grinstein, 2013) (Figure 3).
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The increased activity of PIP5KI observed during ruffling is
triggered, at least partially, through stimulation by Rho-family
(Tolias et al., 1995; Weernink et al., 2004) and Arf GTPases
(Honda et al., 1999; Brown et al., 2001). PtdIns(4,5)P2, can in
turn stimulate Rho GTPases, making this positive regulation
reciprocal (Tolias et al., 2000). Elevated levels of phosphatidic
acid have been reported in the plasma membrane of ruffling
phagocytic cells (Bohdanowicz et al., 2013), where it is thought
to activate PIP5KI via Arf6 (Honda et al., 1999). Remarkably,
production of phosphatidic acid from phosphatidylcholine
by PLD is also dependant on PtdIns(4,5)P2 as a cofactor
(Divecha et al., 2000). Accordingly, a constitutive positive
feedback loop between Rho and Arf GTPases, phosphatidic
acid, and PIP5KI allows for continuous probing by resting
phagocytic cells.

Actin polymerization in ruffles and pseudopods is coordinated
by elevated levels of PtdIns(4,5)P2 in multiple ways. Firstly,
PtdIns(4,5)P2 provides stability to the active state of NPFs
such as WASP and N-WASP, members of the of the Wiskott-
Aldrich syndrome protein (WASP) family (Rohatgi et al.,
2000, 2001). NPFs activate the Arp2/3 complex, which in
turn catalyzes branched actin filament nucleation (May et al.,
2000). PtdIns(4,5)P2-mediated WASP stabilization was also
shown to be dependent on Rho GTPases (Caron and Hall,
1998; May et al., 2000; Park and Cox, 2009). Furthermore,
PtdIns(4,5)P2 can directly activate formins, a family of linear
actin nucleators (Rousso et al., 2013). Secondly, PtdIns(4,5)P2
inhibits actin-severing proteins, such as gelsolin (Janmey and
Stossel, 1987) and cofilin (Gorbatyuk et al., 2006), thus
curtailing the depolymerization of the actin cytoskeleton.
Thirdly, PtdIns(4,5)P2 allows for the growth of actin filaments by
recruiting I-BAR proteins to the tip of the pseudopods, fostering
actin polymerization (Hotulainen and Saarikangas, 2016). Lastly,
PtdIns(4,5)P2 facilitates the tethering of the plasma membrane
to the underlying actin cytoskeleton through the ERM family of
anchor proteins (Bretscher et al., 2002).

Elevated basal levels of PtdIns(3,4,5)P3 have also been
reported in the plasma membrane of probing phagocytic cells
(Bohdanowicz et al., 2013; Canton et al., 2016), allowing
for the rearrangement of the actin cytoskeleton necessary
for pseudopod protrusion and increased phagocytic receptor
mobility. As described earlier in this review, PtdIns(3,4,5)P3
production primarily occurs through the phosphorylation
of PtdIns(4,5)P2 by class I PI3Ks. Mechanisms by which
PtdIns(3,4,5)P3 can promote actin rearrangement are described
in the following section but share similarities with proposed
functions in chemotaxis.

2. Target binding: high PtdIns(4,5)P2 and appearance
of PtdIns(3,4,5)P3 in the phagocytic cup and
Pseudopod progression: decline of PtdIns(4,5)P2 with
sustained PtdIns(3,4,5)P3.

Ruffling and probing increase the probability of contacting a
phagocytic target. Phagocytosis is initiated upon the binding of
phagocytic target ligands to one or more receptors expressed
on the surface of phagocytic cells. During the first stage of
phagocytosis PtdIns(4,5)P2 transiently rises, whereas a marked

accumulation of PtdIns(3,4,5)P3 occurs at the newly formed
phagocytic cup.

Ligation of multiple vicinal ligands causes receptor clustering
and activation (Jones et al., 1985). In the case of FcG receptors,
clustering prompts the phosphorylation of their immunoreceptor
tyrosine-based activation motifs (ITAMs) by non-receptor
tyrosine kinases of the Src family (Ghazizadeh et al., 1994),
which include Lyn and Hck (Wang et al., 1994; Carréno et al.,
2002). Phosphorylated ITAMs interact with Syk kinase which has
two Src-homology two domains (Greenberg et al., 1996). Syk
then recruits and phosphorylates scaffolding adaptors like Gab2,
which in turn recruit p85, the catalytic domain of PI3K to the site
of receptor binding (Gu et al., 2003). PI3K catalyzes the formation
of PtdIns(3,4,5)P3 from PtdIns(4,5)P2, and important signal for
the progression and completion of phagocytic cup formation
(Figure 3).

Concomitant with the synthesis of PtdIns(3,4,5)P3 is the
formation of its precursor PtdIns(4,5)P2. Extending pseudopods
exhibit a moderate elevation of PtdIns(4,5)P2 relative to
resting plasma membrane. Increased production rather than
reduced consumption explains this elevation. PIP5KI activity is
stimulated by elevated phosphatidic acid levels catalyzed by the
enhanced activity of PLD (Divecha et al., 2000) observed during
phagocytosis (Kusner et al., 1999; Lee et al., 2002; Iyer et al., 2004).
In addition, activated Rho GTPases downstream of engaged
phagocytic receptor signaling sustain the activity of PIP5KI
(Fairn et al., 2009). Together, these effectors elevate PtdIns(4,5)P2
in the periphery of forming phagocytic cups (Botelho et al., 2000;
Hoppe and Swanson, 2004).

Upon particle engagement and receptor clustering, the
extending pseudopods wrap around the phagocytic target in a
zipper-like manner. Two opposing modalities of actin dynamics
favor the expansion of the contact area with the phagocytic target.
Initially, branched and linear actin filament polymerization is
required to drive the plasma membrane around the particle.
Conversely, actin disassembly must occur at the base of the
phagocytic cup; otherwise, polymerised actin would act as a
mechanical obstacle to proper engulfment (O’Callaghan et al.,
2011), preventing delivery of endomembranes (Bajno et al., 2000;
Dewitt et al., 2006) and restricting receptor clustering at the
phagocytic synapse (Treanor et al., 2011; Freeman et al., 2015).
While PtdIns(4,5)P2 is known to facilitate the growth of actin
filaments in a manner analogous to the one described above
for the ruffling membranes, PtdIns(3,4)P2 can also coordinate
actin assembly. PtdIns(3,4)P2 formed by the dephosphorylation
of PtdIns(3,4,5)P3 is known to recruit Lamellipodin and thereby
ENA/VASP to the leading edge of migrating cells (Krause
et al., 2004) and could tentatively play an analogous role
during phagosome formation. In line with this, Ena/VASP
family proteins seem to be essential for the FcγR receptor-
mediated remodeling of the actin cytoskeleton (Coppolino, 2001)
(Figure 3).

PtdIns(4,5)P2 then disappears from the base of the phagocytic
cup, coinciding in time and space with the disassembly of cortical
actin (Scott et al., 2005). PtdIns(4,5)P2 disappearance from the
base of the phagocytic cup can be attributed to three main factors.
Firstly, PtdIns(4,5)P2 is consumed by PI3K when producing
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PtdIns(3,4,5)P3. Secondly, PtdIns(3,4,5)P3 recruits PLC (see
Table 1) to the phagosome where it hydrolyzes PtdIns(4,5)P2
(Falasca et al., 1998) and is likely to represent the main factor
responsible for the disappearance of PtdIns(4,5)P2 (Azzoni
et al., 1992; Liao et al., 1992). Lastly, PtdIns(4,5)P2 can also
be dephosphorylated by the inositol 5-phosphatases INPP5B
(Bohdanowicz et al., 2012) andOCRL (Mehta et al., 2014) that are
recruited to sites of phagocytosis, producing a transient increase
in PtdIns(4)P (Bohdanowicz et al., 2012; Levin et al., 2015).

Breakdown of PtdIns(4,5)P2 is required for completion of
phagocytosis for twomain reasons. Firstly, its removal terminates
actin polymerisation at the base of the cup, which is necessary
to induce membrane curvature and for the focal secretion
of endomembranes. Consistently, inhibition of PLC impairs
phagosome formation (Botelho et al., 2000) and is accompanied
by persistent actin accumulation at the base of the phagocytic
cup (Scott et al., 2005). Secondly, DAG and IP3, the two
second messengers produced by the PLC-mediated hydrolysis of
PtdIns(4,5)P2 play important roles in phagocytosis (Bengtsson
et al., 1993; Ueyama et al., 2004; Nunes et al., 2012; Schlam
et al., 2013). DAG is not only a source of PA following its
phosphorylation by DAG-kinase (Bohdanowicz and Grinstein,
2013), but it also activates conventional and novel protein
kinase C (PKC) which seemingly participates in phagocytosis
(Ueyama et al., 2004) and promotes the activation of the NADPH
oxidase (He et al., 2004; Cheng et al., 2007). Furthermore, IP3
induces calcium release from the ER that is thought to promote
membrane fusion during phagosome formation (Jaconi et al.,
1990; Bajno et al., 2000; Braun et al., 2004; Dewitt et al., 2006).
Thus, the disappearance of PtdIns(4,5)P2 from the base of the
phagocytic cup is not purely a consequence of the formation
of PtdIns(3,4,5)P3, but is in effect, an important outcome of
PtdIns(3,4,5)P3 formation.

Lastly, accumulation of PtdIns(3,4,5)P3, together with the
clearance of PtdIns(4,5)P2, play an essential role in regulating the
ability of receptors to diffuse and recycle by directly removing
actin from the base of the phagocytic cup. PtdIns(3,4,5)P3
binds and recruits GAPs, such as ARHGAP12, ARHGAP25,
and SH3BP1 to the phagocytic cup (Schlam et al., 2015).
This, along with the elimination of PtdIns(4,5)P2, results in
the inactivation of Rho GTPases and prompts the termination
of actin polymerisation that would otherwise curtail the
mobility of transmembrane proteins (including receptors) via the
cytoskeletal picket fence.

3. Phagosome Scission: disappearance of PtdIns(3,4,5)P3 and
production of PtdIns(3)P

Sealing of the phagosome occurs when the pseudopods fully
surround the target particle and fuse at their distal ends. Effectors
of PtdIns(3,4,5)P3 appear to be crucial for the two main events
necessary for proper internalization at this stage. These are (1)
clearance of actin surrounding the phagosome (Cox et al., 1999;
Beemiller et al., 2010) and (2) constriction of the exofacial leaflets
of the plasma membrane where the pseudopods meet to promote
scission of the phagosome.

The role of PtdIns(3,4,5)P3 and its effectors in mediating
actin clearance has been described above. In support of

PtdIns(3,4,5)P3 being necessary for phagocytic cup formation
is the observation that inhibition of PI3K arrests phagosome
formation and leads to actin accumulation at the base of
frustrated phagosomes (Araki et al., 1996; Cox et al., 1999).
Furthermore, expression of constitutively active mutants of
Rho GTPases that antagonize actin disassembly yields a similar
phenotype of abortive phagocytic cups (Beemiller et al., 2010).

Relatively little is known about the mechanisms behind
membrane fusion during scission; however, myosin-driven
contractility is probably involved.Myosin X (Cox et al., 2002) and
myosin IC (Swanson et al., 1999) localize to sites of phagosome
closure, where they are thought to play independent roles during
sealing. Interestingly, myosin X harbors a PH domain that binds
PtdIns(3,4,5)P3 enabling its recruitment to the plasmamembrane
(Isakoff et al., 1998). Accordingly, the PI3K inhibitor wortmannin
prevents myosin X accumulation and expression of a truncated
mutant of myosin X reduces phagocytic efficiency (Cox et al.,
2002). Surprisingly, the antagonistic effects on phagosomal
scission caused by PI3K inhibition seem to be size dependent.
PI3K inhibitors only arrest phagocytosis of comparatively large
targets (>1µm) (Cox et al., 2002) while internalization of smaller
particles (< 1µm) seems to be largely unaffected (Cox et al., 1999;
Vieira et al., 2001).

PtdIns(3,4,5)P3 disappears from the phagosomal membrane
shortly after scission occurs (Marshall et al., 2001) (Figure 3).
Conversion of PtdIns(3,4,5)P3 into PtdIns(3,4)P2 occurs at this
stage since SHIP, a 5-phosphatase (McCrea and De Camilli,
2009), accumulates at the phagosomal membrane (Marshall et al.,
2001; Kamen et al., 2007). It is unclear whether PtdIns(3,4)P2
plays a role during this stage, other than being a substrate for the
formation PtdIns(3)P by INPP4B, a 4-phosphatase (Nigorikawa
et al., 2015). PtdIns(3,4,5)P3 also can be dephosphorylated by
PTEN to regenerate PtdIns(4,5)P2 (Maehama and Dixon, 1998).

Lastly, PIP5KIs detach from the membrane of the newly
formed phagosome, likely preventing further formation of
PtdIns(4,5)P2 from PtdIns(4)P (Figure 3). This detachment
is partially due to the reduced electronegativity of the early
phagosomal membrane, since PIP5KI isoforms contain a
polycationic region that preferentially binds negatively charged
membranes (Fairn et al., 2009).

PHAGOSOME MATURATION

The maturation of the phagosome is characterized by a
series of fission and fusion events that occur soon after
sealing. These steps modify both luminal and membrane
components of the phagosome and give rise to the ultimate
stage of degradation and reabsorption of the cargo during
phagosome resolution. The nascent phagosome undergoes
stepwise fusion events with early endosomes, late endosomes
and lysosomes, which leads to the formation of the early
phagosome, late phagosome and phagolysosome, respectively.
Microbicidal properties, acidic pH and degradative enzymatic
machinery are gradually acquired during phagosomematuration.
Nevertheless, it is worth mentioning that differences in the
extent and rate of phagosome maturation have been reported
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between different phagocytic cells (Nordenfelt and Tapper, 2011;
Canton et al., 2014). The nature of the engulfed material
also accounts for some of the heterogeneity observed during
phagosome maturation. For example, phagosomes containing
pathogens need to preserve selected peptides for posterior
antigen presentation to lymphocytes (Savina and Amigorena,
2007). On the other hand, clearance of apoptotic cells requires
rapid acidification and maturation, in addition to secretion of
anti-inflammatory cytokines in order to prevent auto-immunity
(Ravichandran, 2010; Uderhardt et al., 2012).

As mentioned earlier, phagosome maturation can be
additionally sub-classified into three main sequential stages: the
early phagosome, the late phagosome and the phagolysosome.
These are discussed individually below.

PtdIns(3)P Defines the Early Phagosome
Phagosome maturation starts as soon as the nascent phagosome
detaches from the plasmamembrane. Nevertheless, fusion events
with endomembranes occur even before phagosome sealing
is completed (Bohdanowicz et al., 2012). The newly formed
phagosome preferentially fuses with early endosomes (Mayorga
et al., 1991; Desjardins et al., 1997), resulting in a poorly
degradative, slightly acidic hybrid organelle. Rab family proteins
are crucial for vesicular traffic and phagosome fusion events
during this and subsequent stages of maturation (Kinchen and
Ravichandran, 2008; Fairn and Grinstein, 2012). Rab5 is involved
in the early steps and is the prototypical marker of early
phagosomes (Bucci et al., 1992; Roberts et al., 2000; Vieira et al.,
2003).

Relevant to this review is the fact that the class III
phosphatidylinositol 3-kinase, Vps34, is one of the key effectors
of Rab5 (Christoforidis et al., 1999; Vieira et al., 2001;
Munksgaard et al., 2002). Vps34 is present in early endosomes
where it generates PtdIns(3)P by phosphorylating PtdIns on the
D3 position. PtdIns(3)P is also the defining phosphoinositide of
the early phagosome (Vieira et al., 2001) (Figure 3). Depletion of
PtdIns(3)P through pharmacological inhibition of Vps34 arrests
phagosome maturation at the early stage (Stephens et al., 1994;
Fratti et al., 2001), demonstrating the crucial role of PtdIns(3)P
in the progression of phagosomes.Multiple effectors are recruited
to the early phagosome by virtue of PX and FYVE domains that
bind selectively to PtdIns(3)P.

EEA1 is one of the effectors of PtdIns(3)P that binds the
phosphoinositide through its FYVE domain (Simonsen et al.,
1998). EEA1 interacts simultaneously with the active form
of Rab5 (Mishra et al., 2010) and with PtdIns(3)P in the
membrane of early phagosomes and early endosomes. This dual
interaction favors early endosome-early phagosome tethering.
In addition, EEA1 interacts with the soluble NSF-attachment
protein receptors (SNAREs) including syntaxins 6 and 13, which
further promotes membrane fusion after tethering (Simonsen
et al., 1999; Collins et al., 2002). Accordingly, microinjection
of neutralizing EEA1 antibodies arrest phagosome maturation
(Fratti et al., 2001).

The disappearance of PtdIns(3)P from the phagosomal
membrane signals the termination of the early phagosomal stage.
Three different mechanisms could account for PtdIns(3)P

disappearance: phosphorylation, dephosphorylation, or
hydrolysis. The relative contribution of these pathways is
currently unknown; however, the enzymes that can catalyze
these reactions are known to be present. PtdIns(3)P can
be phosphorylated by PIKfyve on its D5 position, yielding
PtdIns(3,5)P2 (Burd and Emr, 1998). Additionally, MTM1, a
member of the myotubularin family of 3-phosphatases capable
of breaking down PtdIns(3)P into PtdIns can also displace Vps34
from endosomal membrane, favoring PtdIns(3)P depletion (Yan
and Backer, 2007). Lastly, lysosomal phospholipases can break
down PtdIns(3)P (Ching et al., 1999), an event likely to occur
upon formation of intraluminal vesicles (ILVs).

Despite the fact that multiple fusion events take place during
phagosome maturation, the surface area of the phagosome
remains virtually unchanged. This suggests that membrane
recycling mechanisms must occur concomitantly. Retrograde
transport of phagosomal components to the trans-Golgi network
is partially responsible for membrane recycling, a process
mediated by the retromer complex (Hierro et al., 2007).
The retromer is composed of a sorting nexin (SNX) dimer
(SNX1/SNX2 and SNX5/SNX6) and a cargo-recognition trimer
(Vps26-Vps29-Vps35). SNXs contain a PX domain that serves to
recruit them to the early phagosome, where PtdIns(3)P is present.
Tellingly, the last steps of retrograde traffic are completed during
the late stages of phagosome maturation (Bonifacino and Hurley,
2008).

As previously mentioned, in addition to outward vesiculation,
the phagosomal membrane experiences inward budding and
generates ILVs destined for degradation (Lee et al., 2005). ILV
formation in phagosomes and endosomes is dependent on the
endosomal sorting complex required for transport (ESCRT)
(Vieira et al., 2004; Babst, 2011). The ESCRT super-complex
consists of four smaller complexes (ESCRT-0-III) that together
recognize ubiquitinated cargo such as Fcγ receptor (Booth et al.,
2002; Wollert and Hurley, 2010). Most relevant to this review,
ESCRT-0 bears a FYVE domain-containing subunit, known as
Hrs, through which it binds to PtdIns(3)P. Thus, ESCRT-0
gets recruited to the maturing phagosome (Vieira et al., 2004),
triggering the assembly of the entire ESCRT super-complex. This
results in the inward budding of PtdIns(3)P-enriched ILVs that
are degraded at later stages of phagosome maturation.

Reactive oxygen species, a crucial component of the
microbicidal properties of phagocytic cells (Nunes et al., 2013),
are produced by the action of NOX2 in the phagosomal lumen.
Most significant to this review is the fact that p40phox, one of
the six subunits that make up the oxidase, has a PX domain that
binds PtdIns(3)P, making the phosphoinositide crucial for the
sustained stimulation of NOX2 in early phagosomes (Ueyama
et al., 2007, 2008). Inhibition of PI3K, consequently, prevents the
retention of p40phox at the phagosomal membrane and reduces
the production of reactive oxygen species (Tian et al., 2008).

PtdIns(4)P Defines the Late Phagosome
The early phagosome then transitions into a late phagosome,
which is more acidic and degradative than earlier stages. A
crucial step for this transition is the conversion from a Rab5-
positive to a Rab7-positive organelle. As maturation continues,
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the phagosome migrates toward the microtubule-organizing
center (MTOC), which promotes the fusion with late endosomes
and lysosomes (Harrison et al., 2003). The active form of
Rab7, together with two of its effectors –the Rab7-interacting
lysosomal protein (RILP) and the oxysterol-binding protein-
related protein 1L (ORP1L)– link the phagosome with the
dynein/dynactin motor and are therefore responsible for this
centripetal movement (Johansson et al., 2007). Rab7 and RILP
also induce the formation of tubular membrane protrusions
that promote phagosome-lysosome biogenesis and acidification
(Harrison et al., 2003; Sun-Wada et al., 2009).

As mentioned earlier, the retromer is recruited initially to
the early phagosome by PtdIns(3)P. Nevertheless, completion of
retrograde transport occurs during the late stages through the
interaction of Rab7 with the retromer’s cargo-recognition trimer
(Vps26-Vps29-Vps35). Rab7 depletion affects the structure of the
retromer in endosomes and consequently impairs the retrieval
of the mannose 6-phosphate receptor to the trans-Golgi network
(Rojas et al., 2008).

From a phosphoinositide perspective, a marked transition is
observed when the early phagosome becomes a late phagosome.
Whereas PtdIns(3)P is characteristic of the early phagosome,
PtdIns(4)P is the major phosphoinositide present at the late
phagosome and phagolysosome stages (Jeschke et al., 2015). Soon
after PtdIns(3)P disappears, PtdIns(4)P kinase 2A (PI4K2A),
an enzyme responsible for PtdIns(4)P synthesis, accumulates in
endosomes (Ketel et al., 2016) and late phagosomes (Jeschke
et al., 2015). PtdIns(4)P persists in the phagosomal membrane
well into the resolution stage, when its concentration gradually
decreases (Figure 3). The accumulation of PtdIns(4)P was shown
to be indispensable for proper phagosomal acidification (Levin
et al., 2017). A similar role for PI4K2A and PtdIns(4)P as
important determinants of maturation has also been recognized
in autophagosomes (Albanesi et al., 2015). Yet, the specific
effectors of PtdIns(4)P mediating late maturation and resolution
are still poorly understood.

The Phagolysosome
Phagolysosome biogenesis is the next stage in phagosome
maturation. Fusion of the late phagosome with lysosomes gives
rise to the phagolysosome, the most acidic, degradative and
microbicidal organelle. The phagolysosome has an extremely low
luminal pH due to the acquisition of additional copies of the
proton-pumpingV-ATPase. This acidic pH allows for the optimal
activity of hydrolytic enzymes (Appelqvist et al., 2013) essential
for the ultimate degradation of phagosomal contents.

Of particular interest is the accumulation of PtdIns(3,5)P2
in the lysosomal system (Samie et al., 2013; Takatori et al.,
2016). PtdIns(3,5)P2 is produced via phosphorylation of
PtdIns(3)P on its D5 position by PIKfyve (Burd and Emr,
1998). The phosphatase Fig4 harbors a Sac domain and
is responsible for the reverse reaction, dephosphorylating
PtdIns(3,5)P2 back to PtdIns(3)P (Mccartney et al., 2014).
PtdIns(3,5)P2 breakdown can additionally be catalyzed by
myotubularin 3-phosphatases, yielding PtdIns(5)P (Oppelt
et al., 2012). Remarkably, PtdIns(3,5)P2, PIKfyve and Fig4
all localize to lysosomes, together with the scaffold protein

ArPIKfyve/Vac14 (Duex et al., 2006; Jin et al., 2008; Sbrissa
et al., 2008). Observations that depleting PtdIns(3,5)P2 results
in enlarged lysosomes and disrupts lysosomal activity suggest
that this complex plays an important functional role in
endolysosomes (Ho et al., 2012; Mccartney et al., 2014). Purely
in the context of phagocytosis, inhibition of PIKfyve blocks
phagosome maturation, seemingly through the inactivation of
the transient receptor potential cation channel of the mucolipin
subfamily member 1 (TRPML1) (Kim et al., 2014). Previously,
PtdIns(3,5)P2 was shown to control the activity of TRPML1
(Dong et al., 2010), a cation channel found in lysosomes that
promotes Ca2+ efflux from the lysosome into the cytosol (Wang
et al., 2014). The role of Ca2+ in phagosome maturation and
endomembrane fusion has been documented (Vergne et al.,
2003), accounting for the observation that TRPML1 inhibition
blocks fusion of phagosomes and lysosomes (Dayam et al., 2015).

PHAGOSOME RESOLUTION

The final stage of phagocytosis, phagosome resolution, entails
the redirection and degradation of the phagosomal membrane
and of luminal components. This stage is also the least well
understood. The phagosomal membrane needs to be resorbed
once the phagosomal luminal contents are cleared; this includes
disposal or recycling of the phosphoinositide constituents of the
phagosomal membrane. Earlier stages of phagosome maturation
exhibit membrane recycling to the plasma membrane or the
trans-Golgi network, as well as some degradation through
the formation of ILVs. In contrast, relatively little is known
about the degradation of the phagolysosomal membrane. In
lysosomes, tubulation and fission of vesicles can occur and
seems to require the activity of both mTOR and Arl8B (Zoncu
et al., 2011; Saric et al., 2016). A similar process putatively
promotes the transport of membranous components out of
the phagolysosome, analogous to the process observed during
antigen presentation (Mantegazza et al., 2014). Evidence from the
last decade suggests that PtdIns(4)P and PI4K2A, present in late
phagosomes and phagolysosomes, are able to recruit the exocyst,
a multimeric complex involved in exocytosis, and mediate
membrane recycling to the plasma membrane (Ketel et al., 2016).
Further, PtdIns(4)P regulates retromer function and has been
linked to actin nucleation via WASH. In the phagolysosomal
membrane, WASH and actin-rich regions have also been
reported to co-localize with PtdIns(4)P (Levin-Konigsberg et al.,
2019) and may serve to propel the initial extension of resorption
tubules. In this regard it is interesting to note that PI4K2A
and late phagosomal PtdIns(4)P have recently been described to
support Toll-like receptor signaling and antigen presentation in
dendritic cells (López-Haber et al., 2020).

PtdIns(4)P, which is abundant in maturing phagolysosomes,
becomes depleted as the phagolysosome undergoes tubulation
and resorbs (Figure 3). PtdIns(4)P can be converted into
PtdIns(3,4)P2 or PtdIns(4,5)P2 by class II PI3Ks (Misawa et al.,
1998) and PI5 kinases (Desrivières et al., 1998), respectively. Still,
these lipids have not been reliably detected in phagolysosomes
and neither have PtdIns(4)P-specific phosphatases. Rather,
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the main enzyme known to dephosphorylate PtdIns(4)P into
PtdIns is Sac1 which resides in the ER (Moser von Filseck
et al., 2015). Recently, we showed that PtdIns(4)P is extracted
from the phagosomal membrane, and transferred to the ER,
where it is available to Sac1 for hydrolysis (Levin-Konigsberg
et al., 2019). This removal is facilitated by the lipid transfer
protein and Rab7 effector ORP1L at membrane contact sites
between the ER and the phagolysosome (Levin-Konigsberg et al.,
2019). Furthermore, we showed that tubules emerge from the
PtdIns(4)P-rich clusters in the resolving phagolysosome, where
ADP-ribosylation factor-like protein 8B (ARL8B) and SifA-
and kinesin-interacting protein/pleckstrin homology domain-
containing family M member 2 (SKIP/PLEKHM2) accumulate.
Accordingly, premature hydrolysis of PtdIns(4)P impairs SKIP
recruitment and phagosome resolution (Levin-Konigsberg et al.,
2019).

CONCLUDING REMARKS

The development of fluorescent biosensors of PPIns provided
an unparalleled tool to investigate the role of these key lipids
in leukocyte biology. By enabling their visualization in live cells,
we have started to learn about their distribution, dynamics
and metabolism under physiologically relevant conditions. These
critical determinants of PPIns function could not previously
be divined by conventional lipidomic approaches. While great

strides have been made in the last two decades using biosensors,
it bears emphasizing that the probes are inevitably invasive and
that caution must be used limiting their expression, as they
can compete for and scavenge endogenous ligands, potentially
altering responsiveness. In addition, suitable probes still need to
be developed to visualize species like PtdIns(3,5)P2, that have
been identified as critical determinants of endomembrane traffic
and of ion transport. Developing improved probes and applying
them to increasingly complex biological systems by intravital and
lattice light-sheet microscopy will undoubtedly be the focus of
research in the immediate future.
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