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Cryo-electron microscopy (cryo-EM) is an important
experimental technique for the structural analysis of
biomolecules that are difficult or impossible to crystal‐
lize. The three-dimensional structure of a biomolecule
can be reconstructed using two-dimensional electron-
density maps, which are experimentally sampled via the
electron beam irradiation of vitreous ice in which the
target biomolecules are embedded. One assumption
required for this reconstruction is that the orientation of
the biomolecules in the vitreous ice is isotropic. How‐
ever, this is not always the case and two-dimensional
electron-density maps are often sampled using pre‐
ferred biomolecular orientations, which can make
reconstruction difficult or impossible. Compensation for
under-represented views is computationally feasible for
the reconstruction of three-dimensional electron density
maps, but one must know whether or not there is any
missing information in the sampled two-dimensional
electron density maps. Thus, a measure to identify
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whether a cryo-EM data is obtained from the bio‐
molecules adopting preferred orientations is required.
In the present study, we propose a measure for which
the geometry of manifold projected onto a low-
dimensional space is used. To show the usefulness of the
measure, we perform simulations for cryo-EM experi‐
ment of a protein. It is found that the geometry of
manifold projected onto a two-dimensional space for a
protein adopting a preferred biomolecular orientation is
significantly different from that for a protein adopting a
uniform orientation. This result suggests that the
geometry of manifold projected onto a low-dimensional
space can be used for the measure for the identification
that the biomolecules adopt preferred orientations.
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Introduction
Cryo-electron microscopy (cryo-EM) is a powerful

experimental technique for the structural analysis of
biomolecules [1–4]. In cryo-EM experiments, two-
dimensional electron-density maps of a biomolecule are

Cryo-electron microscopy (cryo-EM) enables to reconstruct the three-dimensional electron density map of a biomolecule using two-dimensional
electron-density maps, experimentally sampled via electron beam irradiation of vitreous ice in which the biomolecules were embedded.
However, preferred biomolecular orientations in the vitreous ice often hamper the reconstruction. Thus, it is necessary to identify whether
cryo-EM data is obtained from the biomolecules adopting a preferred orientation. Here we propose a measure for the identification based on the
manifold learning. It is found that our measure can certainly identify that the biomolecules adopt preferred orientations, suggesting a usefulness
of the measure.
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sampled via the electron beam irradiation of vitreous ice
containing several target biomolecular particles. A three-
dimensional electron-density map of the biomolecule can
be reconstructed from two-dimensional electron-density
maps because each biomolecular particle has a different
orientation relative to the electron beam. One difference
between cryo-EM and X-ray crystallography is that in the
former, the three-dimensional structures of biomolecules
are reconstructed without crystallization. This facilitates the
structural analysis of biomolecules that are difficult or
impossible to crystallize.

One assumption required for the reconstruction is the
isotropic orientation of biomolecules in vitreous ice.
However, this is not always the case and two-dimensional
electron-density maps are often sampled from a preferred
biomolecular orientation [4]. The preferred orientation of
a biomolecule is often manifested during the process of
preparing vitreous ice. In this process, the solution in
which the target biomolecules are solvated is injected into a
hole in a cryo-EM grid. The biomolecules in the hole are
typically absorbed by an air-water surface [4], causing
them to adopt their preferred orientation. The preferred
orientation of biomolecules results in resolution anisotropy
of the three-dimensional electron density map [5] and
hampers biomolecular reconstruction. Efforts to resolve this
issue are ongoing [6–18]. One potential method is to tilt the
vitreous ice [6–9]. For example, Tan et al. demonstrated
that tilting vitreous ice improves directional isotropy in
biomolecules exhibiting preferred orientations [9].
However, it is inevitable that the ice will become thicker in
some areas after tilting [4,9]. Capturing the same field of
view at multiple tilt angles has also been proposed [6–8],
but this method suffers from the beam-induced movement
of biomolecules [10], which limits the resolution of the
three-dimensional electron density maps. Another method
is to treat the cryo-EM grid to induce another orientation
[11–16]. However, this method is generally impractical [9].

Compensation for under-represented views is computa‐
tionally feasible for the reconstruction of three-dimensional
electron density maps [17], but one must know whether or
not there is any missing information in the sampled two-
dimensional electron density maps [18]. Thus, a measure to
identify whether a cryo-EM data is obtained from the
biomolecules adopting preferred orientations is required.
In the present study, we propose a measure for the
identification. The manifold learning [19–22] provides the
measure. Here, we will describe the concept of a manifold
under the assumption of an isotropic orientation of
biomolecules. Specifically, we consider a manifold in the
following high-dimensional space [22]. A two-dimensional
electron-density map is represented by a point in the high-
dimensional space spanned by the set of ρ(k, l), which
represent the electron density at pixel (k, l) (Fig. 1(a)).
Because the values of ρ(k, l) of a map are completely

determined by the orientations of a biomolecule (i.e., there
is a one-to-one correspondence between the values of
ρ(k, l) of a map and the orientations of a biomolecule),
all points will reside in a confined space, which is the
manifold, within the high-dimensional space (Fig. 1(a)).
The low-dimensional geometry of a manifold is reflected by
the set of geodesic distances between the corresponding
points [21]. For example, in the manifold shown in Figure
1(a), the geodesic distance dG(i, k) is less than dG(i, j) when
the i-th map is more similar to the k-th map than it is to the
j-th map. Similar maps indicate that they are obtained from
the biomolecules with a similar orientation relative to the
electron beam. Thus, all points on a manifold are arranged
in accordance with the orientation of the corresponding
biomolecule. Such characteristics cannot be obtained when
using the Euclidean distance because the Euclidean
distance dE(i, k) is larger than dE(i, j) as shown in Figure
1(a).

Because of the low-dimensional geometry of manifold,
the manifold can be projected onto a low-dimensional
space. Projection is performed using methods based on the
geodesic distance [21]. After the projection, manifold can
be visually analyzed in accordance with the distribution of
the sites in the low-dimensional space (we refer to this type
of analysis as manifold learning). In previous studies, we
have performed simulations for a cryo-EM experiment of
adenylate kinase (ADK) that adopts two states, open and
closed states, respectively [21,22]. Through an analysis of
the manifold projected onto a three-dimensional space, it
was found that the points were arranged in accordance with
the orientation with respect to the direction of the electron
beam [21].

Regarding manifolds of two-dimensional electron
density maps of biomolecules with preferred orientations in
vitreous ices, the points for maps with failed sampling are
missing in the high-dimensional space, but the positions of
the points experimentally sampled should not be changed
(Fig. 1(b)). However, because the geodesic distances
between the maps change, the geometry of the manifold
projected onto a low-dimensional space would change.
Thus, the geometry of the manifold projected onto a low-
dimensional space can be used for a measure whether the
biomolecules in vitreous ices adopted preferred orientations
in performing a cryo-EM experiment. To demonstrate
this, in this study we performed simulations of cryo-EM
experiments to investigate the geometry of projected
manifolds for two-dimensional electron-density maps of a
protein adopting preferred orientations. In our simulations,
we first obtained two-dimensional electron-density maps of
a protein adopting an isotropic orientation by rotating the
protein. This was accomplished by randomly assigning
polar coordinates θ and ϕ. Next, two-dimensional electron-
density maps of a protein adopting a preferred orientation
were obtained by limiting the range of θ or ϕ. To project the
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manifold, first the geodesic distances between the points
were computed using the Isomap method [23]. Then, the
projection onto a low-dimensional space was performed
using the multidimensional scaling (MDS) [24] method
with the geodesic distances computed with the Isomap
method. We discussed how the geometry of the manifold
projected onto a low-dimensional space changed by
limiting the range of θ or ϕ.

Materials and Methods
Simulation of cryo-EM experiments

As a target biomolecule, we considered ADK in the
open state. Its crystal structure model for ADK in an
open state was taken from the Protein Data Bank [PDB ID:
4ake] [25]. We considered 2,000 conformations of the
ADK protein that were sampled using molecular dynamics
(MD) simulations in our previous study [21]. Although
MD simulations were performed in an explicit solvent,
only the protein conformations were used for subsequent
calculations.

Two-dimensional electron-density maps were obtained
using the following procedure [22]. First, each protein

conformation was rotated around the center of the core
domain by assigning random polar coordinate values (θ, ϕ)
(Fig. 2(a)). No preferred orientation was assumed in
this step. Next, two-dimensional electron-density maps
projected along a fixed direction (z-axis in Fig. 2(a)) were
calculated by counting the number of electrons in each
pixel as follows. Suppose that the number of electrons for
the i-th atom is ne(i), whose value is, for example, 1 for H,
8 for O, and so on. Also, the position of the i-th atom is
denoted by (x(i), y(i), z(i)). The electron density at pixel
(k, l) in the two-dimensional electron density map, denoted
by ρ(k, l) in Introduction section, is defined by

ρ k,  l = ∑i = 1

nAtoms ne i F i (1)

F i =

1 (xP k, l − δ
2 ≤ x i ≤ xP k, l + δ

2,

yP k, l − δ
2 ≤ y i ≤ yP k, l + δ

2)

0 (Otherwise)

. (2)

Figure 1 Schematic representations of the manifolds of two-dimensional electron-density maps of a protein adopting an isotropic (a) or
preferred (b) orientation. Figures shown in Figures (c), (d) and (e) are schematic representation of a manifold on a two-dimensional space. It
should be noted that this manifold is not the manifold projected onto a low-dimensional space. Suppose that the value of dG(i0, iN) between points
i0 and iN is computed to project the manifold onto a one-dimensional space. Cases where ε is (d) larger than dE(i0, iN) and (e) smaller than dE(i0, iN)
are illustrated. The range of dE(i, j)<ε is indicated by circles with solid and dotted lines. The black solid line in (d) and dotted line in (e) represent
the Euclidean distances between points.
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Here, the central position of the pixel (k, l) in the two-
dimensional electron density map is denoted by (xP(k, l),
yP(k, l)). Also, the pixel size is defined by δ×δ. In the
present study, δ was set to 4.0 Å and the number of pixels
was 32×32. It is noted that no limitation was set to z(i) in
eq. (2), indicating that all electrons in the ADK within the
pixel (k, l) were counted in eq. (2). Because the average of
the root-mean squared displacement among the 2,000
conformations, D, defined by

D ≡ 1
2000NCα

∑i = 1
2000∑j = 1

NCα r i,  j − rPDB j 2 , (3)

where NCα is the number of Cα atoms, and r(i, j) and rPDB(j)
are the position of the jth Cα atom of ith MD conformation,
and that of the PDB structure, respectively, was less than
4 Å (1.53+0.28 Å (standard deviation)), the electron density
maps would be regarded as those obtained from a fixed
structure (The results described below would be obtained
when using the PDB structure. A reason why the MD

Figure 2 (a) Schematic representation of computing a two-
dimensional electron-density map. (b) Some two-dimensional electron
density maps obtained using the procedure described in the subsection
“Simulation of cryo-EM experiment”.

simulation data was used was that in the future study we
extend the present study to the cases in which the protein
fluctuation is taken into consideration by reducing the size
of the pixel). Additionally, because water molecules were
excluded, the maps contained no noise. We refer to the
simulation using these 2,000 maps as “Simulation I”
hereafter.

To investigate how the geometry of the manifold
projected onto a low-dimensional space is changed by
limiting the range of (θ, ϕ), Simulations II and III were
performed (Table 1). In Simulation II, the range of θ was
set to 0°≤θ≤90° and 90°+Δθ≤θ≤180° (Δθ=10°, 20°, or 30°).
In Simulation III, the range of ϕ was set to 0°≤ϕ≤180° and
180°+Δϕ≤ϕ≤360° (Δϕ=10°, 20°, or 30°).

Isomap and MDS methods
Isomap calculates geodesic distance based on a set of

Euclidean distances [23]. Let ρ(i; k, l) denote the electron
density at pixel (k, l) in the ith two-dimensional electron-
density map. The Euclidean distance from point i to point j,
denoted as dE(i, j), is calculated as follows:

dE i, j = ∑k = 1
32 ∑l = 1

32 ρ i; k, l − ρ j; k + ΔkMax, l + ΔlMax
2 .

(4)

Here, the values of ΔkMax and ΔlMax are those that yield the
maximum correlation coefficient, which is defined as

C i, j;  Δk,  Δl = ∑k = 1
32 ∑l = 1

32 ρ i; k, l ρ j; k + Δk, l + Δl
∑k = 1

32 ∑l = 1
32 ρ i; k, l 2 ∑k = 1

32 ∑l = 1
32 ρ j; k, l 2

,

(5)

where both Δk and Δl vary between –3 and +3 [21]. To
compute the geodesic distance from point i to point j,
dG(i, j) is first initialized as dE(i, j) if dE(i, j) is less than ε.
Otherwise, it is set to infinity. Then, all dG(i, j) values are
updated as min(dG(i, j), dG(i, k)+dG(k, j)) for each value of
k=1, 2, ..., NMaps, where NMaps denotes the number of two-

Table 1 Ranges of θ and ϕ, and the values of ε for Isomap, as well as the numbers of maps used for simulations

Range of θ Range of ϕ ε # of maps

Simulation I
0°≤θ≤180° 0°≤ϕ≤360° 447 2000

Simulation II
 (i) 0°≤θ≤90° and 100°≤θ≤180° (Δθ=10°) 0°≤ϕ≤360° 447 1876
 (ii) 0°≤θ≤90° and 110°≤θ≤180° (Δθ=20°) 0°≤ϕ≤360° 470 1752
 (iii) 0°≤θ≤90° and 120°≤θ≤180° (Δθ=30°) 0°≤ϕ≤360° 554 1645
Simulation III

 (i) 0°≤θ≤180° 0°≤ϕ≤180° and 190°≤ϕ≤360° (Δϕ=10°) 520 1922
 (ii) 0°≤θ≤180° 0°≤ϕ≤180° and 200°≤ϕ≤360° (Δϕ=20°) 447 1870
 (iii) 0°≤θ≤180° 0°≤ϕ≤180° and 210°≤ϕ≤360° (Δϕ=30°) 447 1809
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dimensional electron-density maps. The final dG(i, j) value
represents the shortest path on the manifold.

ε is set to the smallest value such that the final dG(i, j)
values for all pairs are finite (Table 1). This setting arises
from the fact that the final geodesic distance value depends
on the value of ε. Consider a manifold on a two-
dimensional space (Fig. 1(c)), where the distance dG(i0, iN)
between points i0 and iN is computed. If ε is set to a value
greater than dE(i0, iN) (Fig. 1(d)), then the initial value of
dG(i0, iN) is equal to dE(i0, iN). In this case, min(dG(i0, iN),
dG(i0, ik)+dG(ik, iN)) is always dG(i0, iN) for any ik (Fig. 1(d))
and is equal to dE(i0, iN). Therefore, the final dG(i0, iN) value
is dE(i0, iN). However, this value is far from the correct
dG(i0, iN) value presented in Figure 1(c). In contrast, when
the initial ε value is set to be less than dE(i0, iN) (Fig. 1(e)),
the initial dG(i0, iN) value is infinite. In this case, the final
dG(i0, iN) value is the sum of the Euclidean distances
between adjacent points [23] (Fig. 1(e)). Therefore, ε value
should be set to a small value to avoid the situation
presented in Figure 1(d).

By using the set of dG(i, j) values, the manifold
was projected onto a low-dimensional space using the
MDS method [24]. The first step in the MDS method
is to determine the set of coordinate vectors denoted by
V i  (i=1, 2, ..., NMaps) such that dG(i, j) is expressed as

dG i, j = V i − V j . To obtain V i , a matrix B defined by VVt is
considered. Here,

V =

V 1

t

V 2

t

⋮

V NMaps

t

, (6)

where V i
t is the transposition of V i. The mth component of V i

is denoted as Vim. Assuming that ∑iVim=0 (m=1, 2, ..., NP),
where NP=32×32, all elements of B can be expressed using
the set of dG(i, j) [23]. By using the diagonal matrix Λ of B
and the matrix X formed by the eigenvectors of B, V can be
expressed as XΛ1/2. Using the components of Λ and X,
dG(i, j) can be expressed as

dG i,  j = ∑l = 1

NP λl Xil − Xjl
2 , (7)

where the ith eigenvalue is denoted by λi and Xil is the lth
component of Xi. Here, the subscripts of λi and Xi are
defined such that λ1>λ2>.... If a large gap is identified
between λk and λi+1, then dG(i, j) is approximated as follows:

dG i,  j ≈ ∑l = 1
k λl Xil − Xjl

2 . (8)

In this case, the projection of the manifold onto a
k-dimensional space can be performed using λ1 X1,

λ2 X2, ..., and λk Xk [23].
By using the maps of ADK adopting an isotropic

orientation, we previously confirmed that the first three
eigenvalues were sufficient for classification in terms of
rotation angles (see Fig. 6 in Ref. 21). These results
were confirmed for both the open and closed states of ADK
[21]. However, in this study, the number of dimensions
was derived from the eigenvalues because maps of ADK
adopting a preferred orientation were considered, while a
uniform orientation was assumed in the previous study
[21].

Results
Simulation I

We first conducted Simulation I to analyze the manifold
for the two-dimensional electron-density maps of ADK
adopting an isotropic orientation. To project this manifold,
first the dG(i, j) values between maps i and j were computed
using Isomap method. Next, the λi values and the
corresponding Xi for matrix B were obtained using the
MDS method. The ε value was set to 447.

To determine the dimensions of the low-dimensional
space onto which the manifold was projected, we first
analyzed the eigenvalues of B. As shown in Figure 3(a),
there is a large gap between λ2 and λ3. A gap is also present
between λ3 and λ4, although its size is smaller than that of
the gap between λ2 and λ3. According to these results, the
manifold should be projected onto the two-dimensional
space spanned by λ1 X1 and λ2 X2 (hereafter referred to as
the first and second Isomap coordinates, respectively).
However, we will first discuss the manifold projected onto
the three-dimensional space spanned by the first, second,
and third Isomap coordinates (The third Isomap coordinate
is defined by λ3 X3), because this is necessary for the
discussion of Simulation III.
The manifold projected onto a three-dimensional space is

similar to a circular cylinder (Figs. 3(b) and 3(c)). To
analyze the relationship between the positions of points and
the projection directions, we classified points into six
groups according to their corresponding θ and ϕ values.
Figures 3(b) and 3(c) indicate that the positions of the
points likely depend on θ and ϕ. Specifically, the third
Isomap coordinate and arc are related to θ and ϕ,
respectively. These results are consistent with those found
in our previous study [21].
The manifold projected onto the two-dimensional space

is similar to a circle (Figs. 3(d) and 3(e)). By classifying
points into six groups according to the corresponding θ and
ϕ values, it was determined that the radius and arc of the
circle are related to θ and ϕ, respectively. It is noted that
when the manifold shown in Figure 3(c) is projected onto
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the plane at which the value on the third Isomap coordinate
is zero, the manifold shown in Figure 3(e) is obtained.
Thus, the radius of the circle in Figure 3(e) is related to the
third isomap coordinate.

Simulation II
We performed the same procedure described in the

previous subsection to project the manifolds for this
simulation. The ε values for Isomap are summarized in

Table 1. The manifolds were projected onto the two-
dimensional space spanned by the first and second Isomap
coordinates, although large gaps in eigenvalues were
identified between λ1 and λ2 for both Δθ=20° and 30°
(Figs. 4(a), 4(b), and 4(c)).
The geometry of the projected manifolds was found to be

strongly dependent on the value of Δθ (Figs. 4(d), 4(e), and
4(f)). For Δθ=10° (Simulation II(i)), the projected manifold
was essentially the same as the manifold from Simulation I.

Figure 3 Computational results for Simulation I. (a) First 20 eigenvalues. (b) Manifold projected onto a three-dimensional space in which
points are classified into six groups according to the value of θ. Their colors are defined as follows: red (0°≤θ≤30°), cyan (30°≤θ≤60°), blue
(60°≤θ≤90°), yellow (90°≤θ≤120°), green (120°≤θ≤150°), and pink (150°≤θ≤180°). (c) Manifold projected onto a three-dimensional space in
which points are classified into six groups according to the value of ϕ. Their colors are defined as follows: red (0°≤ϕ≤60°), cyan (60°≤ϕ≤120°),
blue (120°≤ϕ≤180°), yellow (180°≤ϕ≤240°), green (240°≤ϕ≤300°), and pink (300°≤ϕ≤360°). (d) Manifold projected onto a two-dimensional
space in which points are classified into six groups according to the value of θ. Their colors are the same as those in (b). (e) Manifold projected
onto a two-dimensional space in which points are classified into six groups according to the value of ϕ. Their colors are the same as those in (c).
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In contrast, the manifolds for Δθ=20° and 30° (Simulation
II(ii) and Simulation II(iii)) were separated into two.
Therefore, the preferred orientation of the protein strongly
affected the projected manifolds for Δθ=20° and 30°. The
geometry of manifold was highly sensitive to a slight
limitation of the range of θ such as Simulation II(ii)
(Δθ=20°).

To visually discuss from the viewpoint of projection
angle, the points were classifying into six groups according

to θ values (Figs. 4(d), 4(e), and 4(f)). For Simulation II(i),
classification was successful (Fig. 4(d)). As for the other
simulations, it was found that the points in the maps in the
region from 0° to 90° and those in the remaining maps were
separated (Figs. 4(e) and 4(f)). Failures in the sampling of
electron-density maps for θ values between 90° and
90°+Δθ caused this separation. Because it was unclear from
Figures 4(e) and 4(f) whether or not classification was
successful for Simulations II(ii) and II(iii), we projected

Figure 4 Computational results for Simulation II. First 20 eigenvalues for Δθ values of (a) 10°, (b) 20°, and (c) 30°. Manifolds projected onto
a two-dimensional space are shown, where points are classified into six groups according to the value of θ for Δθ values of (d) 10°, (e) 20°, and
(f) 30°, respectively. The colors are the same as those in Figure 3(b). In Figures (g), (h), and (i), the points are classified into six groups according
to the value of ϕ for Δθ values of (g) 10°, (h) 20°, and (i) 30°, respectively. The colors are the same as those in Figure 3(c).
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these manifolds onto a three-dimensional space (Figs. 5(a)
and 5(c)). While the points were roughly arranged in
accordance with θ value, the points with θ≥90° was highly
overlapped. As for the classifying into six groups according
to ϕ values (Figs. 4(g), 4(h), 4(i), 5(b), and 5(d)), the points
were arranged in accordance with ϕ value.

Simulation III
We performed the same procedure described in the

previous subsections to project the manifolds for this
simulation. The ε values for Isomap are summarized in
Table 1. The manifolds were projected onto the two-
dimensional space spanned by the first and second Isomap
coordinates, although we identified a large gap in
eigenvalues between λ1 and λ2 for both Δϕ=20° and 30°
(Figs. 6(a), 6(b), and 6(c)). We also projected the manifolds
onto the three-dimensional space spanned by the first,
second, and third Isomap coordinates in order to compare
the manifold for Simulation II.

As shown in Figures 6(d), 6(e), and 6(f), the geometry of
the manifolds projected onto the two-dimensional space
strongly depends on the value of Δϕ. The manifold for
Δϕ=10° is essentially the same as that for Simulation I.
In contrast, the manifolds for Δϕ=20° and 30° exhibit
completely different geometries compared to the manifold
from Simulation I. The change in the geometry of manifold
was also observed for Simulations III(ii) and III(iii) when
the manifolds were projected onto the three-dimensional

space (Fig. 7): The manifolds are board-like shape spanned
by the first and second Isomap coordinates. The geometry
of manifold for Simulation III(i) was essentially the
same as that for Simulation I. The geometry of manifold
was also highly sensitive to a slight limitation of the range
of ϕ such as Simulation III(ii) (Δϕ=20°).

To analyze how the points were arranged, the points on
the manifolds were classified into six groups according to
the values of ϕ. For Simulation III(i), the points were
arranged in the same manner as that for Simulation I. On
the other hand, for the other simulations, it was determined
that the points were arranged in order of ϕ along the
first Isomap coordinate (Figs. 6(e) and 6(f)). The same
arrangement was also observed when the manifolds were
projected onto the three-dimensional space (Figs. 7(a), 7(b),
and 7(c)). Classification of the points into six groups
according to the values of θ was also performed and the
points were found to be arranged in accordance with θ
(Figs. 6(g), 6(h), 6(i), 7(d), 7(e), and 7(f)). By comparing
the results shown in Figures 6(e) and 6(f) to the results
obtained from Simulation I (Fig. 3(c)), it was determined
that the manifolds for Δϕ=20° and 30° were obtained via
the projection of the manifold from the three-dimensional
space (Fig. 3(c)) onto the two-dimensional space spanned
by the third Isomap coordinate and the circumference of
the manifold.

Finally, the geometry of manifolds projected onto the
three-dimensional space is compared between Simulations

Figure 5 Manifolds projected onto a three-dimensional space for Simulation II(ii) [Figs. (a) and (b)] and for Simulation II(iii) [Figs. (c) and
(d)]. In the figures points are classified into six groups according to the value of θ [(a) and (c)] and of ϕ [(b) and (d)]. The colors are the same as
those in Figures 3(b) and 3(c).
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II and III (Figs. 5 and 7). When Δθ or Δϕ is increased, the
manifold was separated into two for Simulation II, while its
shape was changed from circular cylinder to board for
Simulation III. Such difference in the shape of manifolds
can be explained as follows. In Simulations II(ii) and II(iii),
an increase in the Δθ value leads to the separation of the
range of θ into 0°≤θ≤90° and 90°+Δθ≤θ≤180°. This
separation would bring the separation of the manifold for
Simulations II(ii) and II(iii). For Simulations III(ii) and

III(iii), on the other hand, an increase in the Δϕ value
does not lead to the separation: For Δϕ=30°, for example,
the range of 0°≤ϕ≤180° and 210°≤ϕ≤360° is equal to
–150°≤ϕ≤180°. Thus, the separation does not occur for
Simulations III(ii) and III(iii).

Results for the closed state
We have also performed the same computations for

the ADK in the closed state (See Supplementary Text S1

Figure 6 Computational results for Simulation III. First 20 eigenvalues for Δϕ values of (a) 10°, (b) 20°, and (c) 30°. Manifolds projected
onto a two-dimensional space are shown, where points are classified into six groups according to the value of ϕ for Δϕ values of (d) 10°, (e) 20°,
and (f) 30°, respectively. The colors are the same as those in Figure 3(b). In Figures (g), (h), and (i), the points are classified into six groups
according to the value of θ for Δθ values of (g) 10°, (h) 20°, and (i) 30°, respectively. The colors are the same as those in Figure 3(c).
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and Supplementary Table S1). It was confirmed that
essentially the same results as those for the open state were
obtained (Supplementary Figs. S1-S5).
The results for the open and closed states leads to

the following conclusions: (i) The geometry of manifold
(circular cylinder) would be highly independent on protein
conformation; and (ii) The change of the geometry of
manifold from circular cylinder indicates that the cryo-EM
data is obtained from the biomolecules adopting preferred
orientations. Thus, the geometry of manifold can be a
measure for the identification of preferred particle orien‐
tation in cryo-EM experimental data.

Discussion
We now discuss our method from the two points of view.

One of the two is the scoring function with which the
identification whether preferred orientations exist or not.
The second point is a utility of the present method, which is
discussed with maps of the biomolecule adopting realistic
preferred orientations.

Scoring function for the identification whether preferred
orientations exit or not

From the figures of the eigenvalues, we propose that λ2/λ1
can be used for the scoring function. When the two-
dimensional electron density maps were obtained from the

biomolecules adopting uniform orientation, λ2/λ1 is close to
one (See Fig. 3(a)). On the other hand, λ2/λ1 for the two-
dimensional electron density maps obtained from the
biomolecules adopting a preferred orientation is far from
one (For example, λ2/λ1=0.12 for Simulation II(ii) shown in
Fig. 4(b)). Thus, using λ2/λ1 for a scoring function, we can
identify whether preferred orientations exist or not.

A utility of the present method
To show a utility, we applied the present method to the

two-dimensional electron density maps for the open
conformation of ADK adopting a realistic preferred
orientation. Because we could not find a realistic angular
distribution of ADK, the distribution of the influenza
hemagglutinin (HA) trimer shown in Figure 1(a) in Ref. 9
was adopted as a representative realistic angular
distribution. Three high-population regions can be visually
identified around polar angle (θ, ϕ) values of (0°, 60°),
(90°, 0°), and (90°, 120°).

To perform simulations for ADK adopting the angular
distribution of the HA trimer, (θ, ϕ) values were first
randomly generated according to a Gaussian distribution
using the np.random.normal function implemented in the
numpy library of the Python programming language. The
central positions and variances of the Gaussian function are
described in Table 2 and a scatter plot of the generated
random numbers for (θ, ϕ) is presented in Figure 8(a).

Figure 7 Manifolds projected onto a three-dimensional space for Simulation III(i) [Figs. (a) and (b)], for Simulation III(ii) [Figs. (c) and (d)],
and for Simulation III(iii) [Figs. (e) and (f)]. In the figures points are classified into six groups according to the value of ϕ [(a), (c), and (e)] and of
θ [(b), (d), and (f)]. The colors are the same as those in Figures 3(b) and 3(c).

Kojima and Yoshidome: A measure for preferred particle orientations 105



Next, 30,000 maps were computed using the random
numbers as projection angles.
The manifold was projected using Isomap and the MDS

method. An ε value of 845 was used for Isomap. As shown
in Figure 8(b), there is a large gap between λ1 and λ2,
suggesting the projection of the manifold onto the one-

Table 2 The parameters for generating the Gaussian random
numbers and the number of images for the simulation in the
subsection “A utility of the present method”

Region Center position (θ, ϕ) Variance (θ, ϕ) # of maps

1 (0°, 60°) (15°, 5°) 10,000
2 (90°, 0°) (5°, 5°) 10,000
3 (90°, 120°) (5°, 5°) 10,000

Figure 8 Computation results for the simulation of cryo-EM
experiment for the ADK adopting a realistic preferred orientation: (a)
Scatter plot of polar angles used for the simulation; (b) First twenty
eigenvalues; and (c) projected manifolds. The colors in (a) and (c)
represent the regions 1, 2, and 3, respectively in Table 2.

dimensional space spanned by the first Isomap coordinate.
However, the manifold was projected onto the two-
dimensional space spanned by the first and second Isomap
coordinates in accordance with the simulations described
above.
The manifold projected onto the two-dimensional space

is presented in Figure 8(c). The points were classified
according to their projection angles using the colors in
Figure 8(a). It was found that the geometry of the projected
manifold is different from that presented in Figure 3(d). In
addition, λ2/λ1 was 0.05. These results indicate that our
method successfully identified the present two-dimensional
electron density maps that were obtained from the ADK
adopting realistic preferred orientations.

Conclusion
In this study, we investigated the manifolds of two-

dimensional electron-density maps of ADK adopting a
preferred orientation. To this end, simulations of cryo-EM
experiments were conducted to compute two-dimensional
electron-density maps of ADK in the open and closed
states. Next, Isomap and the MDS method were applied to
the two-dimensional electron-density maps to project the
manifold onto a low-dimensional space. We have found
that the geometry of manifold was changed even when Δθ
and Δϕ are small such as Simulations II(ii) and III(ii). Thus,
we have concluded that the geometry of manifold can be a
measure for identification of preferred particle orientation
in cryo-EM experimental data.

In our simulations, the rotation with respect to ϕ was
performed after the rotation with respect to θ. We also
performed simulations such that the rotation with respect to
θ was performed after the rotation with respect to ϕ.
Simulations were performed for Simulations I, II(iii), and
III(iii). It was found that essentially the same results were
obtained (Supplementary Fig. S6). Thus, the order of the
rotation did not alter the present results.
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