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1  | INTRODUC TION

Plant biomass is considered an important renewable carbon re-
source with a wide range of applications from animal feeds to feed-
stock for biorefineries. Production of plant biomass in the form of 
forage crops (e.g., grass, whole-crop cereals) is seasonal, and stor-
age is therefore necessary. In temperate regions, anaerobic storage 
of high water content (50%–70%) forages, known as ensiling, is the 
most common storage method. During ensiling, epiphytic lactic acid 
bacteria (LAB) ferment plant sugars to mainly lactic acid, thereby 

reducing the biomass pH. If anaerobic conditions are maintained, the 
silage can be stored for several months.

The major parts of plant biomass comprise fibers, which gen-
erally have a low digestibility. Plant fibers essentially contain cel-
lulose (30%–55%), hemicellulose (24%–50%), and lignin (12%–35%) 
(Sharma, Xu, & Qin, 2019). Of these three polymers, only cellulose 
and hemicellulose can be utilized under anaerobic conditions, for 
example in the rumen or in anaerobic digesters. In the cell walls of 
monocots (e.g., cereals and grasses), lignin and hemicellulose are 
interconnected mainly by ferulic acid (FA), which forms carboxylic 
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Abstract
Silage, the fermented product from anaerobic storage of forage crops with high water 
contents (50%–70%), is normally used as animal feed but also for the production of 
biofuels and value-added products. To improve the utilization of plant fibers dur-
ing ensiling, previous attempts have aimed at breaking linkages between lignin and 
hemicellulose by use of Lactobacillus buchneri	LN	4017	(ATCC	PTA-6138),	a	feruloyl	
esterase (FAE)-producing strain, but results have been inconsistent. Normally, there 
are sufficient amounts of readily available substrates for bacterial growth in silage. 
We thus hypothesized that the inconsistent effect of L. buchneri LN 4017 on the 
digestibility of silage fibers is due to the catabolic repression of FAE activity by sub-
strates present in silage (e.g., glucose). To test this hypothesis, we analyzed the effect 
of glucose on the de-esterification of methyl ferulate (MF), a model substrate used 
for FAE activity assays. At three glucose:MF ratios (0:1, 1:1, and 13:1), the bacteria 
continued hydrolyzing MF with increasing glucose:MF ratios, indicating that the de-
esterification reaction was not repressed by glucose. We therefore conclude that the 
de-esterification activity of L. buchneri LN 4017 is not repressed by silage substrates 
during ensiling.
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ester bonds with arabinose residues of xylan chains on one side 
and ether bonds with lignin on the other side (Ralph, 2010; Wong, 
2006). The lignin–hemicellulose matrix encrusts the cellulose, and 
this overall configuration results in recalcitrance of plant fibers (Pu, 
Hu,	Huang,	Davison,	 &	 Ragauskas,	 2013;	 Rubin,	 2008).	 The	 ester	
link between FA and hemicelluloses can be cleaved by feruloyl es-
terases (FAEs) (EC3.1.1.73), thereby opening the fiber structure and 
increasing the bioavailability of fiber constituents for fermentation 
processes.

Several Lactobacillus spp. can produce FAEs (Donaghy, Kelly, 
&	Mckay,	1998),	which	potentially	enables	 the	use	of	 these	spe-
cies as silage inoculants to enhance digestibility of plant fibers 
during	 ensiling	 (Nsereko	 et	 al.,	 2008).	 Molecular	 characteriza-
tion of FAEs from Lactobacillus spp. has shown that these en-
zymes contain a serine active site (https ://prosi te.expasy.org/
PS00120) (Xu, He, Zhang, Guo, & Kong, 2017). The optimal pH 
of FAEs from Lactobacillus	 spp.	 varies	between	6.5	and	8.0,	 and	
the optimal temperature spans a wide range between 20 and 
50°C (Esteban-Torres, Reverón, Mancheño, de las Rivas, & Muñoz, 
2013; Fritsch, Jänsch, Ehrmann, Toelstede, & Vogel, 2017; Liu, 
Bischoff, Anderson, & Rich, 2016; Xu et al., 2017). A recent review 
comprehensively describes biochemical and molecular properties 
of microbial FAEs (Oliveira et al., 2019).

L. buchneri	 LN	4017	 (ATCC	PTA-6138),	 a	 FAE-producing	 strain	
(Nsereko	et	al.,	2008),	was	used	in	several	studies	as	the	silage	in-
oculant. While fiber digestibility was improved in some cases (Jin et 
al., 2015; Kang, Adesogan, Kim, & Lee, 2009), no improvement was 
found in other studies (Kang et al., 2009; Lynch, Baah, & Beauchemin, 
2015). One possible explanation for these inconsistent results could 
be a catabolic repression of FAE activity of the inoculant, caused 
by the readily available substrates in the silage (e.g., glucose). Such 
a hypothesis would parallel previous findings with Aspergillus niger, 
where FA induces expression of FAE genes (faeA and faeB) but fails 
to induce the expression of these genes in the presence of glucose 
(de Vries, vanKuyk, Kester, & Visser, 2002). In the present study, we 
aimed at investigating the effects of varying glucose concentrations 
on the hydrolytic conversion of methyl ferulate (MF) to FA, a reac-
tion indicative for FAE activity, by L. buchneri LN 4017. The ability of 
L. buchneri to grow on the aforementioned compounds was concom-
itantly assessed.

2  | MATERIAL S AND METHODS

Two experiments were performed. In a primary experiment, de-
esterification of MF by L. buchneri	LN	4017	(ATCC	PTA-6138)	was	
tested at varying glucose concentrations. To clarify the results ob-
tained, a secondary experiment was conducted to study FA metabo-
lism of this bacterium in the presence of glucose.

De Man, Rogosa and Sharpe (MRS) broth (DSMZ medium 11) 
without glucose was used as a basal medium. To prepare the inoc-
ulum, the bacterium was cultivated anaerobically in MRS broth for 

48	hr	at	37°C	without	agitation.	Subsequently,	1	ml	of	bacterial	cul-
ture was centrifuged at 4,000 g for 5 min (21°C). Bacterial cells were 
thereafter resuspended in 1 ml basal medium and used as inoculum. 
MF (abcr GmbH) and FA (Merck KGaA) were dissolved in 50% di-
methylformamide (DMF) solution (v/v) (Merck KGaA) for medium 
preparation. The final concentration of DMF in the growth medium 
was always 0.5% (v/v).

2.1 | Primary experiment

The following treatments were compared: (a) basal medium contain-
ing only 0.5% DMF, (b) basal medium with 199 µg/ml MF, (c) basal 
medium with 226 µg/ml glucose and 196 µg/ml MF (Glc:MF (1:1)), 
and (d) basal medium with 2,524 µg/ml glucose and 199 µg/ml MF 
(Glc:MF (13:1)). Sterile controls were set up for incubations with MF 
and Glc:MF. All treatments were done in triplicate.

F I G U R E  1   Growth curves of Lactobacillus buchneri LN 4017, 
measured by optical density (OD600), when cultivated with: (a) 
199 µg/ml methyl ferulate (MF-only), 226 µg/ml glucose and 
196 µg/ml methyl ferulate (Glc:MF (1:1)) and 2,524 µg/ml glucose 
and 199 µg/ml methyl ferulate (Glc:MF (13:1)) and (b) 177 µg/
ml ferulic acid (FA-only) and 2,515 µg/ml glucose and 161 µg/
ml ferulic acid (Glc:FA (16:1)). Mean values of three replicates and 
standard deviations are shown
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2.2 | Secondary experiment

The setup included: (a) basal medium with 0.5% DMF, (b) basal 
medium with 177 µg/ml FA, and (c) basal medium with 2,515 µg/
ml glucose and 161 µg/ml FA (Glc:FA). Sterile controls were made 
for incubations with FA and Glc:FA. All treatments were done in 
triplicate.

All treatments were incubated anaerobically at 37°C without 
agitation	and	were	sampled	(1	ml)	at	0,	4,	8,	12,	24,	36,	and	48	hr.	
Bacterial growth was estimated by measuring optical density at 
600	 nm.	 Samples	 were	 centrifuged	 at	 20,817	 g for 10 min (4°C), 
and	 supernatants	 were	 stored	 at	 −20°C	 until	 chemical	 analyses.	
Upon thawing at room temperature, samples were centrifuged at 
20,817	g for 20 min (4°C) before analyses for glucose, MF, and FA. 
Glucose was measured by HPLC as described by Porsch, Wirth, 
Toth, Schattenberg, and Nikolausz (2015) with the following modifi-
cations: operation temperature was 55°C and flow rate was 0.7 ml/
min. MF and FA were measured by UPLC according to Hofmann and 
Schlosser (2016) with the modification of using formic acid for acidi-
fication of the mobile phase.

3  | RESULTS AND DISCUSSION

In all treatments, bacterial growth reached a stationary phase after 
12 hr, except in the Glc:FA treatment, in which the stationary phase 
was reached after 24 hr (Figure 1). Growth curves were similar for 
cultures incubated in the basal medium, with MF or with FA.

MF disappearance, FA accumulation, and the sum of MF and 
FA concentrations followed similar trends and magnitudes in incu-
bations with MF and with Glc:MF (1:1) (Figure 2a,b). In the Glc:MF 
(13:1) treatment, the sum of MF and FA concentrations decreased 
sharply between 4 and 12 hr before slowing down during the re-
maining incubation period (Figure 2c).

MF is used as a model substrate to study FAE activity, with FA as 
a	product	of	MF	hydrolysis	(Donaghy	et	al.,	1998;	Wang	et	al.,	2016).	
The continuous decrease of the sum of MF and FA concentrations 
in incubations with MF and with Glc:MF indicates that FA released 
was further metabolized. The ability of L. buchneri to metabolize FA 
also in the presence of glucose was confirmed in our secondary ex-
periment with FA (Figure 3). In line with our results, it was previ-
ously shown that other Lactobacillus spp. are also able to metabolize 

F I G U R E  2   Methyl ferulate (MF) disappearance and ferulic acid (FA) accumulation during cultivation of Lactobacillus buchneri LN 4017 
with 199 µg/ml MF (a), 226 µg/ml glucose and 196 µg/ml MF (b) and 2,524 µg/ml glucose and 199 µg/ml MF (c). MF (control) and MF + FA 
(control) represent the MF concentration and the sum of MF and FA concentrations in the sterile controls, respectively. Mean values of three 
replicates and standard deviations are shown
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FA. L. plantarum metabolized FA to 4-vinylguaiacol and hydroferulic 
acid, and L. collinoides metabolized FA to 4-vinylguaiacol (Knockaert, 
Raes, Wille, Struijs, & Camp, 2012). The metabolism of FA by L. buch-
neri was slowed down after 12 hr of incubation in the highest Glc:MF 
treatment (Figure 2c), resulting in FA accumulation between 24 and 
48	hr.

Similar growth of cultures in the basal medium, with MF or with 
FA (Figure 1), implies that despite metabolism of FA, the bacteria 
did not assimilate FA, similar to the observations of Knockaert et al. 
(2012) with L. plantarum and L. collinoides. Bacterial growth in these 

treatments was mainly supported by the nutrients present in the 
basal medium.

The similar profiles of MF metabolism in incubations with MF 
and with Glc:MF (1:1) (Figure 2a,b) indicate that the presence of 
glucose did not affect MF hydrolysis. MF metabolism was also con-
tinued at the high concentration of glucose (Figure 2c), indicating 
that the de-esterification ability of L. buchneri was not repressed 
by glucose.

We made an estimation of the ratio of fermentable sugars to 
cell wall-associated ester linkages in silage to examine reliability of 

F I G U R E  3   Ferulic acid (FA) 
disappearance during cultivation of 
Lactobacillus buchneri LN 4,017 with 
177 µg/ml FA (a) and 2,515 µg/ml 
glucose and 161 µg/ml FA (b). FA (control) 
represents FA concentration in the sterile 
control. Mean values of three replicates 
and standard deviations are shown
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our experimental setup. It should be noted that such ratio varies ex-
tensively from case to case as the sugar contents of forages and cell 
wall-associated ester linkages vary by forage type, forage maturity, 
climate, etc. Following assumptions were made. (a) Concentration 
of water-soluble carbohydrates (WSC) in silage crops is on aver-
age 15% of dry matter (DM), with glucose comprising 21% of WSC 
(Müller,	 Rosen,	 &	 Udén,	 2008).	 (b)	 Neutral	 detergent	 fiber	 (Van	
Soest, Robertson, & Lewis, 1991), with an average concentration 
of	49%	of	DM	(Müller	et	al.,	2008),	represents	plant	cell	walls.	 (c)	
Trans-FA of plant cell walls, with an average concentration of 0.54% 
of cell walls (Hartley & Jones, 1977), represents cell wall-associ-
ated ester linkages. Under these conditions, the ratio of glucose:FA 
becomes 12:1 on mass basis, in agreement with our experimental 
setup.

The sterile controls were included to ensure that there was no 
abiotic degradation of MF and FA. There was an increase in the con-
centration of FA in the sterile control of Glc:FA treatment between 
0	and	8	hr	(Figure	3b),	likely	due	to	sampling/pipetting	errors.	As	this	
increase did not interfere with data interpretation, it was ignored.

4  | CONCLUSIONS

FA released from hydrolysis of MF was further metabolized by L. bu-
chneri LN 4017 but did not support bacterial growth. MF hydrol-
ysis was almost similar at all concentrations of glucose, indicating 
that the de-esterification activity of L. buchneri LN 4017 was not 
repressed by glucose. We therefore suggest that de-esterification 
activity of L. buchneri LN 4017, mediated by the action of FAE, is 
not repressed by substrates present in silage. Our results, however, 
should be complemented with transcriptomic/proteomic studies to 
provide firm conclusions.
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