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Most coronavirus disease 2019 (COVID-19) models use a combination of agent-based

and equation-based models with only a few incorporating environmental factors in their

prediction models. Many studies have shown that human and environmental factors play

huge roles in disease transmission and spread, but few have combined the use of both

factors, especially for SARS-CoV-2. In this study, both man-made policies (Stringency

Index) and environment variables (Niño SST Index) were combined to predict the number

of COVID-19 cases in South Korea. The performance indicators showed satisfactory

results in modeling COVID-19 cases using the Non-linear Autoregressive Exogenous

Model (NARX) as the modeling method, and Stringency Index (SI) and Niño Sea Surface

Temperature (SST) as model variables. In this study, we showed that the accuracy of

SARS-CoV-2 transmission forecasts may be further improved by incorporating both the

Niño SST and SI variables and combining these variables with NARX may outperform

other models. Future forecasting work by modelers should consider including climate or

environmental variables (i.e., Niño SST) to enhance the prediction of transmission and

spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Keywords: COVID-19, stringency index, Niño SST index, NARX, South Korea

INTRODUCTION

The SARS-CoV-2 virus, which is the causative agent of the coronavirus disease (COVID-19) was
first reported in Wuhan, China in December 2019 (1). Since then, COVID-19 has been declared a
pandemic and has become a global public health threat for almost 2 years (2). Closure of borders,
nationwide lockdowns, and reduced air flights were the countermeasures imposed by different
countries to contain the spread of the disease (3–6). In South Korea, the first case of COVID-19
was detected on 20 January 2020 and as of 28 February 2022 there have been 2,665,077 confirmed
COVID-19 cases and 7,783 deaths recorded (https://covid19.who.int/region/wpro/country/kr).
Various mathematical models have been used to forecast the transmission and spread of COVID-19
(7–9), with different kinds of models associated with specific strengths and weaknesses. While most
COVID-19 models use a combination of agent-based and equation-based (i.e., SIR, SEIR) models
(2, 10), the main objective of obtaining a prediction model sufficiently accurate to be able to plan
and target effective and optimal countermeasures (11), which will subsequently help in decreasing
the number of cases, minimizing the number of deaths, and limiting impact to a country’s economy
(11), only a few studies have incorporated environmental factors in their prediction models (12).
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Understanding how climate variability can affect infectious
disease transmission is important. Various climatic factors (i.e.,
temperature, precipitation, humidity, etc.) have been implicated
to have complex effects on the disease dynamics of many
water-borne and vector-borne infectious diseases (13). Epidemics
of dengue fever and malaria have been linked to the El
Niño Southern Oscillation (ENSO) phenomenon (14, 15). The
increasing intensity of certain diseases of public health concern
(i.e., chikungunya, hantavirus, Rift Valley fever, cholera, plague,
and Zika) was also significantly associated with ENSO-induced
climate anomalies (16). Some studies have emphasized that sea
surface temperature (SST) plays a key role in the occurrence
of weather systems (17, 18), which are both dependent on the
fluctuations of both atmosphere and sea (19), while Byrne and
O’Gorman (20) showed how temperature and humidity have
changed due to the warming of the oceans. Some studies have
pointed out that temperatures, wind speed, and humidity may
play major roles in COVID-19 prediction modeling (21–23).
Stringency policies were also used by Soobhug et al. (24), as one
of the governing factors in predicting COVID-19 in Mauritius.

SARS-CoV-2 is an enveloped RNA virus, structurally similar
to other RNA viruses (i.e., Middle East respiratory syndrome-
related coronavirus and HcoV-NL63 human coronavirus) (25),
which display seasonal dynamics due to their physical properties.
The role of climate, higher temperatures, more intense UV
radiation during summer, high humidity and precipitation,
and their effects on the transmission of SARS-CoV-2 have
been discussed in several publications (12, 26–33). Should
COVID-19 persist endemically and continue in the long term,
it is important to determine whether COVID-19 will follow
seasonally-driven patterns of infection or whether COVID-19
transmission dynamics and outbreaks will be potentially affected
by short- and long-term climate changes (34).

Lee et al. (35) made a comparative analysis of COVID-19
epidemic transmission in China, Japan, Thailand, Taiwan,
Malaysia, Singapore, Germany, France, Canada, the UK, and
South Korea by incorporating each country’s reproduction
numbers and prevention and control measures. In the study, it
was concluded that South Korea’s high detection rate through
massive testing has been the key factor in its success to contain
the outbreak of the virus. On the other hand, through the
comparative analyses made by Chen et al. (36) of the four East
Asian countries (China, Japan, Singapore, and South Korea), it
was concluded that the containment strategy of South Korea
(together with China and Singapore), which include a rapid
National Emergency response system, border control measures,
screening, and testing measures, and massive public health and
social distancing measures have been the key to its success of
slowing down the epidemic. In the study of Chen et al. (36),
it was also emphasized that the mitigation strategy, which was
typically done by most countries, is just secondary compared to a
containment strategy.

The accuracy of assumptions in the field of epidemiology
can be best represented by mathematical representations. Some
papers have examined transmission modeling of COVID-19
using different approaches such as path analysis (37), fractional
differential equations (38), spatial autocorrelation, hot spot,

and Spatio-temporal scanning statistics (39). However, disease-
modeling using deep learning has been proven to help in
outlining disease progression and spread (40–42), predict trends
(43, 44) and risks (45), and even help the governments in
decision-making (46, 47). NARX is a type of deep learning,
which makes use of the past values of a time series, alongside
the current and past values of the exogenous variables. This
deep learning method has been used by several researchers to
predict disease incidence and impacts in countries located in
regions like Asia (48, 49), Europe, Middle East (50), and the
Americas (51). Unlike other deep learning methods, NARX has
an advantage by integrating multiple variable inputs with the
autoregressive inputs, which helps in increasing the accuracy of
results (52). Among these studies, NARX has shown promising
qualities for disease modeling applications. This paper intends to
propose and utilize the novel combination of Niño SST indices
and the Stringency Index (SI) with the Non-linear Autoregressive
Exogenous (NARX) model to predict COVID-19 incidence in
South Korea.

MATERIALS AND METHODS

Data
Data were gathered from a publicly available database
(www.ourworldindata.org) maintained by the Oxford
Coronavirus Government Response Tracker (OxCGRT).
The COVID-19 daily data of South Korea from January 21, 2020
to December 31, 2020, was used in this study with January 21
to September 30, 2020, as the training data and October 1 to
December 31, 2020, as the testing data.

South Korea first recorded its COVID-19 case in January 2020.
The initial response with information technology supplemented
the contract tracing and flattening of the first wave of the
COVID-19 case curve. However, thousands of cases were still
eventually recorded. In fact, 3,578 cases were recorded during
the first 10 weeks followed by 2,282 cases by week 35 (August),
and by the end of 2020, 7,107 weekly cases were recorded (See
Figure 1A).

South Korean government also implemented COVID-
19 regulations as represented by Stringency Index (SI) (See
Figure 1B). As the case numbers increased, regulations as
reflected by SIs also increased during weeks 6–10 (February to
March) and continued until weeks 15–16 (April). Due to the low
number of cases during summer 2020 (200–400 cases weekly),
SIs also decreased. There were spikes of cases in the 34–35th
week (August to September) (probably due to holidays) followed
by an increasing trend of cases in the 40th week (October)
onwards. SIs have shown an increasing-decreasing pattern,
potentially attributed to economic factors as the government
tried to reopen businesses (https://crisis24.garda.com/alerts/
2020/10/south-korea-authorities-to-ease-some-COVID-19-
restrictions-from-october-12-update-37).

Looking at the Niño SST indices, it is clear that Niño1+2 in
Figure 1C is more prone to abrupt changes. A sudden monthly
drop can be noticed starting in week 14 (March to April) onwards
but increased as it reached the year-end weeks: 40 (October),
45 (November), and 50 (December). Niño1+2 indices were also
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FIGURE 1 | South Korea’s Weekly (A) COVID-19 cases; (B) Stringency Index (SI); and (C) Niño SST indices from January 21, 2020 to December 31, 2020 (4th week
to 53rd week).

TABLE 1A | Descriptive statistics of the data used (January 21, 2020 to December 31, 2020).

SI Cases Niño3.4 Niño4 Niño3 Niño1+2

Count 346 346 346 346 346 346

Mean 52.29 178.52 26.69 28.58 25.50 22.66

Std 14.39 261.80 0.99 0.57 1.41 2.46

Min 0 0 25.28 27.54 23.88 19.5

Max 82.41 1,237.0 28.18 29.17 27.86 26.43

found to be influential in the monthly precipitation of South
Korea based on the study done by Kim et al. (53).

The National Water Service–Climate Prediction Center
(https://origin.cpc.ncep.noaa.gov) uses overlapping seasons
which are divided as DJF (Dec-Jan-Feb), JFM (Jan-Feb-Mar),
FMA (Feb-Mar-Apr), MAM (Mar-Apr-May), AMJ (Apr-May-
Jun), MJJ (May-Jun-Jul), JJA (Jun-Jul-Aug), JAS (Jul-Aug-Sep),
ASO (Aug-Sep-Oct), SON (Sep-Oct-Nov), OND (Oct-Nov-
Dec), and NDJ (Nov-Dec-Jan). Thus, due to the seasonal nature
of Niño SST indices, the authors used OND (Oct-Nov-Dec,
October 1 to December 31, 2020) as part of the testing data. As
previously stated, the training data used in this study is from
January 21 to September 30, 2020. Also, due to the potential
COVID-19 case count interference from the administration of
COVID-19 vaccines, the 2021 COVID-19 dataset was not used.
To directly compare the performance of our model with another
COVID-19 published model, we used another set of training
and testing dates which were similar to the dates used by the
model of Kafieh et al. (54). The authors used S. Korea COVID-19
cases from January 22 to July 30, 2020, for the training data
and COVID-19 cases from August 1–31, 2020, for the testing
data. Prediction data were set from Sept 1 to October 12, 2020.
The descriptive statistics of the data used in this study can be
summarized in Table 1A.

Sea Surface Temperature
According to the US Environmental Protection Agency (55)
(https://www.epa.gov/climate-indicators/climate-change-
indicators-sea-surface-temperature), SST stands for “Sea
Surface Temperature” and is defined as the temperature of
the surface of the ocean water. In the tropical Pacific, indices

are used to monitor the temperature based on the average
anomalies. As defined by the National Oceanic and Atmospheric
Administration, (56), during La Niña events, the trade winds are
stronger, which can push more warm water toward Asia with
increased upwelling (rising of cold water) to the west coast of
the Americas, bringing cold water to the surface. On the other
hand, El Niño events have weak trade winds where warm water
is pushed back east toward the west coast of the Americas.

The following is the definition of the Niño Indices and
their corresponding regions (longitude, latitude) based on the
Climate Data Guide of the National Center for Atmospheric
Research (NCAR) (57).

Niño 1+2 (0-10S, 90W-80W): The smallest and eastern-most
of the Niño SST regions, which encompasses the region of
coastal South America where El Niño, was first recognized by the
local populations.

Niño 3 (5N-5S, 150W-90W): This region was once the
primary focus for monitoring and predicting El Niño. However,
it was later found out that Niño 3.4 and ONI are better suited for
defining El Niño and La Niña events.

Niño 3.4 (5N-5S, 170W-120W): its anomalies correspond to
the average equatorial SSTs across the Pacific from the dateline to
the South American coast. When the Niño 3.4 SSTs exceed +/-
0.4 C for 6 months or greater, El Niño or La Niña events are said
to occur.

Niño 4 (5N-5S, 160E-150W): its anomalies correspond to
the central equatorial Pacific. This region appears to have less
variance than the other Niño regions.

Changes in SST were used to detect the status of the El Niño –
Southern Oscillation (ENSO) (58). ENSO is said to affect not just
weather events but also public health worldwide (59). This paper

Frontiers in Public Health | www.frontiersin.org 3 June 2022 | Volume 10 | Article 871354

https://origin.cpc.ncep.noaa.gov
https://www.epa.gov/climate-indicators/climate-change-indicators-sea-surface-temperature
https://www.epa.gov/climate-indicators/climate-change-indicators-sea-surface-temperature
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Necesito et al. Predicting COVID-19 Using SI/SST

FIGURE 2 | Niño SST indices regions.

used the Niño SST indices as one of the key variables in the model
together with the Stringency Index (SI) for predicting COVID-19
cases in South Korea. Figure 2 shows the approximate location of
the Niño SSTs.

Stringency Index
The data were collected from the publicly available database
(www.ourworldindata.org) maintained by the Oxford
Coronavirus Government Response Tracker (OxCGRT).
The group used the following formula in calculating the indices:

Stringency Index =
1

k

k
∑

j=1

Ij (1)

where k corresponds to the number of component indicators in
each index, j as the indicator, and I as the sub-index score. This
paper did not calculate the Stringency Index (SI) of South Korea
but used the SI values calculated by the Oxford Coronavirus
Government Response Tracker (OxCGRT).

The non-pharmaceutical intervention represented by
government restrictions (e.g., social distancing, lockdowns,
quarantines) is represented by SI. SI is a measure of response
metrics in terms of school closures, workplace closures,
cancellation of public events, restrictions on public gatherings,
closures of public transport, stay-at-home requirements, public
information campaigns, restrictions on internal movements,
and international travel controls (60). This study used SI to
explore the behavior of COVID-19 cases about the change in the
restrictions in South Korea for the year 2020.

Convergent Cross-Mapping
Finding causal relationships and interactions among variables in
complex systems is a very valuable aspect of evidenced-based
studies such as those concerning disease prevention and public
health (61). Causation can imply a correlation, but correlation
does not necessarily imply causation. Therefore, this paper used
Convergent Cross-Mapping (CCM) to show the effects of SIs
and Niño SST indices on the COVID-19 cases in South Korea.
Another approach for detecting causality is Granger Causality,
which, as emphasized by Sugihara et al. (62), is more applicable
to stochastic and linear systems. Granger Causality (GC) is a
type of causality test by Granger (63) but is more suitable for
stochastic and linear systems. As pointed out by Sugihara et al.
(62), CCM can cater to elements where GC is not valid (e.g.,
non-separable systems or systems where the predictability of
some variable Y is not independently unique to another variable
in consideration). Thus, CCM is a more suitable approach for
dynamic systems and can also distinguish interactions among
systems from shared variables.

As discussed in his paper, CCM can test causation for a
dynamic system that is not entirely random and can distinguish
the correspondence between states, and the longer the time series
length, L, the more precise the CCM could estimate. Sugihara
et al. (62) explained this scenario in their paper by presenting the
Lorenz system with two shadow manifolds (or low dimensional
representation of the entire system) Mx and My constructed
using lagged-coordinate embedding (τ = lag). It was mentioned
that due to the increased library size or time series length,
L, the shadow manifolds will be much denser, which causes a
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FIGURE 3 | Schematic diagram of the methodology.

more precise estimate. τ is simply the lag time, which can be
randomly assigned.

In this study, we used CCM to correlate COVID-19 cases,
SST, and SI using their respective time series data. Equation (1)
and (2) represents the manifolds after the application of CCM
where τ = lag. Figure 3, on the other hand, shows the schematic
diagram of the methodology used in this study.

Mx : x (t) = [x (t) , x (t − τ) , x (t − 2τ)] (2)

My : y (t) =
[

y (t) , y (t − τ) , y (t − 2τ)
]

(3)

As explained by Sugihara et al. (62), we can denote m(t) as a
point in the manifold,M, and X an observation function in some
temporal flow. For each function, X, there is a corresponding
time-series, in which we can denote as {X}= {X(1). . . . . . X(L)} that
can track the trajectory of the points within the manifold, M (the
length of time series or library size is denoted as L).

On the other hand, using x(t) as points in themanifold, sayMx

(which was constructed through the use of the time lagged values
of X), and which x(t) consists of vectors such as X(t), X(t- τ ),
X(T-2 τ ) up to X(t-(E-1) τ ) with E as the dimensional state space
and τ as the lag time, we can say that x(t) on Mx can map m(t)
on M. Thus, in case of two dynamically coupled variables, say X
and Y, their manifoldsMx andMy can eventually map each other
since they are a diffeomorphic reconstruction of their common

manifold, M. Therefore, it should be expected the presence of
an increasing correlation as L, or the library size increases. In
this paper, we used the causal-ccm package in python (64) for
CCM analysis.

Non-linear Autoregressive Exogenous
Model (NARX)
The main objective of this study was to develop a case prediction
model for COVID-19 using the NARX model with the novel
combination of Niño SST (climate variable) and SI (policy
index) as variables. This research aims to provide initial evidence
that COVID-19 cases may be influenced by climatic factors
such as Nino indices and non-pharmaceutical interventions as
represented by SI. Several studies (48, 51, 65) have used NARX
for disease prediction which proved NARX’s promising ability.
NARX is a type of neural architecture modeling tool (51), which
makes use of the past values of a time series alongside the current
and past values of the exogenous variables, which contribute
to the time series of interest. As discussed by (66), NARX has
two different model architectures, namely: (56) series-parallel
or open-loop architecture; and (1) parallel architecture or close
loop architecture.

In the paper of Akhtar et al. (51), he used series-parallel
NARX to predict the real-time risk of Zika virus in the Americas.
Boussaada et al. (66), on the other hand, used the series-parallel
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architecture of NARX only for the training phase, while the
parallel architecture was used in the testing and prediction phase.
This study utilized the parallel architecture, which is represented
by Equation 4 for the model prediction phase.

y (t + N) = F (y (t) , y (t − 1) , . . . , y
(

t − ny
)

, x (t + 1) , x (t) ,

x (t − 1) , . . . , x (t − nx) (4)

NARX model is a type of model structure, which can predict
the parent series of y (t), given the past values of the same time
series and another time series, say x(t) (48). y (t + N) is the
number of cases at time, t, and days ahead (N). x (t) is the
independent variable input (Niño SST index as well as Stringency
Index (SI) at time, t, while x(t − nx) is the independent variable
input at n days before time t. In this study, we used the fireTS
package in python to predict the number of cases in South Korea
using the data available from January 21, 2020 to September 30,
2020, as the training data (n = 254) and the October 1, 2020 to
December 31, 2020, as the testing data (n = 92). The non-linear
mapping function F(.), where a number of nodes, number of
layers, or simply the mathematical expression, which transforms
the data is approximated by multilayer perceptron (MLP) during
the training process and is, therefore, unknown. MLPs are used
to approximate continuous functions and are designed to solve
complex non-linear separable systems (67).

Performance Indicators Employed
Root mean square error (RMSE), Nash-Sutcliffe efficiency
(NSE), an index of agreement (IA) were utilized as metrics
for evaluation. RMSE is obtained from the difference between
simulated and actual values, therefore, it is an indicator of how
much error the simulated results contain vs. the actual value.
NSE is an indicator that shows how well the plot of predicted
and observed data fit on a 1:1 line. This metric has values that
range from 0 to 1. An NSE = 1 indicates a perfect agreement
between the predicted and the observed values, while NSE = 0
means the predicted is as accurate as of the observed data. On
the other hand, an NSE < 0 means the observed data is a better
predictor compared to the predicted values.

Willmott (68) defines the index of agreement (IA) as the ratio
of the mean square error (MSE) and the potential error (PE)
multiplied by the number of observations. This value is then
subtracted from one. IA values range from 0 to 1 with higher
index values suggesting better agreement between the observed
and simulated values.

RESULTS

Detecting causation from the time series using CCM of South
Korea COVID-19 cases and El Niño SST indices are shown in
Supplementary Figure 1. The downward trend (concerning the
length of the dataset being analyzed) of the black curve signify
that the COVID-19 cases did not influence the Niño SST indices,
while the increasing and stable green curve show that Niño
SST indices had an influence on the COVID-19 cases. For the
Niño SST indices influencing COVID-19 cases (green curves),
the correlation values reached high levels (ρ ≈ 0.70 for Niño 3.4;

ρ ≈ 0.71 for Niño 3; ρ ≈ 0.71 for Niño 4; ρ ≈ 0.74 for Niño 1+2).
This means that among the Niño SST indices, Niño 1+2 was the
most influential in COVID-19 cases in South Korea.

When the CCM of SI and the COVID-19 cases were plotted
(Supplementary Figure 2), an increasing and decreasing trend
for the COVID-19 cases influences SI (black curve) were found
while the SI influence COVID-19 cases (green curve) had an
increasing trend followed by a much stable trend was plotted.
The correlation values of SI influence to South Korea COVID-
19 cases (green curves) reached as high as 0.86 with around 0.80
as the highest correlation for the the COVID-19 cases influence
SI (black curve).

Figure 4 shows a plot of COVID-19 cases and SI plotted
simultaneously. It is worth noting that at points where SIs are
high [See week 15 (April), 40 (October), and 41 (October) most
especially], the number of COVID-19 cases is very low a week
after the implementation. The simultaneous plot of SST cases and
COVID-19 in Figure 5 have shown that inWeeks 35 (September)
onwards, where the trend of COVID-19 cases has decreased
(Weeks 35–39 or September-October) and increased (Weeks 40
onwards or October onwards), the same trend has been observed
to Niño1+2 index which obtained the highest correlation value
based on the CCM analysis. Other Niño SST indices showed
almost the same trend but the decrease and increase were lesser
than Niño 1+2. In Weeks 4–10 (January-March), an increasing
trend was found for the Niño SSTs [an increase of around 5.68,
Week 4 (January) at 20.75 and Week 10 (March) at 26.43 for
NIÑO 1+2] and the number of COVID-19 cases (which ranges
from 2 to 3,578), while another decreasing trend was observed
in Weeks 10–20 (March-May) for both COVID-19 cases [which
ranged from 848 forWeek 11 (March) to 156 forWeek 20 (May)]
and Niño SSTs, with Niño 1+2 [which ranged from 26.43 for
Week 11 (March) to 24.28 for Week 20 (May)] showing a much
steeper decrease in values compared to other Niño SST indices
[Niño 3.4 ranged from 27.76 for Week 11 (March) to 27.66 for
Week 20 (May); Niño 4 ranged from 29.07 for Week 11 (March)
to 29.01 for Week 20 (May); Niño 3 ranged from 27.41 for Week
11 (March) to 26.92 for Week 20 (May)].

It is also worth noting that CCM alone cannot quantify how
much SI caused a decrease or an increase in the COVID-19 cases
as it only shows if one time series has an influence on the increase
of COVID-19 cases and is supposed to exhibit an increasing
correlation. Upon expanding the length of the time series (L),
and as shown in Supplementary Figure 2, the correlation values
of the SI influencing COVID-19 cases (green curves) reached
as high as 0.86. To provide clarity, the SI influencing COVID-
19 cases (green curves), which reached as high as 0.86 and
became stable [or reached a “plateau” as termed by Sugihara
et al. (62)], is an estimated precision (or correlation), where the
manifolds, say Mx (SI) will converge to another manifold, say
My (Cases).

We incorporated both Niño SST indices and SI to the NARX
model using January 21, 2020 to September 30, 2020, as the
training data and October 1, 2020 to December 31, 2020, as the
testing data. The performance of eachmodel in varying Niño SST
index was then measured using RMSE, NSE an,d IA. The values
of the performance indicators can be seen in Table 2.
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FIGURE 4 | The plot of SI and COVID-19 cases.

FIGURE 5 | Plot of Niño SST Indices and COVID-19 cases.

The values of the IA were all within a satisfactory limit (0.86–
0.88) as shown in Table 2. The same goes with the NSE, which
ranged from 0.66 to 0.69. The RMSE values were low compared
to the average number of COVID-19 cases, which, by convention,
means a better prediction model since the average a number of
COVID-19 cases was more than 400 [from October 1, 202,0 to
December 31, 2020, (see Table 1B)].

Supplementary Figure 3 shows that x = COVID-19 cases
and y = Niño SST indices and SI; Mx and My manifolds
showed that local neighborhoods on My correspond to the local
neighborhood on Mx and vice versa. This can be a support to the
high-performance indicators obtained in Table 2.

The 3- and 5-day lag predictions are the best fit based on
the performance indicators employed are shown in Table 3.
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TABLE 1B | Descriptive statistics of the data used (October 1, 2020 to December 31, 2020).

SI Cases Niño3.4 Niño4 Niño3 Niño1+2

Count 92 92 92 92 92 92

Mean 57.47 411.74 25.39 27.77 24.07 21.24

Std 5.44 370.25 0.08 0.17 0.25 0.75

Min 51.39 47 25.28 27.54 23.88 20.42

Max 68.98 1,237 25.46 27.96 24.41 22.21

TABLE 2 | Results of performance indicators.

Y X1 X2 RMSE NSE IA

Cases SI NIÑO3.4 217.18 0.66 0.86

Cases SI NIÑO3 215.68 0.67 0.87

Cases SI NIÑO4 216.43 0.67 0.87

Cases SI NIÑO1+2 209.50 0.69 0.88

TABLE 3 | Performance of Niño 1+2 N-day prediction model.

RMSE NSE IA

3-Day 189.03 0.75 0.91

5-Day 190.07 0.75 0.91

7-Day 206.84 0.72 0.89

14-Day 262.69 0.58 0.81

21-Day 329.94 0.40 0.71

However, for practicality purposes, the 7-day lag model which
performed well and with performance indicator results not far
from the 3- and 5-day prediction (7-day lag RMSE is 206.84,
while the 3-day and 5-day have RMSE values of 189.03 and
190.07, respectively (a difference of 17.81 and 16.77). The 7-day
lag has an NSE value of 0.72, while both the 3-day and 5-days
have an NSEnce value of 0.75 (a difference of 0.03). IA value of
the 7-day lag is 0.89, while both the 3-day and 5-days have IA
values of 0.91 (a difference of 0.02), which could also be chosen by
government officials to implement new policies and regulations
concerning COVID-19. The authors believe that the 7-day lag of
time prediction (which would include weekends, ideally) would
allow the businesses and the citizens, as a whole, to prepare for
the needed adjustments due to new or additional stringencies to
be imposed by the governments, whether local or national. In
the paper of Heo et al. (69), it was d out that the restriction and
stringency indices were effective at 10-day lag, closing index after
8-day lag, and health index after 0–5-day lag. However, the SI
used in this study by Oxford Coronavirus Government Response
Tracker (OxCGRT) is already the combination of all the specific
indices. Averaging the results of Heo et al. (69), an estimated 8-
day lag can be obtained. In our study, we recommend a 7-day
lag for practical purposes. For visualization, the observed and
predicted COVID-19 Cases for (a) 3-day; (b) 5-day; and (c) 7-
day lag prediction using NARX with SI and Niño 1+2 Index as
variables are shown in Supplementary Figure 4.

To check whether the inclusion of Niño SST indices and
SIs in our study could potentially improve previously done
models, we made another model patterned to the time periods
used by recently published articles (data not shown) and found
out that the MAPE values have improved. According to Lewis
(70), highly accurate forecasting had a MAPE value of <10%
which was achieved by incorporating Niño 1+2 and SI into the
prediction model.

For the association of COVID-19 cases to SI, a proof
can be shown in the paper of Jayaweera et al. (71),
when he used a linear regression model to analyze the
effectiveness of imposed stringencies (isolation, social
distancing, and contract tracing, which were all imposed
in South Korea) to mitigate the COVID-19 pandemic,
which proved that non-pharmaceutical interventions,
such as lockdowns and isolations are effective in averting
COVID-19 pandemic.

To check for the relationship between SI and COVID-19
cases, the authors have provided Supplementary Figure 5. In this
figure, it was shown that a LOWESS Regression was a better fit
for the two variables (linear and logistic regression was found
to be inappropriate). LOWESS regression or Locally Weighted
Scatterplot Smoothing can create a smooth line to show variable
relationships when linear or logistic regressions are deemed
inapplicable. Some research about the policy stringency index
in Brazil, Mexico, and the United States suggest that SI and
COVID-19 cases follow a loess (or lowess) curve (72). On the
other hand, Hale et al. (73) used Lowess regression to identify
the waves of COVID-19 cases in India, the United States, and
South Africa.

DISCUSSION

Supplementary Figures 1, 2 show the CCM of COVID-19 cases
andNiño SST indices, as well as the CCMof COVID-19 cases and
SI. As Sugihara et al. (62) emphasized in their paper, there should
be an increasing correlation as the time series length or library
size (L) increases. The Niño Index influencing South Korea
COVID-19 cases (represented by green curves) are much more
h stable and constantly increasing as L increases while the South
Korea COVID-19 cases influencing Niño Index (represented by
black curves) are in a decreasing trend. For the Niño Index
influencing South Korea COVID-19 cases (green curves), the
correlation values have reached as high as ρ ≈ 0.70 for Niño 3.4;
ρ ≈ 0.71 for Niño 3; ρ ≈ 0.71 for Niño 4; ρ ≈ 0.74 for Niño 1+2.
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TABLE 4 | Changes in SI and Niño SST indices patterns.

Week number SI Cases Niño3.4 Niño4 Niño3 Niño1+2

10 55.56 3578 27.76 29.07 27.41 26.43

11 55.56 848 27.76 29.07 27.41 26.43

12 60.45 799 27.76 29.07 27.41 26.43

13 75.93 622 27.76 29.07 27.41 26.43

14 76.72 654 28.06 29.13 27.73 25.99

22 46.36 297 27.66 29.01 26.92 24.28

23 55.09 311 27.39 29.09 25.93 22.43

24 53.24 307 27.39 29.09 25.93 22.43

39 48.61 616 25.89 28.21 23.91 19.50

40 60.59 503 25.64 28.07 23.89 20.03

41 63.36 539 25.46 27.96 23.88 20.42

42 56.94 572 25.46 27.96 23.88 20.42

This means that among the Niño SST indices, Niño 1+2 was the
most influeninal to COVID-19 cases in South Korea.

On the other hand, despite the high correlation values of
the South Korea COVID-19 cases influencing the Niño Index
(black curves), it did not exhibit a consistently increasing trend
as L increased.

In Supplementary Figure 2, the SI had an influence on South
Korean COVID-19 cases (represented by green curves) showed
an increasing and a more stable trend while the SouthKoreana
COVID-19 cases having influence to SI (represented by black
curves) also showed an increasing trend at the beginning but
decreased subsequently. These findings have become much
clearer upon increasing the length of the time series. The results
indicate that at the beginning of the 2020 pandemic in South
Korea, the implementation of stringencies by the governments
might have been influenced by the increase or decreaseinf the
reported number of new cases. However, at some point, the
influence of occurrence of new cases to the SI lessened (which
can be caused by factors, not within the scope of this study,
e.g. economic factors, etc). This could mean that COVID-
19 cases are influenced by SI but SI is not necessarily being
influenced by the number of COVID-19 cases. The correlation
values of the SI had an influence on South Korea’s COVID-19
cases (green curves) that reached as high as 0.86 with around
0.80 for the South Korean COVID-19 cases that influence SI
(black curves).

The numerical patterns in the changes of SI and Niño SST
indices are shown in Table 4. As shown, from week number 10–
15 (March to April), all the SIs (which were found to have an
effect after a week based on Figure 4) are increasing while the
cases are decreasing. The same goes to Niño 1+2 SST indices
which showed a decreasing trend (Niño 1+2 SST indices at week
15 (April) is 25.81). However, from weeks 39 to 42 (October),
the SIs (which again, was found to have an effect after a week
based on Figure 4) was found to be increasing from weeks 39
to 41 (October) while it dropped to 56.94 from 63.36 (a drop
of 6.42) on week 42 (October). SI of week 40–41 (October)
is increasing which affected COVID-19 cases of week 39–40
(October) (decreasing). SIs of week 41–42 (October) has been

decreasing, which affected week 40–41 (October) of COVID-19
cases (increasing). Niño 1+2 on the other hand has an increasing
trend from week 39 to 41 (October) and the cases from 40 to 42
(October) are also increasing.

However, in week 22–23 (June) where a decrease in Niño 1+2
SST indices was recorded (24.28 and 22.43) a slight decrease of
COVID-19 cases was also found on week 23–24 (June) (from 311
to 307) despite the decrease of SI from week 23–24 (June) (from
55.09 to 53.24). In week 22–23 (June), the SIs were increased
(from 46.36 to 55.09) but the cases from week 21–22 (May to
June) increased too (see Figure 4).

The graphical representations (Figures 4, 5) show that the
two variables (Niño SST indices and SIS) have effects on the
increasing or decreasing trend of COVID-19 cases at least a week
after the increase or decrease of SIs and Niño SSTs. Although
factors such as number of tests done could play a huge role,
the patterns mentioned could mean that Niño SSTs can also
be used as one of the factors by governments in deciding for
the appropriate restrictions to implement (e.g., if the Niño SSTs
which is seasonal is already on its increasing pattern, the SI to
be implemented should also be increasing to avoid increasing
number of cases).

In the paper of Oluwole (74), he emphasized that El Niño
Southern Oscillation (ENSO) determines the timing and severity
of influenza epidemics therefore influencing the seasonality
of diseases. According to WHO (75) (https://www.who.int/
emergencies/diseases/novel-coronavirus-2019/question-and-
answers-hub/coronavirus-disease-COVID-19-similarities-
and-differences-with-influenza), COVID-19 and influenza are
respiratory diseases sharing many similar symptoms although
the causative viruses and treatment may be different. Thus,
possible seasonality of COVID-19 cases (just like influenza) can
be associated to Niño SST indices which are affected by ENSO.

Kolle et al. (76) and Ma et al. (77) reported that an increase
in physical activity appears in the spring season in Norway and
USA. In South Korea, increased COVID-19 cases were observed
in the months of February to March then September, which are
during the spring and autumn season. Cayan (78) emphasized
the relationship of SST and surface air temperature (SAT). In
his paper, he proved the contemporaneous correlation between
the two. If SAT is hot, it means that air molecules are far from
each other and, therefore, less dense. Cold air is more dense
due to closer molecules and reduced movement, which can
contribute to disease transmission. Menebo (29) observed also a
positive association between the daily COVID-19 cases with the
maximum and normal air temperature.

The use of the NARX model in predicting the number of
potential COVID-19 cases, which could arise using SI and SST
indices as variables have been proven to be effective due to the
low RMSE and high NSE and IA values, which all signify that
the model was able to represent accurately the actual COVID-19
cases in South Korea. Due to the inclusion of Niño SST indices
and SIs in our study, the MAPE values have improved, which
implies that the combined variables of SST and SI when used
withNARX (especially using SI andNIÑO 1+2), which produced
a MAPE value of 0.27 is effective in predicting the number of
COVID-19 cases.
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Despite the satisfactory results presented, one of the
limitations in this paper is that the modeling approach was
limited to only two variables and other potential confounding
variables were not included. It could be that the observed impact
of the Niño SST variable on transmission of SARS-CoV-2 which
we observed might be secondary and its effect might be of a lesser
degree compared to the impact of other factors such as mobility,
non-pharmaceutical or policy interventions (79, 80). Another
limitation is that the research is limited to a 1-year (2020) data,
therefore effects due to vaccination or the introduction of SARS-
CoV-2 variants associated with significantly higher transmission
rates (i.e., Delta) were not considered. For future studies,
prediction models considering vaccination data encompassing
2021 (and onwards) could be done using the same modeling
approach but with incorporation of another variable such
as vaccination index. Vaccination indices should cover the
geographical data and the number of vaccinations (1st, 2nd, 3rd,
or 4th booster shots) administered/received as well as the age of
the recipient. In countries where the vaccination of COVID-19 is
not fully funded by the government, donations or those procured
via the COVAX facility should also be included as indicators of
vaccination indices. The authors would also like to emphasize
that the specific measure for each SI is beyond the scope of this
study. Based on OxCGRT, these specific measures are divided
into five categories namely Containment (C), Economic (E),
Health (H), Vaccination (V), and Miscellaneous (M) policies
which are subdivided further. Thus, for future studies, a more
specific SI calculation encompassing the sub-indices would be
recommended in order to know specific regulations to be
implemented for each change in environmental variables such as
Niño SST indices.

Another limitation is that this paper did not consider
biological and behavioral factors, such as reduced or heightened
or human physical activity (81) or mobility. The socioeconomic
background (which can affect a country’s healthcare capabilities)
was also not considered.

CONCLUSION

In summary, the study shows that the use of NARX with novel
combination of Niño SST (climate variable) and SI (policy
index) as variables could be used to predict COVID-19 cases.
Accuracy of SARS-CoV-2 transmission forecasts across seasons
may be further improved by incorporating both the Niño SST
and SI variables and combining these variables with NARX, may
outperform other models. This study found that the optimum
number of days the government can impose stringencies range
from 3 to 7 days with preference to 7 days to accommodate
adjustments which need to be done by the businesses and

other essential establishments. Findings of this study will enable
policymakers not just to monitor the increase or decrease of
cases but also enable them to make timely announcements,
interventions and impose restrictions in order to avoid high
hospital bed and intensive care unit (ICU) utilization rates in
hospitals. Niño 1+2 SST indices were also found to be the most
influential on COVID-19 cases based on the CCM.

As SARS-CoV-2 potentially evolves into an endemic
pathogen, this study provides initial evidence that COVID-19
cases may be influenced by climatic factors, such as Nino indices
and public health, and non-pharmaceutical interventions can
be timed based on the identified factors. Our findings could
help push for more climate- or environmental-friendly policies,
which could help slow down global warming which causes the
increase in the warming of sea surface temperatures. Future
forecasting work by modelers should consider including climate
or environmental variables (i.e., Niño SST) to enhance prediction
of transmission and spread of SARS-CoV-2. In order to further
improve the accuracy of the predictions generated by our model,
we recommend the incorporation of additional meteorological
and vaccination variables, behavioral and biological factors as
well as country-specific socio-economic capacity.
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