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Abstract

Background: Due to their limited dexterity, it is currently not possible to use a commercially available prosthetic
hand to unscrew or screw objects without using elbow and shoulder movements. For these tasks, prosthetic hands
function like a wrench, which is unnatural and limits their use in tight working environments. Results from timed
rotational tasks with human subjects demonstrate the clinical need for increased dexterity of prosthetic hands, and
a clinically viable solution to this problem is presented for an anthropomorphic artificial hand.

Methods: Initially, a human hand motion analysis was performed during a rotational task. From these data, human
hand synergies were derived and mapped to an anthropomorphic artificial hand. The synergy for the artificial hand
is controlled using conventional dual site electromyogram (EMG) signals. These EMG signals were mapped to the
developed synergy to control four joints of the dexterous artificial hand simultaneously.
Five limb absent and ten able-bodied test subjects participated in a comparison study to complete a timed rotational
task as quickly as possible with their natural hands (except for one subject with a bilateral hand absence), eight
commercially available prosthetic hands, and the proposed synergy controller. Each test subject used two to four
different artificial hands.

Results: With the able-bodied subjects, the developed synergy controller reduced task completion time by 177%
on average. The limb absent subjects completed the task faster on average than with their own prostheses by
46%. There was a statistically significant improvement in task completion time with the synergy controller for three
of the four limb absent participants with integrated prostheses, and was not statistically different for the fourth.

Conclusions: The proposed synergy controller reduced average task completion time compared to commercially
available prostheses. Additionally, the synergy controller is able to function in a small workspace and requires less
physical effort since arm movements are not required. The synergy controller is driven by conventional dual site
EMG signals that are commonly used for prosthetic hand control, offering a viable solution for people with an
upper limb absence to use a more dexterous artificial hand to screw or unscrew objects.
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Background
The mechanical dexterity of all commercially available
prosthetic hands is less than the human hand. Most
commercially available prosthetic hands like the Motion
Control Hand [1] and the SensorHand Speed [2] have a
single degree of freedom (DOF). However, there has
recently been a shift toward more dexterous prosthetic
hands such as the commercially available i-Limb [3]
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which has five motors; one to drive each digit. Other new
prostheses such as the bebionic hand (RSLSteeper, UK)
and the Michelangelo Hand [4] feature four fingers and
a thumb and make use of underactuated mechanisms.
Despite improvements in mechanical dexterity, clinical
practice for EMG control of these devices has remained
largely unchanged since the advent of myoelectric control.
Prosthetic hands are often controlled by two EMG

signals placed on an antagonistic muscle pair [5]. The
signals from these two antagonistic muscle groups are
then differenced to produce a dual polarity control signal
for the motor of the prosthesis in an open loop or force
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control scheme [6], allowing control of only one joint or
function at a given time. However, the control interface
for prostheses has been identified as a potential area of
improvement by everyday users [7,8]. To help overcome
this problem, many different methods of control and signal
processing have been proposed: neural networks [9],
machine learning techniques [10], fuzzy clustering [11],
and wavelet transforms [12], to name a few [13,14]. There
are several problems presented by one or more of these
control techniques such as increased time delays to process
EMG signals, computationally expensive control algo-
rithms, need of four or more EMG electrodes, increased
training time, imperfect EMG pattern recognition, and
lack of proportional force control. To date, none of the
aforementioned techniques have gained widespread clinical
use. To further facilitate the shift towards more mechanic-
ally dexterous prosthetic hands, an intuitive and robust
control interface is still needed.
One significant hurdle preventing a high level of inte-

gration of the artificial hand into the body image of the
user is the inability to simultaneously control many DOFs
independently, which is an area of improvement desired
by prosthesis users [15]. Despite recent developments
in direct neural interfaces [16] and techniques such as
targeted muscle reinnervation [17], the number of inputs
that can be extracted to control a prosthesis is limited.
It would be quite difficult to extract twenty independent
signals to control the twenty DOFs of a dexterous an-
thropomorphic hand like the Shadow Hand [18], even
with the simultaneous use of these advanced techniques
hybridized into one system. The cognitive burden required
to coordinate these twenty signals would also be inordin-
ately high. This is because many aspects of control of the
human hand occur subcortically [19]. For these reasons,
the use of grasp synergies is a beneficial technique because
a limited number of control inputs are used to specify the
action of a larger number of joints [20-23]. The concept
of grasp synergies effectively reduces the dimensionality
of dexterous hands by coupling the motions of multiple
finger and thumb joints together. People use this control
strategy frequently while reaching to grasp different objects
[24], when manipulating different objects [25], when using
tools [26], and in many other situations [21].
Grasp synergies have great implications for upper limb

prosthetics, as it allows for driving complex motions from
a limited input set, reducing the cognitive burden of the
operator. Thus, the difficult problem of controlling dexter-
ous manipulators such as the ACT or Shadow hands can
be simplified [18,27]. Brown and Asada used a principal
component analysis (PCA) and a mechanical implementa-
tion to control a 17-DOF (10 active) hand via two control
inputs [28]. A similar approach was undertaken by Xu
and colleagues with an underactuated prosthetic hand for
a manipulation task [29]. Matrone et al., recently proposed
a PCA based control algorithm to implement postural
synergies on an underactuated prosthetic hand also using
two inputs [30]. Likewise, grasp synergies have been used
to increase the information throughput for brain machine
interfaces: a 10 DOF virtual hand was controlled by two
electrocorticographic signal recording electrodes [31].
Whether it is a mechanical or control based implementa-
tion, grasp synergies have shown great promise in creating
more anthropomorphic motions of dexterous hands while
requiring a low number of control inputs.
With currently available prosthetic hands, upper-limb

prosthesis users have a diminished ability to do simple
things like catch an object, put on a tie, unscrew a bottle
cap, or drive a car (among many other activities) [32].
These are highly significant problems for those with a
hand absence [7,8,15,32,33]. An intelligent, dexterous
prosthesis could substantially improve these problems.
In response to these problems for those with a hand

absence, a new synergy was developed to enable unscrew-
ing and screwing motions of a dexterous artificial hand
[18] with a single pair of EMG preamplifiers, as are used
by myoelectric prosthesis users daily [34]. This synergy de-
sign process is outlined as follows: the finger and thumb
joint trajectories of able-bodied human test subjects were
recorded as they rotated a threaded cap. From this data, a
synergy controller was developed which approximated the
human motions with sinusoidal joint angle trajectories
(Figure 1(a)). This was performed prior to the current
study, and the complete details of this portion are pro-
vided in Appendix A. The EMG signals of five limb absent
and ten able-bodied test subjects were then mapped to
a control input (EM) to drive the synergy; two different
EMG mapping methods were explored (Figure 1(b)).
The sinusoidal synergy was then used to drive the C6M
Dexterous Shadow Hand via a sliding mode controller
(Figure 1(c)) to screw and unscrew an object (Figure 1(d)).
The performance of the synergy controller was then com-
pared to a one DOF prosthesis (Figure 1(e)) and an i-Limb
Ultra (Figure 1(f )) operated by ten able-bodied test
subjects. Three individuals with transradial amputations
and two persons with congenital hand absences also
compared the sinusoidal synergy controller for the
Shadow Hand to their current prostheses for daily use
(Figure 1(g-l)). In total, nine different artificial hands
were evaluated by both groups in a timed rotational
task. To the best knowledge of the authors, this paper
documents the first instance that people with an upper
limb absence have had EMG control of a dexterous
artificial hand to unscrew and screw any object.

Materials and methods
Dual polarity electromyogram control signal
As mentioned previously, most commercially available
prosthetic hands use a dual polarity control signal formed



Figure 1 Methods overview. (a) A synergy was developed from the recorded human joint motions of ten test subjects while unscrewing and
screwing a bottle cap. These motions were approximated by a family of sinusoids which share a common frequency of oscillation. (b) The EMG
signals of 15 test subjects were mapped to the control input EM used to drive the synergy controller. Two EMG mapping methods were considered:
Rhythmic and Threshold. The performances of these EMG mapping methods were compared to a traditional control scheme and system. (c) The
synergy controller was implemented on the C6M Dexterous Shadow Hand through a sliding mode controller using joint angle and tendon force
feedback. (d) The synergy controller was evaluated by 10 able-bodied (1-10) and five limb absent test subjects (A1-A5). The performance of the
proposed technique was compared to eight different prosthetic hands in total. (e) An able-bodied test subject performing the unscrewing task with
the Motion Control Hand (MC) under sliding mode control. (f) An able-bodied test subject performing the unscrewing task with the i-Limb Ultra Hand
(ILU) under open loop control. (g) Test subject A1 with his SensorHand Speed (SHS). (h) Test subject A2 with one of her MyoHand VariPlus Speeds
(VPS). (i) Test subject A3 with his MyoHand VariPlus Speed. (j) Test subject A4 performed the rotational task with his Motion Control ETD Hook (ETD),
(k) i-Limb (IL), and (l) body-powered Grip Prehensor (BP).
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from an antagonistic muscle pair [5]. For those users
with a transradial disarticulation or deficiency, the exten-
sor digitorum communis (EDC) and flexor carpi radialis
(FCR) muscles are commonly used [13,14].
To suitably process the voltages caused by contractions

of the muscle groups, they are first filtered, rectified, and
amplified. The resulting EMG signals for the extensor
muscles (EE) and flexor muscles (EF) are then differenced
to produce a dual polarity signal that is convenient to
control a motor:

E ¼ EE−EF ð1Þ

Artificial hand systems
Motion control hand
The Motion Control Hand (Figure 1(e)) has a single
DOF with the thumb and forefingers connected through
a four-bar linkage system. An A1321 Hall effect sensor
is used to measure the position (xM1). Strain gauges
mounted on the thumb measure the normal force (FN).
The Motion Control Hand is controlled with a hybrid
force-velocity sliding mode controller which has been
described elsewhere [1] and is of the form

VMC ¼ −CMCsat SMCð Þ: ð2Þ
VMC is the voltage control law, CMC is a positive constant

and SMC is the sliding manifold comprised of EMG signals
(E), position (xM1), velocity, and force feedback. The hybrid
sliding mode controller is used to improve the control of
force and velocity for the prosthesis. See [1] for a stability
and robustness analysis of sliding mode control for this
particular system.

i-Limb ultra hand
The i-Limb Ultra (Figure 1(f)) has five actuated DOFs with
one motor to control each digit [3]. The i-Limb Ultra does
not use sensor feedback so an open-loop controller was
implemented on the i-Limb Ultra Hand:

VIL ¼ CILE: ð3Þ
In (3), CIL is a constant gain. This technique is com-

monly used to control current prosthetic hands [6].
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The shadow C6M Hand
The Shadow C6M Hand (Figure 2(a)) is a 24 joint, 20-
DOF underactuated tendon-driven anthropomorphic
manipulator. However, only two DOFs of the first finger
and four DOFs of the thumb are used in the experiments
presented in this paper (Figure 2(b)). Strain gauges are
used to measure the force in each tendon. Hall effect
sensors within the hand provide joint angle data for
each joint with a resolution <1°. While the size and mass
of the Shadow Hand are currently too large to permit
use as a functional prosthesis, it is a useful test bed for
control algorithms.
The four DOFs of the thumb used in this paper arise

from the carpometacarpal (CMC), metacarpophalangeal
(MCP), and interphalangeal (IP) joints. The flexion/exten-
sion angle of the IP thumb joint is xT1 and the flexion/ex-
tension of the MCP joint of the thumb is xT2. Joints xT3
and xT4 are the angles of the abduction and circumduction
of the CMC joint, respectively. The two DOFs of the first
finger are the flexion/extension of the MCP (xF2) and
proximal interphalangeal (PIP), (xF1) joints (Figure 2(b)).

Sinusoidal synergy controller
Sinusoidal joint approximations
To gain inspiration for the synergy controller with the
Shadow Hand, a human hand study was initially per-
formed ((Figure 1(a)), described in Appendix A). Using
results from this initial human hand study and the process
outlined in [18], a sinusoid was used to approximate the
Figure 2 Hardware overview. (a) The C6M Shadow Hand has 24 joints an
convention of the first finger and thumb of the Shadow Hand. The origin i
visualized as black arrows. Axes of rotation perpendicular to the page are d
human finger and thumb motions for application to the
Shadow Hand. The sinusoidal approximation of a joint k
is given by

xDk ¼ Aksin ωtþ ϕkð Þ þ bk ð4Þ

where Ak is the amplitude, ϕk is the phase offset, and bk
is the angular position offset of sine wave k. A sinusoid
was generated for two joints in the thumb (xT1 and xT2)
and first finger (xF1 and xF2) for the Shadow Hand to
approximate the human motions (Table 1). This process
entailed first approximating the human joint motions
as m sinusoidal functions of time (h1(t) – hm(t)), then
mapping those functions to n joints of the Shadow Hand
system xD1 tð Þ−xDn tð Þð Þ, (Figure 1(a)).

Fingertip trajectories in Cartesian space
In Cartesian space, the sinusoidal joint trajectories yield
elliptical fingertip trajectories that are periodic on 2π
(Figure 3). For the purposes of the present work, the
elliptical trajectories are considered in two halves.
While 0 ≤ t ≤ π, the finger is considered to be in the
“contact stroke” of the synergy, where both the first
finger and thumb will contact the object, causing rotation.
While π < t < 2π, the finger and thumb are in the “return
stroke” where no contact or rotational motion of the
grasped object occurs. This is clear from Figure 3, where
the joint angles required from xF1 and xF2 to produce the
Cartesian fingertip position are also displayed.
d 20 DOFs. (b) The kinematic diagram and digit/joint naming
s designated by O and the y0 axis is into the page. Axes of rotation are
esignated by an (X).



Table 1 Sine wave parameters for shadow hand (rad)

Joint Phase offset: ϕk Amplitude: Ak Position offset: bk

xF1 −0.9425 0.635 0.975

xF2* 1.571 0.319 0.900

Thumb kinematic model

xT4 0.000 0.000 0.450

xT3 0.000 0.000 1.257

xT2 1.856 0.400 0.000

xT1 1.971 0.490 0.350
*Reference Joint.
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Shadow hand sinusoidal synergy controller driven by
electromyogram
Because EMG signal amplitude is related to both force/
torque and position [35], the EMG synergy controller is
implemented within a hybrid position/force controller
that employs tendon force feedback (Figure 4).
The developed sinusoidal synergy controller is of the

form

xD ¼
A1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ An

2
4

3
5 sin EM þ ϕ1ð Þ

⋮
sin EM þ ϕnð Þ

2
4

3
5þ

b1
⋮
bn

2
4

3
5 ð5Þ

where xD ∈ ℝnx1 (n = 6) is the vector of desired joint
angles. The amplitude (A ∈ ℝnxn), phase shift (ϕ ∈ ℝnx1)
Figure 3 Fingertip Cartesian space trajectories. Elliptical trajectory of th
developed sinusoidal trajectories. The z-axis represents the normalized join
these joints move through their sinusoidal trajectories, they create a period
of the object during the contact stroke. The Cartesian locations of the beg
by the A and B.
and joint angle offset (b ∈ ℝnx1) are determined from
the observations of the human data and are included in
Table 1. As shown in Figure 1(a,b), the time vector in
(4) is replaced by EMG signals (EM) in (5) to control
the synergy. Controlling the synergy in this manner
simplifies the problem greatly since only one input, EM, is
needed to produce coordinated, temporally synchronized
motions.
Of the six joints used in the controller, four vary sinus-

oidally while xT3 and xT4 are constant and used solely to
properly position the thumb relative to the first finger.
With a passive thumb circumduction joint (as is currently
used with the i-Limb and bebionic hands [36]), this posi-
tioning could be achieved manually, and the number of
active joints would be reduced to four.
To facilitate sliding mode control of the Shadow Hand,

an error term is defined as

e ¼ xD − x−
K 1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Kn

2
4

3
5 F1

⋮
Fn

2
4

3
5 ð6Þ

Here, Fk and Kk are the measured tendon force and the
corresponding gain for any joint k. Inclusion of tendon
force feedback in the control law is another significant
difference in this paper compared to prior work [18,34].
This has been done to improve the transition from the
e index finger in Cartesian space as the finger joints travel along the
t positions of xF1 and xF2 corresponding to any fingertip location. As
ic elliptical motion of the fingertip in Cartesian space, enabling rotation
inning and end of the contact and non-contact strokes are designated



Figure 4 Sinusoidal synergy controller block diagram. PID sliding mode control diagram for the sinusoidal synergy controller. A, b, and ϕ are
the joint amplitudes, position offsets, and phase offsets, of the sinusoids in the controller, respectively. These sinusoids are used to drive each
joint of the Shadow Hand individually using only a single EMG input. ν is the slope of the sliding manifold. Two different EMG mapping methods
were evaluated by five individuals with a hand absence as the input to the synergy controller, EM. With the Rhythmic EMG mapping method, EM = ER,
and a switching function δ determines whether the EMG signals are mapped to the contact or return strokes of the synergy (8), Figure 3. δ is
dependent upon the position of the reference joint, xF2 (Table 1). In the Threshold method, EM = ET, and when either the EDC or FCR muscles
are above a predetermined threshold, γ, EM within the family of sinusoids (5) is incremented or decremented to produce screwing or unscrewing
motions as shown in Figures 6 and 7. The speed of the synergy is constant and determined solely by ω for the Threshold method. For the Rhythmic
method, the speed of the synergy is affected by ω and also by the rate of operators’ muscle contractions.
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noncontact to contact states of operation inherently re-
quired while rotating an object as in Figure 1(d). The
end result is that faster operational speeds are enabled
through the inclusion of tendon force feedback because
it increases the compliance of the closed loop system.
This technique is beneficial because it facilitates both
the control of position along the path of the synergy and
the forces applied by the Shadow Hand through a single
EMG input. A conceptually similar hybrid control ideol-
ogy has been used for the Motion Control Hand (2) [1].
See [37] for a thorough discussion of hybrid control
schemes.
The error state vector (6) is robustly minimized with a

sliding mode control law:

V ¼ −Csat KI

Z
edt þ KPeþ KD _e

� �
: ð7Þ

KI ∈ℝnxn, KP ∈ℝnxn, and KD ∈ℝnxn are the diagonal
integral, proportional and derivative matrices that respect-
ively define the slope of each sliding manifold for the six
joints used in this paper. C ∈ℝnxn is a diagonal matrix that
functions as an upper bound estimate on the voltages
required to overcome the torques applied on the motors.
The vector saturation function, sat, is used to partially
linearize the control law to alleviate chatter that could
occur with the signum function.
This control architecture enables all of the DOFs

involved in the synergy to be controlled by a single
input, EM (5). Two separate methods for defining this
input and driving the synergy controller are subsequently
presented with varying levels of active control. For evalu-
ation purposes, the input method can be readily switched
between the two options to define EM (Figure 4).
EMG mapping method one: Rhythmic
To control the sinusoidal synergy with EMG signals re-
quires special consideration. One problem that will arise
using a conventional EMG signal mapping method as in
(1) is that the increase and decrease in the EMG signal (E)
as a muscle group is contracted and relaxed will result in
repetitive, counterproductive screwing and unscrewing
motions. For example, if E (1) was used in (5), increasing
EE would drive the Shadow Hand through the contact
stroke causing rotational motion. As EE is relaxed, the
Shadow Hand would follow the same Cartesian path
backwards along the synergy causing rotational motion
in the opposite direction.
To overcome this problem, a piecewise linear mapping

is developed for the synergy so that an increase in EE or
EF drives the synergy through the contact stroke. After-
wards, a decrease in EE or EF drives the synergy through
the return stroke (Figure 3). EE and EF are first normal-
ized such that they vary from zero when the EDC and
FCR muscles are relaxed, to one at a predetermined level
of contraction, respectively. In this control approach, the
input EM = ER is defined to be

ER ¼ πsat ωEð Þ; δ ¼ 0
2πsgn Eð Þ−πsat ωEð Þ; δ ¼ 1

�
ð8Þ

The sat function in (8) is used to ensure this range of ±1
in ωE. The switching term, δ, is defined to be 0 or 1 based
on whether the synergy is in the contact stroke or return
stroke portion of the motion. This is determined by the
measured position of a reference joint (xF2). Because the
sine wave parameters are known prior to implementation,
the maximum and minimum joint angles are known,
and these correspond to the endpoints of the fingertip
trajectories in Cartesian space (points A & B in Figure 3).
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The scaling factor ω determines the speed of the synergy
relative to the level of muscle contraction. For example,
ω = 3 implies that only one third of the nominal muscle
contraction level is needed to complete an entire cycle.
Example data of the Shadow Hand performing the

unscrewing task as in Figure 1(d) with the Rhythmic
mapping method are shown in Figure 5. The scaled
EMG input ωE is mapped to the synergy controller input
ER, which ranges from -2π to 2π (Figure 5, top). This pro-
duces periodic motion of the finger joints, enabling the
manipulator to rotate the cylinder in either direction. This
is clear from the increase and decrease in potentiometer
position (β), (Figure 5, middle). The value of δ is initially
zero, causing a contraction of the EDC to drive the fingers
of the Shadow Hand along the contact stroke of the
synergy. When the input ER = π, the reference joint angle
xF2 is at its maximum. Once this condition is reached, the
value of δ switches to 1, and the signal is mapped to the
return stroke of the synergy as the muscle is relaxed. As
ER reaches zero, xF2 reaches its minimum, and the value
of δ switches back to zero (Figure 5, middle, bottom). To
produce the opposite direction of rotational motion, EF is
flexed and relaxed in a similar manner, driving the input
ER from zero to -2π. This change in sign produces the
same joint and Cartesian trajectories, only mirrored in
time. That is, as EF is brought from zero to one, the finger-
tip travels through the return stroke, and as EF is relaxed,
the contact stroke is executed.
Through this EMG mapping method, the operator has

control of the positions and velocities of the finger and
Figure 5 Sinusoidal synergy controller: rhythmic method example data
and screwing task with the Rhythmic EMG mapping method. The top graph
EF, which comprise E, (1)) to the controller input ER. The middle graph depicts
contact strokes. The bottom graph shows the corresponding joint angles from
thumb joints. As the positions of the fingertips are
dependent upon the measured EMG signal, any point
along the path of the synergy can be reached and main-
tained by the appropriate level of muscle contraction.
Also, the speed of the synergy can be controlled by varying
the amplitude and rate of contracting and relaxing the
EDC and FCR muscles.

EMG mapping method two: Threshold
A second method of mapping the recorded EMG signal
to the synergy controller was also considered for human
evaluations (Figure 4). In the Threshold mapping method,
the controller input EM = ET, and functions as a mono-
tonically increasing or decreasing vector used to drive
the sinusoids, similar to t in (4). ET is initialized to zero
when the controller is started. While the magnitude of
the EMG input E (1) is above a deadband threshold γ, the
input ET is either incremented or decremented depending
on the relative strengths of contraction of EE and EF
(Figure 6). The threshold γ is empirically determined for
each user, set just above the noise level for each EMG
channel.
The input to the synergy controller is then given by

ωET, where ω is a free parameter which can be chosen to
determine the frequency of the sinusoidal synergy. The
speed of the synergy is determined ahead of time, solely
by the choice of ω, which must be a real, nonzero value.
Practically, an upper limit is placed on the choice of ω
given the bandwidth of the physical system used, but this
limit is dependent entirely upon the dynamics of the
. Sample data from the synergy controller performing the unscrewing
illustrates the mapping of the amplified and filtered EMG signals (EE and
the change in cylinder position (β) as the Shadow Hand executes the
the first finger required to rotate the cylinder.



Figure 6 Threshold mapping method: pseudocode logic. Pseudocode implementation of the Threshold input mapping method. ET is
initialized to zero. If the magnitude of the EMG input |E| (1) is above a threshold γ, the input ET is incremented or decremented depending upon
the relative contraction levels. If EE > EF, ET is incremented to rotate the object clockwise, if EF > EE, ET is decremented to rotate the
object counterclockwise.
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system. Above a certain value, the time constants of the
motors would prevent the manipulator from fully execut-
ing the desired sinusoidal joint approximations, which
could negatively affect the performance of the controller.
This Threshold technique is simpler but does not have the
benefit of velocity control by the operator, as is afforded
by the Rhythmic method.
Example data of test subject A3 using the synergy

controller with the Threshold mapping method are pre-
sented in Figure 7. Several joints of the Shadow Hand are
compared to recorded CyberGlove joint data (Figure 1(a))
from several trials of human subjects unscrewing the
potentiometer (Figure 7, middle and bottom). The joint
Figure 7 Sinusoidal synergy controller: threshold method example da
trials of CyberGlove (CG) data (Figure 1(a)), while the synergy controller is b
Once the recorded input E is above the deadband threshold γ, the input ω
and amplitudes of the CyberGlove data have been normalized for illustrativ
CyberGlove joint angles.
angles of the Shadow Hand closely mimic the periodic
nature of the human joint angles.

Experimental methods: artificial hand control
The Shadow Hand synergy controller was evaluated by
ten able-bodied and five limb absent human test subjects,
who also compared the synergy controller to a variety of
commercially available prosthetic hands. An overview of
the tests performed by each subject is given in Table 2. All
test subjects gave informed consent prior to experiments
with the University of Akron Institutional Review Board
(IRB) approval that is in accordance with the Declaration
of Helsinki.
ta. Comparison of Shadow Hand (SH) joint angles and two sample
eing operated by subject A3 using the Threshold mapping method.
ET begins to increment, driving the Shadow Hand. The time vectors
e purposes. Note the similarity between the Shadow Hand and



Table 2 Summary of participants and tests performed

Subject(s) Limb absence Acquired/congenital Test conditions

Human hand (H) Shadow hand mapping (R, T)# Prostheses used*

1-10 N/A N/A H R MC [1(e)], ILU [1(f)]

A1 Right Acquired H R, T SHS [1(g)]

A2 Bilateral Congenital N/A R, T VPS [1(h)]

A3 Left Acquired H R, T VPS [1(i)]

A4 Left Acquired H R, T ETD [1(j)], IL [1(k)], BP [1(l)]

A5 Right Congenital H R, T N/A
#Abbreviations R and T refer to the Rhythmic and Threshold EMG Mappings, respectively.
*Characters in brackets refer to photos of the prostheses presented in Figure 1.
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To measure the angle of object rotation (β), a 35 mm
diameter cylinder was mounted to a potentiometer
(Figure 1(d)). The subjects were asked to fully rotate
the cylinder 6 rad as quickly as possible, similar to the
previously described task in the human hand motion
analysis (Figure 1(a), Appendix A).

Test participants: able-bodied and limb absent test subjects
Two separate subject groups participated in the current
study, summarized in Table 2. The ten able-bodied test
subjects (1-10) performed the task with the Motion
Control Hand (Figure 1(e)), the i-Limb Ultra (Figure 1(f)),
and the Shadow Hand with the Rhythmic EMG mapping
method.
Five limb absent test subjects with various natures of

hand absence completed the unscrewing task using the
Shadow Hand with both EMG mapping methods and
their own prostheses that they use in their daily lives
(Table 2). The first limb absent test subject (A1) has a
right transradial amputation. He has used a powered
prosthesis for nearly a decade. His current prosthetic hand
for daily use is the SensorHand Speed [38] (Figure 1(g)).
The second test subject (A2) in this study has a bilat-
eral congenital hand absence. She has been using two
Otto Bock MyoHand VariPlus Speeds for several years
(Figure 1(h)). The third subject (A3) has a left transradial
disarticulation and has been using a powered prosthesis
for two and a half years. He also uses a MyoHand VariPlus
Speed (Figure 1(i)). The fourth subject (A4) also has a left
transradial disarticulation. He uses various prostheses in
his activities of daily living: a Motion Control ETD
Hook (Figure 1(j)), an i-Limb (Figure 1(k)) [3], and a
body powered Grip Prehensor prosthetic hand (TRS
Inc., Boulder, CO, USA) (Figure 1(l)). This test subject
also has had an amputation of his first, middle, and
ring fingers on his right hand at the PIP joints due to
the nature of his accident. The fifth limb absent subject
(A5) has a congenital absence of her right hand and
had never before used a myoelectric prosthesis in her
activities of daily life.
Experimental procedure: able-bodied test subjects
The ten able-bodied participants (Subjects 1-10) performed
the rotational task with their natural hand, Shadow Hand,
Motion Control Hand, and i-Limb Ultra systems (Table 2).
For comparison purposes, each subject was initially asked
to fully rotate the cylinder with their own hand 10 times,
with the additional instruction to complete the task as
quickly as possible.
After this procedure was completed, participants

then performed the task with the Motion Control Hand
(Figure 1(e)), the i-Limb Ultra (Figure 1(f )), and the
Shadow Hand synergy controller (Figure 4) with the
Rhythmic EMG mapping method (8).
Two EMG preamplifiers were placed atop the EDC

and FCR muscles of the subjects’ forearms prior to test-
ing. EMG signals were rectified, filtered and amplified
using Myolab II (Motion Control, Inc.). A BNC-2090A
DAQ Board (National Instruments, Inc.) interfaced with
MATLAB/Simulink via a PCI-6229 card was used to
sample EMG data at 1 kHz with the real time Windows
target kernel. These filtered EMG signals were used to
control the Motion Control Hand and i-Limb Ultra.
Half of the able-bodied test subjects began with the

Motion Control Hand (Group 1), and the other half per-
formed the task with the Shadow Hand first (Group 2).
This was done since the participants were unfamiliar
with EMG control, to reduce the impact of learning ef-
fects of the test subjects, on average, from influencing
the performance with a particular system. All trials with
the i-Limb Ultra were performed subsequently. A practice
time of five minutes with each system was given prior to
recorded trials. Each subject performed the task 10 times
with each artificial hand and the time to complete the task
was tabulated.
A single factor ANOVA test was performed between

the controllers to determine if a statistically significant
improvement was offered by the synergy controller with
respect to the amount of time required to complete the task
with the other two systems. Three single factor ANOVA
tests were also performed to examine the performance



Figure 8 Able-bodied subjects: time results. Time results for
able-bodied subjects, by group. All subjects completed the task
faster with the synergy controller using the Rhythmic mapping
method for the Shadow Hand (R) than the Motion Control (MC)
Hand or i-Limb (ILU) Hand. All subjects performed the task fastest
with the human hand (H).
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differences between able-bodied Groups 1 and 2 for each
artificial system. These tests determined if there were any
learning effects in the performance of each system as the
subjects became more familiar with EMG control. They
also indicated whether or not a substantial improvement
was enabled by the additional dexterity of the i-Limb with
respect to the one DOF Motion Control Hand.

Experimental procedure: limb absent test subjects
In the case of the limb absent subjects A1-A4, their own
prostheses were used to perform the rotational task. This
subject group evaluated both EMG mapping methods for
the Shadow Hand (Rhythmic and Threshold). They also
performed the task with their natural hands (except
subject A2 who has a bilateral limb absence). Subject
A5 only used the Shadow Hand with both mapping
methods since she does not own a prosthesis and had
never used one previously. Every participant performed
each test condition 10 times (Table 2).
After data collection, a single factor ANOVA test was

performed on the individual completion times for each
method and subject. This was used to quantify the per-
formance of each individual with respect to every control
method due to the anatomical differences among test
subjects. These tests were further analyzed using the
multcompare function in MATLAB, which uses the re-
sults from a single factor ANOVA test to determine the
level of significance between systems for each individual
subject.
Additionally, a two factor ANOVA test was performed

with the artificial hand data (consisting of time trials
from the prosthetic and Shadow Hand systems) from sub-
jects A1-A4. This test examined the performance of each
control method (factor A) across the group, as well as to
whether or not the operator (factor B) played a significant
role in the performance. The ETD Hook was the only
prosthesis considered in this test for Subject A4, to limit
the comparison to single DOF myoelectric prostheses used.
To have a balanced test, subject A5 was not considered in
this test, as she lacks an integrated prosthesis.
The Rhythmic and Threshold mapping methods for

the Shadow Hand were also evaluated subjectively by
the limb absent participants. Every subject rated how
similar each EMG mapping method felt in comparison
to the human hand while completing the task on a scale
of 1-10. A nonparametric Mann-Whitney U-Test was
performed on their responses to evaluate the significance
of the results.
When controlling the Shadow Hand, the EMG pream-

plifiers from the MyoLab II were placed atop the same
recording sites that the test subjects A1-A4 use with
their own prostheses. Test subject A5 was found to have
excellent EMG signals for control in the distal portion of
her residual limb.
Results
Able-bodied test subject results
Average task completion time
The average task completion time was calculated for
each of the four methods (human hand, Motion Control
Hand, i-Limb Ultra, and the Shadow Hand with the
Rhythmic EMG mapping method), Figure 8. As expected,
subjects using their own hands completed the task in the
fastest time, with an average of 1.54 s across all subjects.
The task was completed in 11.04 s on average while using
the Motion Control Hand, and in 11.69 s with the i-Limb
Ultra. The average completion time for the Shadow Hand
sinusoidal synergy controller was 4.10s across all subjects.
This represents a 177% improvement in completion time
with the Shadow Hand.

Statistical analysis of task completion time
The completion time of every trial for all ten able-bodied
subjects was used for the ANOVA test, resulting in 100
data points per system (10 trials from each subject per
system). As expected, there was a statistical difference
between each of the robotic systems and the human
hand, with a high level of confidence (p < 0.01). The
Shadow Hand synergy controller offered a significant
improvement over both the Motion Control Hand and
the i-Limb Ultra (p < 0.01). There was no significant
difference between the Motion Control Hand and the
i-Limb Ultra (p > 0.05). Three additional ANOVA tests
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evaluated the mean performance of both groups for each
artificial system. All three tests proved non-significant
(p > 0.05), indicating that learning effects did not signifi-
cantly affect the performance between the Motion Control
Hand and the Shadow Hand between the two test groups.
It also indicates that the additional dexterity of the i-Limb
Ultra provided no benefit to complete this particular task
more quickly than the one DOF Motion Control Hand.

Limb absent test subject results
Average task completion time
Results of the slowest individual trials for each robotic
system used by subjects A1-A5 are shown in Figure 9. In
all of these cases the synergy controller with the Threshold
input mapping produced the fastest times. The synergy
controller also reduced accidental backward rotation of
the cylinder during the task. It was observed while using
their own prostheses that an errant arm motion or EMG
input would cause a subject to counter-rotate the object
Figure 9 Limb absent subjects: example data. The slowest individual t
perform the task. The abscissa is time in seconds, while the ordinate is t
subjects’ own prostheses (see Figure 1 caption for abbreviation definitio
Hand using the Rhythmic (R) and Threshold (T) input mappings, respect
(out of 10). Cases where the object was accidentally rotated backwards
fastest in this dataset.
or miss the grasp entirely, as occurred during subject A4’s
first attempt while using his i-Limb (Figure 9). While this
could happen because of a poorly-timed muscle contrac-
tion with the Rhythmic method, it never occurred while
using the Threshold method.
The average times to complete the task using the

Shadow Hand, the subjects’ natural hands, and their
respective prostheses were calculated for all subjects
(Figure 10). As expected, the subjects completed the
task in the shortest time while using his or her natural
hand (1.28 s average). This does not include test subject
A2 who has a bilateral congenital limb absence.
With respect to the artificial hands, the Shadow Hand

with the Threshold mapping method produced the fastest
average time to complete the task; faster on average than
with their own prostheses (3.73 s versus 6.06 s), represent-
ing a 62% improvement in completion time. The Rhythmic
mapping method was the second fastest with an average
completion time of 4.58 s, a 32% improvement over the
rials for each limb absent subject for each robotic system used to
he normalized cylinder position (β). Black lines represent the
ns), while the red and blue dashed lines represent the Shadow
ively. Numbers next to each legend entry denote the trial number
are circled in orange. The Threshold method performed the task the



Figure 10 Limb absent subjects: time results. Task completion
time results for individual limb absent subjects, using their own hand
(H), the synergy controller with the Rhythmic (R) and Threshold (T)
input mappings, and up to three of their own prostheses (P), as
described in Figure 1 and Table 2. For test subject A4, this denotes the
ETD Hook (Figure 1(j)). This subject also performed the unscrewing task
with his i-Limb (IL) and body powered Grip Prehensor (BP).
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subjects’ own prostheses. Overall, the newly introduced
Threshold method was faster than the Rhythmic EMG
mapping method by 0.85 s, or 19%.
It should be noted that the average completion time of

6.06 s with the limb absent subjects’ own prostheses
includes data from subject A4’s body powered prosthesis
(BP). Disregarding these body powered data results in an
average completion time of 5.04 s while the limb absent
subjects were using their own prostheses, with the pro-
posed synergy controller still producing a 9% and 26% im-
provement using the Rhythmic and Threshold mappings,
respectively.
Test subject A1 was able to complete the task faster

with the synergy controller than with his own prosthesis
by 0.32 s and 1.32 s using the Rhythmic and Threshold
methods, respectively (Figure 10). Test subject A2 com-
pleted the task in 3.68 s with her own prosthesis; with
the synergy controller, she had average completion times
of 4.03 s and 3.94 s using the Threshold and Rhythmic
mapping methods, respectively. Test subject A3 was faster
with the Threshold mapping method than with his own
prosthesis by 0.53 s, but was slower with the Rhythmic
method by 0.54 s. Test subject A4 was also faster with the
Threshold method (4.07 s) than with each of his own
prostheses by 2.40 s on average. The slowest average time
for subject A4 was seen while using the body powered
prosthesis (8.09 s), with the i-Limb hand producing the
second fastest time on average: 5.51 s (Figure 10).
Subject A5 proved to be proficient with both synergy

controller EMG mapping methods, completing the task
in 3.85 s and 3.61 s with the Rhythmic and Threshold
mapping methods, respectively.

Statistical analysis of task completion time
Unsurprisingly, the single factor ANOVA tests performed
on the individual subjects indicated a statistically significant
difference in completion times (p < 0.001). This is because
the results from the human hand are much faster than all
the artificial hands in all relevant cases (except for subject
A2 who lacks a natural hand), Figure 11.
The two factor ANOVA test on the artificial hand data

returned significant results from both the controller/artifi-
cial hand (factor A) and test subjects (factor B): pA < 0.001
and pB < 0.001, as well as a highly significant interaction
between the two factors (pA/B < 0.001).
With respect to the artificial hands, Subjects A1, A3,

and A4 were significantly fastest using the Threshold
EMG mapping method (p < 0.05). Subject A2 showed no
significant difference between any of the robotic systems
(p > 0.05) (Figure 11). Test subject A5 showed no statistical
difference between the two EMG mapping methods for
the Shadow Hand.
For Subjects A1 and A4, no significant difference existed

between their prostheses and the synergy controller with
the Rhythmic EMG mapping method. Subject A3 was
statistically slower using the Rhythmic method than with
his own prosthesis.
Test subject A4 was significantly slower while using his

body powered prosthesis (Figure 1(l)) but no significant
difference was seen between his two myoelectric prostheses
(Figure 1(j,k)) and the synergy controller with the Rhythmic
EMG mapping method (Figure 11).
In all, the Shadow Hand synergy controller with the

Threshold mapping method was significantly faster than
the commercially available prostheses for subjects A1, A3
and A4; it was not significantly slower for subject A2.

Subjective results
Each limb absent person also subjectively evaluated how
similar the Rhythmic and Threshold mapping methods
were to control of the human hand. In each case, the
Rhythmic method was rated higher (Figure 12). On aver-
age, the participants rated the Rhythmic mapping method
as 6.90 ± 1.95, and the Threshold mapping as 4.60 ± 1.82.
The results of the U-test returned a p-value of p = 0.135,
which is not statistically significant.

Discussion
Sinusoidal synergy controller
There are several observations about the proposed si-
nusoidal synergy controller that merit mention. First,
the approximation of the human finger and thumb joint
motions by sinusoids provides numerous advantages for
control of an artificial hand. Because the human finger
joint trajectories are periodic and share the same frequency,
a single set of sinusoidal inputs can be used in the path
planning of the robot to perform this task with high accur-
acy. Also, by adjusting the position offsets of the sine waves,
the manipulator can be made to unscrew different diameter
objects [18]. Additionally, this synergy allows the controller
to switch from an unscrewing motion to a screwing motion



Figure 11 Limb absent test subjects: statistical analysis. Box and whisker plots of the limb absent participants’ time results for each
method of control: human hand (H), synergy controller with the Rhythmic input mapping (R), and Threshold input mapping (T), and
prosthesis(es). Refer to the caption of Figure 1 for abbreviations of the commercial prostheses tested by each subject. The human hand is
significantly fastest in all applicable cases. The Shadow Hand Synergy Controller with the Threshold mapping method was the significantly
fastest artificial method for subjects A1, A3, and A4. Subjects A2 and A5 showed no significant difference between the robotic systems
they tested.
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by decrementing the time vector in (4), as opposed to
incrementing it [18]. This reverses the motions of all the
joints simultaneously, and induces the opposite direction
of angular rotation of the object.
In addition to completing the task more quickly than

commercial prostheses on average, the developed syn-
ergy controller has several other distinct advantages.
For example, the proposed controller produces more
anthropomorphic motions, with proportional control
of the position and velocity of the joints along the path
of the synergy (in the case of the Rhythmic EMG map-
ping method). Also, the synergy controller presented
herein has the additional benefit of being functional in
a tight working environment, which is not possible for
unscrewing and screwing motions with commercially
available prosthetic hands. Finally, less physical effort
is required with the proposed synergy controller since no
additional motion of the shoulder and elbow is required
to rotate the object as is necessary with commercially
available prosthetic hands.
In this sense, current prosthetic hands function similar

to a crescent wrench to unscrew objects which limits
Figure 12 Limb absent subjects: subjective results. Individual results of
Rhythmic EMG mapping method was rated to be more similar to control o
their viability in tight workspaces (Figure 13(a)). To demon-
strate this, sample screwing data from the Motion Control
Hand is shown in Figure 13(b). Here, the difference in the
measured EMG signals (EE and EF) from the forearm is
used to open or close the hand by alternating the relative
contraction strength of each muscle (Figure 13(b), top).
When the Motion Control Hand has the potentiometer
in grasp, FN increases (Figure 13(b), bottom) and the
prosthesis must be rotated using shoulder and elbow
movements (Figure 13(a), top) to induce a change in the
potentiometer angle, β (Figure 13(b), middle). Repeating
this process continues the unscrewing motion.
Looking forward, the synergy control concept in Figure 1

can also be expanded and adapted to other tasks by
altering the sine wave parameters, or even choosing other
periodic functions to control different kinds of cyclical tasks
via a single control input. The synergy control method
outlined in this paper could be used with any input
source, not just EMG. For example, electroencephalogram
(EEG) signals could be used by other populations of dis-
abled people like stroke victims and quadriplegics to have
dexterous control of an anthropomorphic manipulator.
subjective evaluations (left), and average responses (right). The
f the human hand by all test subjects.



Figure 13 Prosthetic hand control. (a) Photo sequence of an able-bodied test subject performing the unscrewing task with the Motion
Control Hand (top), and i-Limb Ultra (bottom). The prostheses must be manually rotated using elbow and shoulder motions to produce rotation
of the object once in grasp. The angular position of the object is denoted as β. In essence, prosthetic hands function similar to a crescent wrench
during this task. (b) The Motion Control hand under sliding mode control. A contraction of the EDC (EE) causes the hand to open, while a
contraction of the FCR (EF) causes the hand to close. The prosthesis must be manually rotated as in (a) to rotate the grasped object.
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The Threshold mapping method would be particularly
useful for EEG control, and is currently being explored
for this purpose.
Finally, it is worth discussing the performance of the

proposed sinusoidal synergy technique in less structured,
real world situations. As an example, the position of the
object was locked in the current study. This is similar to
many real world situations, such as working on an auto-
mobile or manipulating dials on a piece of equipment.
However this is certainly not always the case, for example,
when the object to be unscrewed is grasped in the other
hand. In this kind of bimanual task, the operator would
also need to maintain the correct position of the artificial
hand relative to the object in order to complete the task.
As with commercially available prosthetic hands, the
performance of the sinusoidal synergy technique is affected
by the positioning of the object within the workspace of the
fingers. An advantage of the proposed synergy controller is
that after the correct positioning has been achieved, the
hand can be held in place while the screwing/unscrewing
motions are produced entirely by the fingers. This is in
contrast to performing the same task with currently
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available prostheses, which must be repositioned, closed,
and manually rotated with arm and shoulder movements
to achieve each cycle of the rotational motion (Figure 13).
Despite these inherent advantages with the synergy

controller, it is likely that tactile feedback could be a useful
addition to improve the robustness required for imple-
mentation in tasks of daily living [39]. It is hypothesized
that tactile fingertip force feedback could also be used to
further improve the time to complete the unscrewing task,
since the human hand, which offers rich tactile informa-
tion, was always statistically fastest. The addition of tactile
feedback may also help to further reduce the sensitivity of
the proposed technique to uncertainties in object location
and geometric eccentricities.

Able-bodied test subjects
Results from the timed tests show significantly faster
completion times with the synergy controller using the
Rhythmic mapping method (4.10 s average) than with the
Motion Control Hand (11.04 s average) and i-Limb (11.69 s
average). This represents an improvement of 177% over the
prosthetic systems on average. Additionally, the range
of mean times between subjects and individual standard
deviations are lower with the synergy controller. Together,
these findings suggest that the developed controller pro-
vides a sufficiently intuitive human-machine interface with
low required training time to become proficient.
The ANOVA of the task completion time for the able-

bodied subjects demonstrated that there is no statistically
significant improvement offered by the increased dexterity
of the i-Limb (with one active DOF per digit, versus one
DOF total for the Motion Control Hand) for this par-
ticular task. There was, however, a significant difference
in time to complete the task between the i-Limb Ultra
and the Shadow Hand (which had two active DOFs per
digit). This demonstrates the need for more dexterous
prosthetic hands, and illustrates one way this additional
functionality could be used. This information is useful
for prosthetic hand manufacturers to consider for future
designs of more dexterous prostheses.
The inclusion of tendon force feedback for the synergy

controller in this paper is an important improvement
over prior work which only had position feedback [34].
By increasing the compliance of the closed loop system
with the hybrid control scheme in this paper, a faster
synergy time was enabled relative to results from the
able-bodied participants who used a version of the synergy
controller which had no tendon force feedback. Without
feedback, an average completion time of 5.17 s was
achieved with the same system [34]. The addition of
tendon force feedback produced an average time of 4.10s,
representing a 21% improvement over earlier efforts. The
increased compliance offered by the tendon force feed-
back also makes the system less susceptible to improper
placement of the object. If, for example, the object is
closer to the hand than intended, the resulting increased
tendon force will autonomously extend the finger and
thumb joints further and allow the digits to complete the
unscrewing motion more easily. This also serves to regu-
late the applied force to the rotating object, reducing the
possibility of squeezing the object too tightly. As men-
tioned earlier, the addition of tactile feedback is also being
investigated to further improve the robustness and per-
formance of the sinusoidal synergy technique.

Limb absent test subjects
The limb absent subjects were noticeably faster using their
own prostheses than the able-bodied participants who
used the Motion Control Hand and i-Limb Ultra. As a
group, the limb absent group had an average completion
time of 6.06 s while the average for the able-bodied
subjects was 11.37 s (Figures 8 and 10). This was ex-
pected, as the prostheses of those test subjects with a
hand absence are well integrated into their residual
limbs. Additionally, the able-bodied subjects had little
to no prior experience with EMG control of a prosthesis.
Despite this, the average completion times are roughly
comparable between the limb absent and able-bodied sub-
jects while using the Rhythmic EMG mapping method for
the Shadow Hand synergy controller: 4.44 s versus 4.58 s,
respectively. This is encouraging because it shows that
even though the limb-absent subjects (A1-A4) have much
more experience with EMG control, the able-bodied sub-
jects and subject A5 were able to control the Shadow
Hand approximately as well as subjects A1- A4, who have
integrated prostheses. The low training time required for
proficiency is also illustrated by subject A5, who achieved
fast task completion times despite never previously using
a prosthesis in her daily activities.
The limb-absent subjects were asked to subjectively

evaluate how similar the Rhythmic and Threshold EMG
mapping methods are to control of the human hand.
All subjects evaluated the Rhythmic method higher
(Figure 12). When asked to explain their numerical evalu-
ations, the common response was that the Threshold
method felt more artificial than the Rhythmic method
because a simple maintained contraction of a muscle
group caused motion of the Shadow Hand with the Thresh-
old method. Overall, the participants felt that the Rhythmic
mapping method allowed for a more natural feeling way
to control the Shadow Hand while rotating the cylinder.
However, test subject A4 did mention that the Threshold
method was easier for him to use, which is due to his
significantly faster performance with the Threshold
method (Figure 11).
Even though the Rhythmic method was subjectively

rated higher than the Threshold method (though not
significantly due to the sample size), results from the



Figure 14 CyberGlove II sensor placement. The CyberGlove II has
22 sensors to measure the motions of human hands.
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timed task show that both methods are effective. This is of
particular interest because the results of the two-way
ANOVA show that there is a significant interaction be-
tween the test subject and the EMG mapping method.
Because subject A4 had a slower completion time with
the synergy controller using the Rhythmic EMG mapping
method, he would probably benefit more from use of the
Threshold method for his daily tasks. This is because the
Threshold method is simpler to operate and produced the
fastest task completion time on average among all limb ab-
sent test subjects (Figure 11). Other test subjects who had
no significant difference between the two mapping methods
(A2 and A5) might opt to use the Rhythmic method be-
cause of the increased ability to control both the position
and velocity of the hand along the path of the synergy (8).
All limb absent subjects were significantly faster with

the Threshold method than they were with their own
prostheses except subject A2, who showed no significant
difference. Several other factors should also be mentioned
that were not measured. First, the nature of completing
this task with a conventional prosthesis requires a large
workspace to manually unscrew or screw the grasped ob-
ject (Figure 13). This is unsuitable in small working envi-
ronments, and limits the functionality of the prosthesis
under these conditions. The proposed synergy controller,
however, requires a workspace only large enough to ac-
commodate the motions of the fingers (Figure 1(d)). Once
the object is appropriately positioned between the fingers,
no more manual adjustment is needed to rotate the object.
This also reduces the tendency to inadvertently rotate the
cylinder backwards as occurred with the commercially
available prostheses (Figure 9). In addition to the benefit
of a reduced workspace, the synergy controller also requires
much less physical energy from the operator. This was
most exemplified in subject A4, who was physically tired
after completing testing with his prostheses, especially with
his body-powered prosthetic hand. The sinusoidal synergy
controller reduces the required physical efforts since no
elbow and shoulder motions are necessary after positioning
the hand.

Conclusions
This paper has presented results from a timed rotational
task using natural and prosthetic hands, evaluated by
participants with and without a limb absence. The results
demonstrate the need for more dexterous prosthetic
hands. Thus, a clinically viable solution to this problem
was presented for a dexterous artificial hand. The newly
developed sinusoidal synergy controller was compared
to multiple commercially available prosthetic hands by
five subjects with a hand absence and ten able-bodied
test participants to rotate an object as quickly as possible.
Test subjects using the sinusoidal synergy controller

completed the task more quickly than they did with the
commercially available prostheses. The synergy control-
ler provides several other distinct advantages, including
a reduced workspace and less physical effort required to
operate. Moreover, the process used to derive this synergy
(summarized in Figure 1) can be adapted for different tasks
or input signals with little modification. The current work
has made several significant improvements over prior work
[18,34], including the implementation of tendon force
feedback to improve the performance, minimization of
the number of joints required to complete the task,
and an additional EMG synergy mapping method. The
newly developed Threshold EMG mapping method im-
proved task completion time by 19% with the limb absent
subjects. New experimental results presented herein have
demonstrated the efficacy of these improvements.
Future work for this research is to expand this sinusoidal

synergy concept to function for any arbitrary orientation of
the hand with respect to the grasped object [40,41]. A top
level controller, currently under development, will include
the ability for the operator to switch between other syner-
gistic motions and grasp patterns. This will allow the user
to perform a wide variety of actions by utilizing finger joint
motion synergies inherent in natural hand control.

Appendix A. Initial human hand study
Prior to the artificial hand comparison study, an initial
human hand motion study was performed (Figure 1(a)).
The results from these experiments were used to derive the
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sinusoidal joint motion approximations used in the Shadow
Hand synergy controller. The following outlines the experi-
mental procedures and results of this initial study.

Equipment - CyberGlove II
The hand motion profiles of ten human test subjects were
recorded using the ver. 2.2 CyberGlove II (Figure 14),
(Immersion Corporation, San Jose, CA). The glove con-
verts finger and thumb joint angles into digital joint angle
data in real time, and has been used in previous studies
to record motions of the human hand for robotic applica-
tions [18,42]. Each of the fingers of the glove contains four
sensors, two of which record joint angle data for the distal
interphalangeal and PIP joints. The remaining two measure
extension/flexion and abduction/adduction of the MCP
joint. There are four sensors in the thumb to measure the
motions of the IP, CMC, and MCP joints.

Experimental methods: CyberGlove
Ten able-bodied human test subjects gave informed con-
sent prior to experiments with University of Akron IRB
approval that is in accordance with the Declaration of
Figure 15 Joint space contour plots. (a) Contour plots of the recorded j
in frequency and amplitude among the ten subjects as they unscrewed th
test subject. The joint amplitudes remain relatively constant throughout co
with respect to one another. However, there are joint angle offsets betwee
joints used to recreate this task with the robotic system to further demons
analysis was performed between the sinusoidal approximations and the re
suggest that the developed sinusoids reproduce the observed human mot
robotic system.
Helsinki. Each test subject was first fitted with a brace to
immobilize the wrist during testing. Prior to data acqui-
sition, the forearm of each subject was secured in place
and a bottle was placed at a measured orientation angle
θ = π/2 rad relative to the wrist. Here, the orientation
angle is defined as the angle between the axis of rotation
of the bottle cap and the longitudinal axis of the forearm
that runs from the elbow to the hand (Figure 1(a)). A
standard 500 mL plastic water bottle with a cap diameter
of 30 mm was used during this experiment. The partici-
pants were instructed to unscrew the cap completely
using only the first finger and thumb while both the
wrist and bottle were secured in place, during which
time joint angle data for these digits were recorded at
40 Hz. The subjects were given no time constraints to
complete the task, but instead were asked to unscrew
the cap in the most natural manner given the applied
physical constraints. The wrist brace served to prevent
movement of the wrist from imparting any motion to the
cap while the finger joint angles were being recorded
because simultaneously powered wrist actuation is not a
capability available to most prosthetic hands. Additionally,
oint angle data of the first finger and (b) thumb. Notice the similarities
e bottle cap. (c) All recorded joint angle data for a single trial from one
mpletion of the task, and the frequencies of all joints remain constant
n the joints of the hand. Sinusoids are superimposed over the four
trate the periodic nature of the joint motions. (d) A joint space error
corded human joint angles. The low errors and standard deviations
ions with sufficient accuracy to complete the task with the
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this isolated the effects of the finger and thumb motions
during the task. This procedure was repeated five times
for each test subject.
After data collection, the hand motion profiles of the

individual trials were observed with a human hand skeletal
structure in Simulink using the 3D Animation toolbox
(Figure 1(a)). A principal component analysis (PCA) was
performed on the joint angle data to determine the impact
of each joint during the task. PCA is commonly used as a
data reduction method to eliminate redundant variables
in high dimension problems. As will be subsequently
demonstrated, the periodic nature of the unscrewing joint
angle motions enabled the accurate approximation of
the human joint angle profiles by a set of sinusoidal
trajectories.

Human hand joint space data
The joint angle data from the CyberGlove experiments
were first filtered and normalized with respect to time
so that each subject performed the same number of cycles
per second of normalized time. This was done because
some of the subjects performed the task more quickly
than others.
Observation of the data revealed two tendencies: first,

that the individual finger joints exhibited a periodic motion
which can be closely approximated by a sinusoid. Second,
the frequency of this periodic motion remained relatively
Figure 16 Principal component analysis results. Results of the PCA. The
subject (1-10), as well as the average across all subjects. The number in the
each joint.
constant for all joints throughout the duration of each
trial. However, there are phase differences between the
respective joints (Figure 15).
Contour plots from a single trial for each joint from

all of the ten test subjects were constructed with re-
spect to normalized time (Figure 15(a,b)). These ten-
dencies are further illustrated in Figure 15(c), which
shows all recorded joint angles during a single unscrewing
trial for one test subject. Four of these joint angles
were later approximated by sinusoids for implementa-
tion on the robotic system (Figure 15(c)), as previously
described.

Principal component analysis results
Results of the PCA show that the first principal compo-
nent (PC) for each test subject accounts for 72.6% of the
variance on average. The scalar coefficients of the first
PC for each test subject were converted to percentages
to determine the contribution of each joint variable to
that PC (Figure 16) for both the individual subjects
and the group on average. This analysis was limited to
the first PC only due to the high amount of variance
attributed solely to the first PC, a result of the highly
constrained nature of the task. Figure 16 ranks the most
impactful joints (those contributing most to the variance)
from one to eight according to the PCA, plotted in de-
scending order.
percentage contribution of every joint is shown for each individual
upper left corner of each graph denotes the rank of contribution for
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Sinusoidal joint angle approximations
The aforementioned PCA was used to identify joints
that contributed strongly to completion of the task and
to identify which joints were not required. Additionally,
the PCA was used to establish the relative amplitudes of
each joint with respect to the remaining joints (Ak), while
the joint space data were used to establish the required
phase offsets ϕk. Finally, a single set of sinusoidal parame-
ters were developed and used with the Shadow Hand for
all test subjects (Table 1).
A joint space error analysis was performed using the

average absolute relative error between the developed
sinusoidal approximations and the recorded joint angles
of the human subjects. The results of this analysis show
that the sinusoidal approximations closely reproduce the
human joint motions (Figure 15(d)). This joint space error
analysis demonstrates that the developed sinusoids recre-
ate the motion in the joint space with sufficient accuracy
to complete the task with the robotic system.
One of the major differences in this paper from prior

work [18] is the goal to use as few DOFs of the Shadow
Hand as possible, which will facilitate the application of this
technique to prosthetic hands. To that end, it is clear from
Figure 16 that joints FJ1b and FJ2 have the largest impact
with the first finger. Accordingly, a two DOF model was
used for the first finger (xF1 and xF2) since the abduction
motions of the human test subjects were minimal.
TJ1, TJ4, and TJ2 have the most influence on the motions

of the thumbs of the test subjects. As one of the goals of
the current work is to minimize the number of joints
required to complete this task, two actuated joints of the
thumb were used (xT1 and xT2) while the other two joints
of the thumb (xT3 and xT4) were given constant position
offsets to appropriately position the thumb. Joint xT2 was
chosen over xT4 for several reasons. Both TJ2 and TJ4 have
nearly equal contributions to the task during human test-
ing (Figure 16) but the inter-subject variation for TJ4 is
higher, most likely due to greater anatomical variability
with this joint of the human thumb [43]. This variability
led to some subjects using TJ2 more than TJ4 during the
task. Additionally, newer multi-DOF prostheses (such as
the i-Limb and bebionic hands [36]) commonly implement
a passive thumb circumduction joint with one actuated
MCP flexion joint. Thus, the use of constant angles for xT3
and xT4 are representative of the existing passive circum-
duction joints that are already implemented in commer-
cially available hands. However, xT1 (and xF1) represent a
new feature that is not currently available in any pros-
thetic hand that could be evaluated by manufacturers as
a potential addition to future designs.

CyberGlove to shadow hand mapping
After establishment of the sinusoidal joint approximations
(h1(t)–hm(t)), these functions were then mapped to the
robotic system (xD1 tð Þ–xDn tð Þ) to form the desired joint
trajectories for the Shadow Hand (Figure 1(a), Table 1).
To do this, joints xT1, xT2, xT3, xT4 were mapped from
joints TJ1, TJ2, TJ3, and TJ4 of the human hand, respect-
ively. The two DOFs of the first finger used in this paper
are the PIP and MCP joints, xF1 and xF2, which were
mapped to the Shadow Hand from joints FJ1b and FJ2 of
the human hand, respectively [18].
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