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DNA Testing in Neurologic Diseases

D.P. O’Brien and T. Leeb

DNA testing is available for a growing number of hereditary diseases in neurology and other specialties. In addi-

tion to guiding breeding decisions, DNA tests are important tools in the diagnosis of diseases, particularly in condi-

tions for which clinical signs are relatively nonspecific. DNA testing also can provide valuable insight into the risk of

hereditary disease when decisions about treating comorbidities are being made. Advances in technology and bioinfor-

matics will make broad screening for potential disease-causing mutations available soon. As DNA tests come into

more common use, it is critical that clinicians understand the proper application and interpretation of these test

results.
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Veterinary medicine has entered the age of genom-
ics. Advances in technology and bioinformatics

have made information found in the DNA of our
patients available at a rapidly decreasing cost. The
unique population structure of purebred animals makes
them ideally suited for gene discovery strategies. Lesser
concerns about privacy and insurance, as well as
greater control over breeding decisions allow the direct
application of DNA information to decision making in
veterinary medicine much easier than in human medi-
cine. This means, however, that the veterinary commu-
nity must become well versed in DNA testing and
utilize those test results wisely. Perhaps nowhere is this
potential greater than in diseases of the nervous system.
Even with advances in imaging, the relative inaccessi-
bility of the nervous system increases the value of addi-
tional diagnostic approaches such as DNA testing,
although no diagnostic test can substitute for a thor-
ough history and neurologic examination. Although in
the past, genetic diseases often were considered only
after other etiologies were excluded, the increasing
availability of DNA testing permits earlier consider-
ation of these conditions in the diagnostic plan.

We will discuss the principles and value of DNA
testing in the practice of veterinary neurology.
Although we focus on neurologic disease, the princi-

ples involved could apply to any other organ system.
We will review some characteristics of hereditary dis-
eases, the basic principles and potential pitfalls of
DNA testing, and finally discuss how DNA testing is
changing clinical neurology practice.

Some Characteristics of Hereditary Diseases

To select appropriate DNA testing, the clinician
must first recognize when the clinical signs suggest a
hereditary disease. Each hereditary disease is unique,
but some general features of a disease will raise suspi-
cion of a hereditary cause. Table 1 shows some of the
characteristic features of several categories of heredi-
tary neurologic diseases.1

A high incidence of a disease in 1 breed or inbred
line suggests a hereditary basis of the disease. It does
not, however, necessarily reflect poor breeding prac-
tices. Inbreeding does not cause genetic disease per se,
but makes the expression of recessive traits more
likely. This could be a desirable trait that the breeder
is trying to select for or an undesirable trait that also
is segregating in the breed. A popular sire inevitably
will be a silent carrier of undesirable traits as well as
the desirable ones that made the animal popular.
Unfortunately, the animal can pass both on to many
offspring by frequent natural breeding or artificial
insemination, but it may take several generations
before a recessive genetic disease is recognized. Also,
other factors such as the use of the breed such as in
agility or search and rescue, the husbandry practices of
breeders, or other environmental factors also could
cause a disease to be particularly prevalent within a
breed. Thus, all differential diagnoses for a presenting

From the Department Veterinary Medicine and Surgery,
College of Veterinary Medicine, University of Missouri, Columbia,
MO (O’Brien); and Institute of Genetics, Vetsuisse Faculty,
University of Bern, Bern, Switzerland (Leeb).

Corresponding author: D.P. O’Brien, Comparative Neurology
Program, College of Veterinary Medicine, University of Missouri,
900 East Campus Drive, Columbia, MO 65211; e-mail: obriend@
missouri.edu.

Submitted January 17, 2014; Revised April 3, 2014;
Accepted April 23, 2014.

Copyright © 2014 by the American College of Veterinary Internal
Medicine

DOI: 10.1111/jvim.12383

Abbreviations:

DM degenerative myelopathy

NCL neuronal ceroid lipofuscinosis

Invited Review
J Vet Intern Med 2014;28:1186–1198



complaint must be considered (Fig 1). Nonetheless, if
a purebred dog presents with a possible hereditary dis-
ease, references for breed-associated diseases should be
consulted.2–4 If the disease has been associated with
that breed, then further search of the literature would
be needed to determine how strong the evidence is for
a hereditary basis and whether or not a specific muta-
tion has been identified.

Many hereditary diseases are congenital or have a
young age of onset. Development of a complex organ
like the nervous system requires the precise coordina-
tion of many processes which are regulated by different
genes. If one of these processes is altered by a
mutation, then development may not proceed nor-
mally. The effects often will be apparent in the neo-
nate. Unfortunately, neonatal diseases have received
relatively little attention in veterinary medicine. Many
breeders are unwilling to invest in veterinary care for
neonates and often view losses associated with “runts”
or small litter size as something to be accepted. Neo-
natal diseases, however, can provide an ideal subject
for gene mapping studies because the phenotype often
is easily recognized and the entire family often is avail-
able for DNA sampling. Eliminating the disease not
only prevents animal suffering, but also can decrease
financial losses for the breeder.

Sometimes, developmental abnormalities have a
delayed onset of signs. Different parts of the nervous
system develop at different rates, and the genes control-
ling a process can change during different stages of
development. For example, disorders of myelin devel-
opment may not be apparent until the animal relies on
adequate myelination to begin walking. Conversely,
sometimes a neonatal form of a protein will be replaced
by an adult form resulting in the animal “growing out
of” the condition. Dachshunds with congenital
myasthenia gravis show clinical signs and decreased
acetylcholine receptor density as neonates, but signs
resolve by 6 months of age. It is suspected that signs
resolve as a defective embryonic subunit of the acetyl-
choline receptor (the k subunit) is replaced by an adult
form (the e subunit).5 Early onset of a disease more
commonly seen in adulthood, such as laryngeal paraly-
sis, also would raise suspicion of a hereditary etiology.

Other hereditary diseases may have a more delayed
onset of signs. Animals with lysosomal storage diseases
are deficient in the necessary enzyme from birth.
Because the lysosome is primarily involved in recycling
cellular components, development may proceed nor-
mally, but storage product accumulates in the lyso-

Table 1. General characteristics of some hereditary
neurologic diseases.1

Congenital

malformations

Neonatal or young onset of signs

Static or progressive signs

Diagnosed on advanced imaging or

necropsy

Organic acidurias Neonatal or young onset

Waxing and waning encephalopathy

Dietary influences

Ketonuria, acidosis or anion gap,

hypoglycemia, hyperammonemia

Diagnosed on urine organic acid screens

May see symmetric signal changes on MRI

Lysosomal

storage diseases

Neonatal to middle age onset

Varying signs of ataxia, blindness,

weakness, dementia, seizures

Inexorably progressive course

Diagnosed on necropsy or occasionally

liver or leukocyte inclusions, urine, or

CSF metabolites

Channelopathies Neonatal to adult onset

Altered excitability of muscle or nerves

Signs of myopathy, collapse, ataxia, or

seizures

May be episodic

Diagnosed on clinical signs,

electrodiagnostics or both

Neurodegenerative

diseases

Young to old age onset and progressive

course

Selective or diffuse degeneration of

neurons, myelin, or muscle

May see selective brain atrophy on MRI

Degenerative changes on biopsy or

necropsy

A B

Fig 1. Two young animals presented for progressive, spastic paraplegia illustrate the importance of considering other differential diag-

noses in suspected hereditary disease. (A) A purebred English Pointer with a history of affected littermates suggested a hereditary disease

but was diagnosed with Neospora caninum infection. (B) A stray cat from the streets of St. Louis came from a random breeding popula-

tion, but was diagnosed with a hereditary muscular dystrophy. From O’Brien 201275 used with permission.
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some over time, ultimately affecting neuronal function.
If the mutation only partially affects enzyme activity,
then clinical signs may be even further delayed. For
example, American Bulldogs with the lysosomal stor-
age disease neuronal ceroid lipofuscinosis (NCL) have
36% of normal activity of the affected enzyme cathep-
sin D.6 This residual activity appears to be enough to
delay onset of signs until 1–3 years of age and the
signs progress slowly. In contrast, sheep with <5%
cathepsin D activity shows signs as neonates.7

Some mutations predispose the animal to a neurode-
generative process. In these cases, the nervous system
develops normally but then undergoes premature
degeneration. Some of these mutations can be very selec-
tive, such as the cerebellar ataxias where the Purkinje
cells are the only cell type affected.8,9 In other diseases,
such as multiple system degeneration in Kerry Blue
Terriers and Chinese Crested Dogs, multiple cell types
are vulnerable to degeneration.10 In these cases, symmet-
rical signs and a fairly stereotypical onset and progres-
sion of signs are the hallmarks of hereditary disease.

Degenerative myelopathy (DM) appears to be a con-
dition in which the mutation increases the animal’s
risk for neurodegeneration much later in life. In the
study by Awano et al11 virtually all dogs with nec-
ropsy-confirmed DM were homozygous for a mutation
in the SOD1 gene, suggesting that the mutant allele
was necessary to develop the disease. However, not all
animals that were homozygous for the mutation devel-
oped the disease; a phenomenon called variable pene-
trance discussed further below.

Advances in genetic research have now made it pos-
sible to identify the mutations responsible for many of
these diseases, and the numbers are growing rapidly.
To utilize DNA testing effectively, however, the clini-
cian must be able to select the test and interpret results
appropriately. This requires an understanding of the
terminology used, the types of tests available, and
potential pitfalls of DNA testing.

Nomenclature: Speaking the Language of
Genetics and Genomics

The nomenclature used in genetics and genomics is
something new to many veterinarians. It is important,
however, for the clinician to understand the language of
DNA testing, and thus we will briefly review how genes
are named, some of the types of mutations that occur,
and how a mutation would be defined. Box 1 defines
some of the commonly used terms. The names of genes
are written as acronyms that are italicized to differenti-
ate them from the names of proteins or other acronyms.
The convention is to use all capital letters for human
genes and lower case after the first letter for rodents.
Domestic animal genes have followed the convention
used for human genes. Like many things in biology and
medicine, the names applied to genes evolve over time
as we learn more about their biology, which can lead to
confusion when the names vary in the literature.

Many genes are named based on the disease pheno-
type. For example, the NCLs are a group of lysosomal

storage diseases characterized by accumulation in neu-
rons of autofluorescent proteinaceous material that
resembles ceroid and lipofuscin. The genes involved
are named the CLN genes (Ceroid Lipofuscinosis,
Neuronal). The genes often are numbered consecu-
tively as different phenotypes or different modes of
inheritance were recognized in humans. Thus, CLN1,
CLN2, CLN3, and CLN4 are the first 4 phenotypes
described and are differentiated by age of onset: infan-
tile, late-infantile, juvenile, and adult, respectively.
CLN4 is further subdivided into CLN4A and CLN4B
depending on whether the inheritance is autosomal
recessive or dominant. If phenotypes are mapped to
different loci in independent families, the underlying
genes are given separate numbers. For example, CLN6
mutations cause late-infantile onset NCL but the
CLN6 gene mapped to a different chromosome than
CLN2. Thus, this form must be associated with a dif-
ferent gene and was given a different number.

Box 1
Definitions of some terms used in genetics

Phenotype: the physical manifestations of a trait

which can be influenced by genetics, epigenetics, and

environment.

Genotype: the genetic makeup of an individual with

respect to the gene being considered (the alleles).

Allele: one of alternate forms of a gene or locus.

Segregation: the separation of alleles during meiosis

which determines which allele is passed to an offspring.

Recombination: the 2 copies of a chromosome may cross

over during meiosis which results in exchange of genetic

material and a new combination of alleles.

Locus: the location of a gene or genes on a chromosome;

often used as a vague proxy for gene in gene mapping

studies before the specific gene is identified.

Codon: the 3 nucleotide code for an amino acid or the

initiation or stop of protein translation.

Variant: variation in the DNA sequence of an individual

from the reference sequence. This could be a disease-

causing mutation or it could be neutral.

Single nucleotide polymorphisms (SNPs); variants where

only a single nucleotide is substituted (eg, A>G); SNPs

are the most common type of variant and are for

example used to identify differences among individual

chromosomes for association studies.

Frame shift: deletion or insertion of any number of

nucleotides not divisible by 3 shifting the reading frame

of the codons which follow. This in turn changes the

subsequent amino acid sequence and the location of the

stop codon.
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Alternatively, the name of a gene may reflect a bio-
chemical or structural component of the nervous sys-
tem such as an enzyme or ion channel. In this instance,
the acronym will abbreviate the molecule and often will
be followed by a number or letter referring to a subunit
or subtype. For example, GRM1 refers to the gene that
codes for the glutamate receptor, metabotropic, type 1.
Often, as more is learned about a disease and gene, the
molecular name replaces the phenotype-based name.
For example, the original name for GRM1 was
SCAR13, the 13th form of autosomal recessive spino-
cerebellar ataxia to be recognized in humans.

Specific mutations in a gene are named based on the
amino acid or nucleotide affected and the change the
mutation produces. Because the term mutation was used
in various contexts, geneticists today prefer the term
variant to describe any difference in nucleotide or amino
acid sequence, regardless of whether it is common or
rare and regardless whether it is functionally neutral or
causally involved in a specific phenotype. For the pur-
poses of this manuscript, we use the term mutation to
refer to a disease-causing variant. The term polymor-
phism is used to refer to a nondisease-causing variant or
a variant with a high frequency in the population.

A wide variety of changes in the DNA sequence can
occur. Missense mutations change a codon so that a
different amino acid is specified. This alters the pri-
mary protein structure which may affect function. A
nonsense mutation changes an amino acid-specifying
codon to a premature stop codon, which results in a
truncated and usually nonfunctional protein. A vari-
able number of nucleotides may be inserted or deleted
by a mutation and produce a frame shift in the codons
following that change. In addition to altering the sub-
sequent amino acid sequence, frame shifts often lead
to a premature stop codon. Retrotransposons, retrovi-
ral like sequences that can move within the genome,
are 1 cause of insertions. Most disease-causing variants
are in the coding region (exons) of the gene, but some
can affect splice sites. These can result in abnormal
splicing of exons during transcription. Many other
types of variants, such as noncoding regulatory vari-
ants also can be functionally relevant, but are difficult
to identify with current technology.

The Human Genome Variation Society provides rec-
ommendations for the nomenclature describing vari-
ants at their website http://www.hgvs.org/mutnomen/
recs.html,12 and some examples are given in Table 2.
Although the specifics of the nucleotide change may
not be of interest to clinicians, they must recognize
that SOD1:c.118G>A and SOD1:c.52A>T refer to
different variants just as ALT and ALP refer to differ-
ent liver function tests.

DNA Tests: Types of Test and Their
Advantages and Disadvantages

Linkage mapping or association studies demonstrate
a relationship among genetic markers at established
chromosomal positions and the mutation responsible
for a disease. This mapping establishes the locus, the

chromosomal location where additional studies will be
focused for identifying the specific causal mutation.
Until a specific mutation is identified, the linked mark-
ers can be used to identify carriers of the mutation
within a family. Linked marker DNA tests, however,
need to be interpreted with caution because they can
yield false-positive and false-negative results as illus-
trated in Figure 2.

Once a linkage is identified, candidate genes within the
locus are prioritized for further investigation based on
biologic significance. For example, if a peripheral neu-
ropathy was being investigated, genes affecting myelin
production or axonal transport would be prime candi-
dates. These genes then would be sequenced and variants
evaluated for their effect on function. Whole-genome
sequencing has become cost-effective as a tool to
sequence all of the genes within a locus. When combined
with bioinformatic techniques that permit comparison
between cases and the whole-genome sequences of con-
trols, variants unique to the particular disease can be
identified without first mapping a locus.13

The variants likely to affect protein function, such
as a premature stop codon, a frame shift, or the substi-
tution of an evolutionarily conserved amino acid then
would be evaluated further. The first step would be to
determine if the variant is significantly concordant
with the phenotype in the families. For a recessive
trait, all affected dogs and no normal dogs should be
homozygous for the variant whereas the parents of
affected dogs should all be heterozygous. A disease-
causing variant also should be absent or very rare in
breeds that do not segregate the disease being investi-
gated, and often a random sampling of DNA from
other breeds is evaluated to test this hypothesis.
Screening a broader population of the affected breed
for the variant can give an estimate of the frequency
of the allele in the breed, but often the DNA samples
available constitute a highly biased sample. Further
validation is required to show that the variant indeed
is causing the disease and not just a functionally neu-
tral, but tightly linked, marker. For example, immuno-
histochemistry may demonstrate that a candidate
protein is not expressed or enzyme function assays
may show a lack of activity. Similarities between the
phenotype of the disease under study and either
human diseases associated with that gene or transgenic
mouse models would further support causation. Some
discoveries will be novel genes about which limited
information is available. Definitive proof for the cau-
sality of a variant in a novel gene is difficult to obtain
and often beyond the scope of funding available for
most veterinary diseases. Definitive proof of causality
may be obtained by an in-depth functional analysis of
relevant biomarkers or by genetic approaches, which
exploit special family structures occasionally seen in
purebred domestic animals. DNA tests may become
available at various stages of validation, and the clini-
cian should evaluate the published evidence supporting
the validity.

Once the causative variant in a gene has been identi-
fied, a DNA test which will be very sensitive and spe-

DNA Testing in Neurologic Diseases 1189
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cific for the variant can be devised. Such tests fre-
quently are termed “direct tests.” Even with such a
specific DNA test, however, false results can occur
because of phenocopy or incomplete penetrance.

The term phenocopy refers to a phenotype that is
very similar to the trait under investigation but has a
different cause. Sometimes it results from an acquired
disease that mimics the signs of the hereditary disease.
For example, canine distemper encephalitis could affect
the cerebellum and produce cerebellar ataxia that
appears identical to a hereditary cerebellar ataxia. This
situation highlights the need to consider nonhereditary
differential diagnoses and additional diagnostic tests.

Other mutations that produce similar clinical signs
also can produce a phenocopy. Two virtually identical
forms of NCL have been identified in Dachshunds that
are caused by deficiencies of 2 different lysosomal
enzymes, tripeptidyl peptidase 1 and palmitoyl-protein
thioesterase 1, and mutations have been identified in
the genes that code for these enzymes, the TPP1 and
PPT1 genes, respectively.14,15 As illustrated in Figure 3,
these lysosomal enzymes cleave proteins at different
sites. Regardless of which site fails to get cleaved, how-
ever, processing of the protein is blocked, the autofluo-
rescent protein byproduct builds up within the
lysosome, and disease results. A DNA test for 1 muta-
tion would produce a “false-negative” result if NCL
was caused by the alternative mutation. Thus, a Dachs-

hund presenting between 7 and 10 months of age with
progressive behavior changes, blindness, ataxia, and
myoclonus should be tested for both mutations.

Different mutations within the same gene also can
produce phenocopy. In most breeds (including Ber-
nese Mountain Dogs), a mutation in the gene that
codes for superoxide dismutase 1 (SOD1:c.118G>A)
is associated with DM.11 A few Bernese Mountain
Dogs, however, were necropsy-confirmed to have DM
but were clear of the SOD1:c.118G>A mutation.
Sequencing of the SOD1 gene from these dogs identi-
fied a different mutation, SOD1:c.52A>T, in the
same gene.16 Because the DNA test specifically identi-
fies the SOD1:c.118A allele, it would not detect the
SOD1:c.52T allele. Thus, tests for both alleles are
necessary in Bernese Mountain Dogs. Multiple muta-
tions in a gene are common in human genetic dis-
eases. This situation can lead to disease produced by
compound heterozygosity. Here, the animal would
have 1 mutant allele interfering with the gene function
on the chromosome from 1 parent (eg, SOD1:c.52T)
whereas the chromosome from the other parent con-
tained a different mutant allele that also interferes
with the function of that gene (eg, SOD1:c.118A).
Thus, the animal is at risk for developing DM but
would be identified as a carrier in either DNA test
alone. NCL in Dachshunds and DM in Bernese
Mountain Dogs represent examples of 2 different

A B

C

D E

Fig 2. Linked marker DNA tests are useful in a family with known disease but can give false-negative and false-positive results as illus-

trated. (A) In this hypothetical pedigree of a recessive trait, males are squares and females are circles. Affected dogs are shown as filled

symbols and carriers are half-filled symbols. Parents of affected dogs are obligate carriers but genotype of normal offspring would be

unknown. (B) A linked marker ( ) will segregate with the mutant allele and can be used to identify carriers within a family with known

disease. (C) The marker allele could have been present within the family before the mutation occurred ( ) which produced the disease-

causing allele. (D) Because the marker can segregate in the breed separate from the mutant allele, false-positive results are possible

(arrow: a dog that is normal but identified as affected by linkage). (E) Because the marker is only linked to the mutant allele, recombina-

tions (X) can break that link leading to false results (arrow: a dog that is affected but identified as a carrier).
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types of genetic heterogeneity. In NCL, there are 2
different mutations in 2 different genes (loci) leading
to virtually the same clinical phenotype, this is termed
“locus heterogeneity”. In DM, there are 2 different
mutations affecting the same gene and leading to the
same phenotype. This situation is termed as “allelic
heterogeneity”.

Degenerative myelopathy also illustrates a cause of
false-positive DNA test results: incomplete penetrance.
Although almost all dogs with DM are homozygous for
the SOD1 mutation, not all dogs with the mutation
develop disease.11 Because the average age of onset of
DM is 9–11 years of age, many dogs with the SOD1
mutation die of other causes before they reach that age.
However, there are well-documented cases of dogs that
are homozygous for the mutant allele living to 14–
15 years of age without developing signs of DM. In these
dogs, the mutation has not “penetrated” and produced
disease. There are a number of possible explanations for
incomplete penetrance. The SOD1 mutation may make
the dog more susceptible to cumulative environmental
stress that leads to neurodegenerative changes once a
threshold has been exceeded, or an environmental trigger
of the disease may be needed and the surviving dog may
not have been exposed to that trigger. Alternatively,
modifying genes may exist that affect the expression of
the SOD1mutation in some dogs.

Although incomplete penetrance is best documented
in DM, it can occur in other genetic diseases as well.
DNA test results typically report animals that are
homozygous for a recessive disease-associated allele as
“at risk.” This recognizes the potential for incomplete
penetrance and further emphasizes that a diagnosis can
only be made based on appropriate clinical signs and
other diagnostic tests. An animal that is heterozygous
for a mutant allele would be reported as “carrier.” An

animal that test homozygous for the normal (wild-type
or ancestral) allele may be reported as “clear.”

Using DNA Tests in Breeding Decisions

The most straightforward application of DNA test-
ing is to direct breeding decisions. Once a DNA test
based on a specific mutation in a breed has been devel-
oped, breeders will be able to detect carriers of that
particular mutation with great accuracy. The first incli-
nation is to recommend eliminating carriers of a
mutant allele from the breeding population. Although
this would be the fastest way to decrease the frequency
of the allele in the population, doing so can have
unwanted consequences. Some breeds have a relatively
small gene pool, and with some diseases, the mutant
allele frequency in the population can be high. Elimi-
nating all of the carriers in these situations can create
a detrimental bottle neck in the gene pool of the breed.
Every dog will be carrying some potentially deleterious
alleles, and restricting the gene pool could lead to the
emergence of a different hereditary disease. Often a
hereditary disease becomes widespread in a breed
because of the “popular sire” effect discussed above.
Eliminating those lines from the gene pool will
decrease the frequency of the alleles that contribute to
the desirable traits that made that sire popular as well
as the undesirable one being targeted.

A more rational breeding strategy attempts to retain
these desirable traits and the equally important genetic
diversity in the breed. Dogs that are identified as car-
riers still can be bred, but they must always be bred
to a dog that has tested clear of the mutant allele so
that no affected dogs are produced. The offspring of
such breeding then should be tested because 50% will
carry the mutant allele. Genotype then should be one
of the factors that determine which of those offspring
are used for future breeding stock. If a carrier of the
mutant allele has other desirable traits, they still can
be bred as long as they are not bred to another car-
rier. If all other things are equal, a dog that is clear
of the mutant allele would be the better choice for
future breeding stock. Thus, no affected dogs are pro-
duced, but genetic diversity and other desirable traits
are not compromised in the process. Over time, the
frequency of the mutant allele in the population will
decrease as more clear dogs are selected for future
breeding.

Using DNA Tests in Clinical Decisions

DNA Tests as Diagnostic Tools

A number of neurologic diseases have now been
associated with specific mutations in dogs and cats
(Tables 3 and 4), and the number undoubtedly will
increase as gene discovery becomes more efficient.
DNA tests can be used like other diagnostic tests to
help establish or eliminate differential diagnoses for a
particular presenting complaint, such as cerebellar
ataxia or episodic weakness.

Fig 3. Within the lysosome, tripeptidyl peptidase 1 (TPP1) and

palmatoyl-protein thioesterase 1 (PPT1) contribute to protein deg-

radation by cleaving off different portions of a protein, the N-ter-

minal tripeptide chain, and a palmitoyl fatty acid, respectively. A

deficiency of either enzyme blocks degradation of the protein.

Thus, mutations in either gene that codes for these enzymes (TPP1

and PPT1 respectively) lead to an identical lysosomal storage dis-

ease characterized by autofluorescent inclusions in neurons of the

undegraded protein. Both diseases have been reported in Dachs-

hunds.14,15 A DNA test would detect the mutation in 1 gene, but

not the other potentially leading to a “false-negative” result.
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Table 3. Neurologic diseases in dogs with their known underlying molecular defects.

Phenotype Gene Variant Breed OMIA Reference

Alpha fucosidosis FUCA1 c.376_389del14 English Springer Spaniel 000396-9615 27,28

Bandera’s neonatal

cerebellar ataxia

GRM1 c.2316_2317ins62 Coton de Tulear 000078-9615 18

Cerebellar abiotrophy

(spinocerebellar

ataxia type 5)

SPTBN2 c.5921_5928del8 Beagle 000175-9615 8

Cerebellar ataxia SEL1L c.1972T>C Finnish Hound 001692-9615 9

Congenital

myasthenic syndrome

CHAT c.622G>A Old Danish Pointing Dog 000685-9615 29

Degenerative myelopathy SOD1 c.118G>A Many 000263-9615 11

SOD‘ c.51A>T Bernese Mountain Dog 000263-9615 16

Encephalopathy SLC19A3 c.624 insTTGC Alaskan Husky 001097-9615 30

Episodic falling BCAN 16 kb deletion Cavalier King

Charles Spaniel

001592-9615 31

Exercise-induced collapse DNM1 c.767G>T Labrador Retriever 001466-9615 21

Globoid cell leukodystrophy

(Krabbe disease)

GALC c.473A>C Cairn Terrier/West

Highland White Terrier

000578-9615 32

GALC c.790_791ins78 Setter 000578-9615 33

GM1 gangliosidosis GLB1 c.1688_1706dup19 Alaskan Husky 000402-9615 34

GLB1 c.179G>A Portugese Water Dog 000402-9615 35

GLB1 c.1647delC Shiba 000402-9615 35

GM2 gangliosidosis

(Tay Sachs disease)

HEXA c.967G>A Japanese Chin Dog 001461-9615 36

GM2 gangliosidosis

(Sandhoff disease)

HEXB c.283delG Toy Poodle 001462-9615 37

Juvenile benign epilepsy LGI2 c.1552A>T Lagotto Romagnolo 001596-9615 26

L-2-hydroxyglutaric aciduria L2HGDH c[1297T>C;1299C>T] Staffordshire Bullterrier 001371-9615 38

L2HGDH c.1A>G Yorkshire Terrier 001371-9615 39,40

Mucopolysaccharidosis I IDUA c.155+1G>A Plott Hound 000664-9615 41

Mucopolysaccharidosis IIIA SGSH c.708_709insC New Zealand Huntaway 001309-9615 42

Mucopolysaccharidosis IIIB NAGLU Insertion Schipperke 001342-9615 43

Mucopolysaccharidosis VI ARSB Exon 5 G>A Miniature Pinscher 000666-9615 a

ARSB c.103_124del22 Miniature Poodle 000666-9615 44

Myoclonus epilepsy

(Lafora disease)

NHLRC1 12 bp repeat expansion Dachshund 000690-9615 45

Myotonia CLCN1 c.803C>T Miniature Schnauzer 000698-9615 46

CLCN1 c.2665_2666insA Australian Cattle Dog 000698-9615 47

Narcolepsy HCRTR2 SINE insertion intron 3 Doberman Pinscher 000703-9615 48

HCRTR2 c.1105+5G>A Labrador Retriever 000703-9615 48

HCRTR2 c.160G>A Dachshund 000703-9615 49

NCL, adult onset ATP13A2 c.1623delG Tibetan Terrier 001552-9615 50,51

NCL 1 PPT1 c.736_737insC Dachshund 001504-9615 15

NCL 2 TPP1 c.325delC Dachshund 001472-9615 14

NCL 4a ARSG c.296G>A Am. Staffordshire Terrier 001503-9615 52

NCL 5 CLN5 c.619C>T Border Collie 001482-9615 53

NCL 6 CLN6 c.829T>C Australian Shepherd 001443-9615 54

NCL 8 CLN8 c.491C>T English Setter 001506-9615 55

NCL 10 CTSD c.597G>A American Bulldog 001505-9615 6

Neonatal encephalopathy

with seizures

ATF2 c.152T>G Poodle 001471-9615 56

Neuroaxonal dystrophy MFN2 c.1617_1619delGGA Giant Schnauzer 000715-9615 57

Polyneuropathy NDRG1 c.1080_1089del10 Greyhound 001292-9615 25

NDRG1 c.293G>T Alaskan Malamute 001292-9615 58

Polyneuropathy, LPN1 ARHGEF10 c.1955_1958+6del10 Leonberger & St. Bernard 001917-9615 –b

Sensory ataxic neuropathy MT-TY

(tRNA-Tyr)

mtDNA:g.5304delT Golden Retriever 001467-9615 59

Shaking pup, tremor X-linked PLP1 c.110A>C Springer Spaniel 000770-9615 60

Spinocerebellar ataxia (late onset) CAPN1 c.344C>T Parson Russell Terrier

& Jack Russell Terrier

001820-9615 19

Spinocerebellar ataxia with

myokymia, seizures, or both

KCNJ10 c.627C>G Jack Russell Terrier,

Parson Russell

Terrier & Russell Terrier

– 13

DNA Testing in Neurologic Diseases 1193



In some cases, the phenotype is straightforward. For
example, 2 young Coton de Tulears that have never
been able to walk because of severe cerebellar ataxia
in a litter with 3 normal pups is characteristic of Ban-
dera’s neonatal cerebellar ataxia.17,18 A DNA test of a
pup showing typical signs would confirm the diagnosis
and ensure that testing of the normal offspring for the
mutation in GRM1 is carried out if they are to be used
for breeding. Only if the DNA test results were nega-
tive for the mutation would other differential diagno-
ses need to be considered. Conversely, because the
neurotransmitter receptor deficit does not produce any
readily identifiable structural changes,17 no other rou-
tine diagnostic test would be able to confirm the diag-
nosis.

In an older animal presenting with signs of cerebel-
lar ataxia, a much wider range of differential diagnoses
would need to be considered. To fine-tune movement
in real time, the cerebellum depends upon fast conduc-
tion of proprioceptive information during movement.
Because anything that affects myelination will affect
conduction velocity and the timing of the coordination
efforts, demyelinating disease often will produce cere-
bellar signs. Although only a small portion of the vol-
ume, the cerebellum contains over half of the neurons
in the brain. This complex network that ensures proper
coordination of movement all converges on the Pur-
kinje cells, the sole efferent from the cerebellar cortex
(Fig 4). A variety of neurotransmitters and their recep-
tors mediate the communication of information to the
Purkinje cells, and a variety of voltage-gated ion chan-

nels are necessary to maintain normal membrane
potential and transmit the signals. Supporting the
extensive dendritic arborization needed to conduct this
function places tremendous metabolic demands on the
Purkinje cells. Thus, a wide variety of hereditary as
well as toxic, metabolic, demyelinating, neoplastic,
infectious, or inflammatory processes can affect the
cerebellum but produce a fairly uniform clinical sign:
cerebellar ataxia.

Particularly if the animal presents with an acute
onset of signs, imaging, cerebrospinal fluid analysis,
or other tests would be indicated to eliminate com-
mon, potentially treatable diseases such as Neospora
caninum infection, infarction, or neoplasia before
considering hereditary diseases. If these are eliminate,
or if a purebred dog is presented for ataxia, particu-
larly if it is slowly progressive, hereditary disease
becomes a more likely differential. The cost-benefit
analysis needed to decide whether to run a DNA test
then clearly is weighted toward performing a DNA
test if the mutation has been reported in the breed
and the clinical signs are consistent with the sus-
pected disease.

If a mutation has not been associated with the pre-
senting signs in the breed in question, or if the dog is
a mixed breed, then the decision of whether to run
DNA tests is more difficult. If the breed being evalu-
ated is closely related to a breed with a known muta-
tion, there is a reasonable chance that the same
mutation is found in both populations. For example,
Parson Russell Terriers were derived from Jack Russell

Table 3. (Continued)

Phenotype Gene Variant Breed OMIA Reference

Spongiform

leukoencephalomyelopathy

CYTB mtDNA:g.14474G>A Australian Cattle

Dog/Shetland Sheepdog

001130-9615 61

Startle disease (hyperekplexia) SLC6A5 4.2 kb deletion Irish setter 001594-9615 62

OMIA, Online Mendelian Inheritance in Animals.2

Table 4. Neurologic diseases in cats with their known underlying molecular defects.

Phenotype Gene Variant Breed OMIA Reference

GM1 gangliosidosis GLB1 c.1448G>C Siamese, Korat, South-East

Asian native cats

000402-9685 63

GM2 Gangliosidosis,

GM2A deficiency

GM2A c.516_519delGGTC Domestic Shorthair 001427-9685 64

GM2 Gangliosidosis,

type II (Sandhoff disease)

HEXB c.39delC Korat 001462-9685 65

HEXB c.1467_1491inv25 Domestic Shorthair 001462-9685 66

HEXB c.667C>T Japanese Domestic Cat 001462-9685 67

HEXB c.1244-8_1250del15 Burmese 001462-9685 68

Mannosidosis, alpha MAN2B1 c.1749_1752delCCAG Persian 000625-9685 69

Mucolipidosis II GNPTA c.2655C>T Domestic Shorthair 001248-9685 c

Mucopolysaccharidosis I IDUA 3 bp deletiond Domestic Shorthair 000664-9685 70

Mucopolysaccharidosis VI ARSB c.1427T>C Siamese 000666-9685 71

Mucopolysaccharidosis VII GUSB c.1051G>A Domestic Shorthair 000667-9685 72

Niemann-Pick C disease NPC1 c.2864G>C Domestic Shorthair 000725-9685 73

Spinal muscular atrophy LIX1

(& LNPEP)

140 kb deletion Maine Coon 000939-9685 74

OMIA, Online Mendelian Inheritance in Animals.2
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Terriers, which in turn were derived from Smooth-
haired Fox Terriers. Thus, the same disease-causing
mutation such as the CAPN1 or the KCNJ10
mutations causing spinocerebellar ataxia13,19 may well
be segregating in all 3 breeds. If a mutation has been
described in Labrador Retrievers and the patient is a
Yorkshire Terrier, the odds are higher that even if the
same gene is involved, different mutations occurred
independently. Nonetheless, it may well be worth the
relatively low cost of a DNA test developed for a dif-
ferent breed. Identifying the same mutation in a new
breed not only would support the diagnosis, but it
would also inform Yorkshire Terrier breeders that the
mutation is segregating in their breed as well. The key
is recognizing that a negative test does not eliminate
the possibility of a different mutation in the same gene
as the etiology in the new breed. In these difficult situ-
ations, it also may be valuable to consult with a veteri-
nary geneticist, ideally the one who was involved in
the identification of the mutation.

In addition, conducting DNA tests on phenotypes
with diverse pathogeneses allows us to refine our cat-
egorization of the disease. A Labrador Retriever with
exercise intolerance will not be able to perform physi-
cally at a level expected of a working dog. Thus,
accurately diagnosing the cause is important for the
overall genetic health of the breed as well as the wel-
fare of the patient. Once cardiovascular or respira-
tory causes are excluded, neuromuscular diseases
must be considered. Before the advent of DNA test-
ing, muscle biopsy was used to diagnose centronucle-
ar myopathy, but now a DNA test for the PTPLA
insertion that causes the disease can readily identify
these cases.20 This advance, however, clearly identi-
fied a subgroup of dogs with exercise intolerance that
was not homozygous for this mutation. Further
research identified a mutation in the DNM1 gene

responsible for another type of exercise-induced col-
lapse in Labradors.21 This research identified a new
subgroup of dogs with exercise intolerance that are
normal for both previously identified mutations. Fur-
ther research may identify a genetic etiology for the
disease in this group.

Identifying Risk of Comorbidity

In the case of a hereditary neurodegenerative disease
such as DM, knowing the genotype of an animal can
help the client and clinician make informed decisions
when comorbidities are possible. An older Pembroke
Welsh Corgi or German Shepherd Dog may well
develop intervertebral disk disease which could be read-
ily diagnosed by spinal imaging. In the past, when decid-
ing whether or not to proceed with surgery, the clinician
could only advise the client that concurrent DM was a
possibility in these breeds. By genotyping the patient for
the SOD1 mutation, it is now possible to give the client
more accurate information on the relative risk of con-
current DM. If the dog tests homozygous for the SOD1:
c.118A allele (“at risk”), the decision may well be to
move forward with surgery to treat the compressive
myelopathy, but it would be done with the knowledge
that the patient is at risk for concurrent DM.

Future Directions

Whole-Genome Sequencing

As new mutations are identified, the number of
DNA tests needed to make clinical and breeding deci-
sions will increase dramatically. On the clinical side,
the ability to broadly screen for mutations will never
replace the need for a thorough history, physical
examination, and other diagnostic tests to direct
DNA testing appropriately. For signs such as cerebel-
lar ataxia or exercise intolerance, a large number of
potential disease-causing mutations may need to be
considered, and the cost of running a large number of
individual DNA tests could become prohibitive. One
solution to this problem may be the advent of whole-
genome sequencing. Once only available to laborato-
ries with larger research grants, the cost of sequencing
the entire genome of an individual has been decreas-
ing to the point where it will soon be feasible to
perform a whole-genome sequence as a routine diag-
nostic procedure. Advances in bioinformatics will per-
mit the rapid analysis of these large datasets to
identify variants that are relevant to the disease pro-
cess in question. If intellectual property concerns can
be addressed, such broad genomic screening someday
may become as commonplace as the serum biochemis-
try profile is today.

Treatment for Genetic Diseases

The ultimate goal with hereditary diseases in ani-
mals should be prevention with wise breeding strate-
gies, but it is unlikely that such endeavors will be

Fig 4. The Purkinje cells (brown in this histologic section

labeled with antibodies against the calcium buffering protein cal-

bindin) are the sole output from the complex information process

that fine-tunes movement by the cerebellar cortex. A diverse

cadre of mutations can affect the function or structure of the

Purkinje cell, but produce a very similar phenotype of cerebellar

ataxia. (Courtesy Gayle Johnson).
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completely successful. In the case of an old age-onset
disease such as DM, even if breeders eliminated the
mutant allele today, a cohort of dogs that are homo-
zygous for the mutation will be reaching the age of
onset for the disease over the next 10–15 years. Thus,
there is a need for effective treatments for these condi-
tions. Furthermore, the ethical and practical consider-
ations of human genetic diseases create a more
pressing need for successful treatments, and the
advances made in our patients could facilitate the
application of similar interventions for human dis-
eases. A number of therapeutic strategies currently are
being investigated. Although treatments such as anti-
sense oligonucleotides to silence mutant genes or virus
vector-delivered gene replacement may seem futuristic,
advances in our knowledge and technology may make
these treatments as commonplace tomorrow as chemo-
therapy for cancer is today.

Relevance to Acquired Disease

Although an individual genetic disease may be rare,
and can be expected to become more uncommon as
DNA testing is accepted by breeders, identifying the
mutation causing a hereditary diseases also can shed
light on the pathogenesis of more common, acquired
diseases. The recognition of the gene responsible for a
hereditary disease identifies a molecular pathway that is
important to the normal function of the nervous system.
Thus, if we can identify, for example, the gene responsi-
ble for a hereditary form of epilepsy, it may direct stud-
ies into the function of that ion channel or metabolic
pathway in seizures secondary to brain tumors or head
trauma. Bandera’s neonatal ataxia highlights the impor-
tance of the metabotropic glutamate receptor in cerebel-
lar function in dogs.18 Idiopathic cerebellitis in dogs is
thought to be an immune-mediated disease.22,23 This
raises the question of whether idiopathic cerebellitis
may be caused by antibodies directed against the
mGluR1 receptor as they are in human paraneoplastic
cerebellar ataxia24 or whether these receptors are the
target of metronidazole toxicity.

Conclusions

Advances in genomic research undoubtedly will
change the way veterinary medicine is practiced in the
future. As with any advance, there will be difficulties
in achieving the promise that genomics holds for the
future. Understanding the basic principles of genomics
as they apply to DNA testing will be essential for the
practicing veterinarian to be able to fully capitalize on
these advances and avoid potential pitfalls.

Footnotes

a Foureman P, Berman L, Stieger K, et al. Mucopolysaccharido-

sis type VI in Miniature Pinschers: Screening for the mutation.

J Vet Intern Med 2004;18:408–409 (abstract)

b Ekenstedt KJ, Becker D, Minor KM, et al. An ARHGEF10

deletion is highly associated with a juvenile-onset inherited

polyneuropathy in Leonberger and Saint Bernard dogs. PLoS

Genet, submitted
c Giger U, Tcherneva E, Caverly J, et al. A missense point muta-

tion in N-acetylglucosamine-1-phospotrans-ferase causes muco-

lipidosis II in domestic shorthair cats. J Vet Intern Med

2006;20:781 (abstract)
d This variant was determined from a partial IDUA cDNA

sequence. It is therefore not possible to give an accurate variant

designation.
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