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Non-invasive imaging methods have become essential tools for understanding the
central nervous system (CNS) in health and disease. In particular, magnetic resonance
imaging (MRI) techniques provide information about the anatomy, microstructure, and
function of the brain and spinal cord in vivo non-invasively. However, MRI is limited
by its spatial resolution and signal specificity. In order to mitigate these shortcomings,
it is crucial to validate MRI with an array of ancillary ex vivo imaging techniques.
These techniques include histological methods, such as light and electron microscopy
(EM), which can provide specific information on the tissue structure in healthy and
diseased brain and spinal cord, at cellular and subcellular level. However, these
conventional histological techniques are intrinsically two-dimensional (2D) and, as a
result of sectioning, lack volumetric information of the tissue. This limitation can be
overcome with genuine three-dimensional (3D) imaging approaches of the tissue. 3D
highly resolved information of the CNS achievable by means of other imaging techniques
can complement and improve the interpretation of MRI measurements. In this article,
we provide an overview of different 3D imaging techniques that can be used to validate
MRI. As an example, we introduce an approach of how to combine diffusion MRI and
synchrotron X-ray phase contrast tomography (SXRPCT) data. Our approach paves the
way for a new multiscale assessment of the CNS allowing to validate and to improve
our understanding of in vivo imaging (such as MRI).

Keywords: multimodal image coregistration, magnetic resonance image, X-ray phase contrast microtomography,
multiscale imaging, brain, spinal cord, image coregistration

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; ANTs, advanced normalization tools; CNS, central nervous
system; dMRI, diffusion magnetic resonance imaging; DTI, diffusion tensor imaging; EM, electron microscopy; ESRF,
european synchrotron radiation facility; FA, fractional anisotropy; LM, light microscopy; MRI, magnetic resonance imaging;
SCT, spinal cord toolbox; SXRPCT, synchrotron X-ray phase contrast tomography.
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INTRODUCTION

Diagnosis, monitoring, surgical interventions, and treatment
planning strategies of diseases in the central nervous system
(CNS) strongly benefit from non-invasive imaging methods.
Among all imaging techniques, magnetic resonance imaging
(MRI) has become the most valuable approach in both clinical
and experimental settings because of its non-invasive nature and
high image quality. Conventional MRI sequences, such as T1- or
T2-weighted, are extensively used to detect tissue alterations and
damage during neurodegeneration, tumor growth or after injury.
However, conventional MRI methods have low sensitivity for
distinct early pathological processes. Other MRI methodologies,
such as magnetization transfer (Filippi and Rocca, 2004, 2007;
Sled, 2018), proton density (Mezer et al., 2016), susceptibility
weighted imaging (Liu et al., 2015; Vargas et al., 2018), and
diffusion MRI (dMRI) (Andre and Bammer, 2010; Cohen et al.,
2017) are increasingly used in the imaging of the CNS. Diffusion
MRI methods, such as diffusion tensor imaging (DTI) (Basser
et al., 1994), can obtain tissue microstructural information and
unveil tissue changes often not detectable by conventional MRI
methods. Even though DTI is already an established and widely
used tool, dMRI continues to develop, generating new acquisition
approaches such as high-angular resolution diffusion imaging
(Tuch et al., 2002), q-space imaging (Cohen and Assaf, 2002;
Jensen et al., 2005) or multidimensional dMRI (Westin et al.,
2016; Topgaard, 2017), and more elaborate models for data
analysis (Wedeen et al., 2008; Panagiotaki et al., 2012; Zhang
et al., 2012). These advanced dMRI methods have a great
potential to extract intravoxel microstructural information in
the CNS beyond DTI.

FIGURE 1 | 3D imaging methods. Functional and structural MRI techniques
unveil tissue microstructural properties and function in health and during
pathology in vivo. 3D multiscale tissue imaging methods offer characterization
and validation of the MRI contrast ex vivo. DTI, diffusion tensor imaging; EM,
electron microscopy; fMRI, functional MRI; LM, light microscopy; QSM,
quantitative susceptibility mapping; XRPCT, X-ray phase contrast
microtomography.

Other emerging MRI methods, such as quantitative
susceptibility mapping (Schweser et al., 2011), can detect
and discriminate between diamagnetic and paramagnetic
materials, which is useful in conditions such as demyelination,
calcifications or iron accumulation (Wang and Liu, 2015; Li et al.,
2016; Aggarwal et al., 2018).

Despite the inherent value of structural and microstructural
MRI techniques to detect abnormal tissue in the CNS, there
is a lack of understanding of the origin of imaging contrast.
The interpretation of MRI is a challenge because of the limited
resolution, and leads us to question: What information does
a single voxel of MRI contain? To answer this question, it is
necessary to understand which tissue components dictate the
MRI signal in each voxel. This level of understanding can be
reached by correlating MRI contrast with underlying cellular
components and characterizing the potential changes altering
MRI signal. Therefore, the validation of MRI requires multimodal
and multiscale imaging studies, from macro- to nanometer scale,
with techniques able to show high-specificity and high-resolution
tissue properties, such as cell somas, neurites, vessels, among
others, and also in three-dimensional (3D) (Figure 1).

HIGH RESOLUTION IMAGING METHODS
TO VALIDATE THE MRI CONTRAST

Traditionally, the validation of the MRI contrast has been done
with ex vivo tissue preparations, e.g., employing histochemistry
and immunohistochemistry, which are essentially two-
dimensional (2D) approaches. Recent technological advances
allow to image the tissue in high-resolution and in 3D with
the possibility to image large tissue volumes (Figure 1). In
particular, technological advances in light microscopy (LM) can
image the tissue by optical sectioning of thick tissue sections
(Helmstaedter et al., 2008). Confocal microscopes can image
a tissue section up to 100 µm-thick (Stelzer, 2006). Tissue
sections thicker than 100 µm can be imaged with more advanced
techniques, such as light sheet microscopy (Weber and Huisken,
2011) or two-photon microscopy (Denk et al., 1990). Also, the
resolution of LM methods have been improved in novel super-
resolution techniques, such as stimulated-emission-depletion
microscope reaching 40 nm planar resolution ex vivo (Hell and
Wichmann, 1994)or structured illumination microscopy up
to 100 nm resolution in vivo (Gustafsson, 2000). Additionally,
tissue clearing techniques (Du et al., 2018), such as CLARITY
(Chung et al., 2013), 3DCISCO (Ertürk and Bradke, 2013) or
ScaleS (Hama et al., 2015), which make the tissue transparent
and minimize light-scattering, have opened new avenues in the
optical 3D imaging of large tissue coverage, e.g., whole brain.

Imaging of tissue ultrastructure can be achieved with electron
microscopy (EM). Advanced EM techniques have expanded the
applicability of EM by offering 3D imaging of large field-of-
view of tissue (Briggman and Bock, 2012). Serial sectioning
transmission EM methods can achieve nanometer in-plane
resolution of large tissue sample by combining transmission
EM with physical serial sectioning of the samples (Kreshuk
et al., 2014). Automatic section-collection methods, such as
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automated tape-collection ultramicrotome (Schalek et al., 2011),
avoid laborious manual cutting of thousands of sections,
image alignment, and missing/distorted sections. Other serial
sectioning methods, such as serial block-face scanning electron
microscopy (SBEM) can reduce tissue distortions by imaging the
slice prior to sectioning (Denk and Horstmann, 2004). SBEM
provides 3D high-resolution images collected at the mesoscopic
scale in the order of a few hundred micrometers. Focused ion
beam scanning electron microscopy (Heymann et al., 2006) is
another 3D block-face EM technique (Heymann et al., 2006),
which can achieve 4 nm resolution in-plane.

Conventional 3D X-ray imaging techniques, such as classical
radiography and tomography (the most widely used tools for
imaging objects with hard X-rays), are based on absorption
contrast (i.e., on the imaginary part of the refraction index) and
are obtained by measuring the attenuation of X-rays through
the object. Conversely, high-resolution synchrotron X-ray phase
contrast tomography (SXRPCT) (Fratini, 2018) achieves the
contrast by imaging the phase modulation induced by an object
in a coherent beam, exploiting the real part of the complex
refractive index (Fratini et al., 2015). In particular, SXRPCT
enables the simultaneous 3D visualization of both dense (e.g.,
bone) and soft objects (e.g., soft tissue) at length scales ranging
from millimeters down to hundreds of nanometers, without the
use of contrast agent, sectioning or destructive preparation of
the samples (Fitzgerald, 2000; Stefanutti et al., 2018). Samples
for XRPCT are typically prepared by perfusing with saline
solution containing heparin (50 U/ml) followed by dissection,
fixation in 4% paraformaldehyde, and storage in alcohol [for
more details about the sample preparation see Fitzgerald (2000)
and Stefanutti et al. (2018)].

Phase contrast makes SXRPCT attractive for studies of
weakly absorbing samples, both in materials and life sciences.
In particular, the highest sensitivity of SXRPCT to electron
density with respect to conventional CT has allowed evaluating
the morphological alterations in the vascular and the neuronal
networks in animal models of neurodegenerative diseases such
as multiple sclerosis and Alzheimer’s disease (Bravin et al., 2012;
Russo, 2017).

In the last decades, many X-ray phase contrast techniques
have been developed and successfully applied. Such techniques
permit to convert the phase variations of an X-ray beam,
due to its interactions with the sample, in measurable
intensity modulations.

A simple yet effective phase contrast method for hard X-rays
is based on in-line imaging after free-space propagation, which
does not require any additional optics, leading to source-limited
rather than optics-limited resolution (Paganin et al., 2002). When
X-rays illuminate the sample, variations in optical-path length
produce slight local deviations (refraction) of the X-ray beam
from its original path. When a free-space propagation distance
is allowed between sample and detector, the recorded image
contains the refraction information in the form of interference
fringes, whose detectability depends on the coherence of the
X-ray beam. Synchrotron-radiation X-ray sources provide high-
photon flux X-ray beams, with a high degree of spatial coherence
and allow for the possibility of providing monochromatic beams

(Weitkamp et al., 2011). The high quality of the images helps
optimize the algorithms used for image analysis and the 3D
reconstruction. For the reconstruction of the SXRPCT volume,
the first step is the phase retrieval which is applied to all
projections of the tomographic measurements, using the code
ANKAphase (Cedola et al., 2017; Massimi et al., 2019). The
algorithm produces the projected thickness of the object, which
is proportional to the refractive index decrement if the object
is homogeneous. When applied to all tomographic projections,
the retrieved phase maps can be fed to a standard filtered back-
projection algorithm to obtain phase tomogram.

In summary, 3D high-resolution imaging methods can
provide the necessary tissue information to validate the MRI
contrast. LM, EM and X-ray imaging techniques offer 2D/3D
high-resolution images, tissue specificity and sample coverage
needed to understand the MRI signal in the healthy and
diseased brain and spinal cord. Information regarding cell
density or which type of cells are present in a particular area,
density and orientation of axons forming fiber bundles, vascular
density, shape and tortuosity, or any alteration in those tissue
metrics during pathological processes can seed light into the
interpretation of MRI parameters. Still, the challenge is to
combine multidisciplinary and multiscale information into the
same reference frame, which is the first step for analyses and
quantification of areas of interest in the brain and spinal cord.

Therefore, more sophisticated co-registration tools are
required to combine the MRI and tissue data into the same
reference frame.

These microscopic techniques (nominal resolution of the
order of one micron) could help providing a better interpretation
of the images obtained with in vivo techniques, using higher-
resolution images as a reference atlas.

Thus, from the co-registration between MRI, which has a
nominal resolution of the order of 100 µm, and microscopic
images, with a nominal resolution of the order of 1 µm,
we can achieve information on the underlying microstructure
influencing MRI contrast, such as vessels and neurons.

3D dMRI/SXRPCT CO-REGISTRATION
METHOD OF THE MOUSE CNS

Here, we briefly describe a pipeline to co-register dMRI and
SXRPCT data from the C57BL/6J mouse brain and spinal cord
acquired from the same animal (Figure 2). Ex vivo DTI was
acquired with a 9.4 T scanner using segmented spin-echo EPI
(TE = 32 ms, TR = 1 s, b-value = 3000 s/mm (Filippi and Rocca,
2004), 42 diffusion directions, and 125 µm-isotropic resolution).
We generated fractional anisotropy (FA) and directionally
encoded colored maps. SXRPCT data was acquired at ID17
beamline at the European Synchrotron Radiation Facility (ESRF)
in Grenoble, France. Free-space propagation method, beam
energy = 34 keV, CCD pixel size = 3 µm, detector-sample distance
≈ 2.3 m, and samples loaded in a cell filled with agar-agar were
used. As the different 3D imaging techniques require different
holders, the curvature of the images may differ from each other
to an unknown degree. We propose two potential solutions to the
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FIGURE 2 | 3D dMRI/XRPCT co-registration of the mouse brain and spinal cord. From the same subject, 3D dMRI and XRPCT image datasets were obtained. The
native resolution of dMRI was 125 µm3 isotropic resolution (A,G), where XRPCT image spatial resolution was 6 µm (B,C,H). The scale bar is 500 µm in the brain
and 200 µm in the spinal cord. To facilitate the co-registration, masking of both FA and XRPCT images (D,I) and down-sampling of XRPCT images to the image
resolution of dMRI maps (E,J) were performed. In the case of the spinal cord, we performed the straightening of the whole spinal cord. In the background of panels
(F,K), grayscale images represent FA map of the mouse brain, and yellow rendering in the brain and red in spinal cord show the XRPCT data. (L) Vascular
segmentation of the co-registered spinal cord.

co-registration problem. In the first approach, we segmented 3D
images acquired with both techniques, co-registered the images
to each other, and fine-tuned using non-linear co-registration
tools such as SyN (Avants et al., 2008). This approach works as
long as the curvature of the images acquired by MRI and SXRPCT
is reasonably similar. While this assumption is generally true with
brain samples, this is typically not the case for the spinal cord.
This required the development of a second approach, wherein,
first of all, we skeletonized both of the segmented images. The
resulting skeletons were then straightened, and the image planes
perpendicular to the skeletons were moved using the translations
and rotations derived from the straightening process.

3D dMRI/SXRPCT Co-registration
Method of the Mouse Brain
First, SXRPCT images were low pass filtered to avoid aliasing,
and we down-sampled the images to roughly match the dMRI
resolution [125 µm (Sled, 2018)]. Then, dMRI images were
brain-masked using FSL’s BET (Smith, 2002) on the B0 image
(Figure 2D). Since no suitable tools for automatically masking
SXRPCT images are presently available, we used a combination
of custom-made MATLAB routines for intensity thresholding,
morphological operations, and manual fine-tuning for this task.
The brain boundaries showed marginal ring artifacts due to
different material density at the interface. An initial brain outline

mask was produced using intensity thresholding and including
low and high intensities into the mask to reduce the artifact.
The mask was then dilated with a 3D circle-shaped structuring
element (MATLAB imdilate; radius = 2 voxels) to close the
borders and hole-filled using 2D operations (MATLAB-imfill)
on the single slices. This was followed by erosions (MATLAB-
imerode) with the 3D ball-shaped structuring element until parts
of the mask outside of the brain disappeared. The mask was
finally dilated to reach the edges of the brain volume (Figure 2E).
Since FA contrast resembled the contrast in SXRPCT images in
some regions, such as the corpus callosum, hippocampus proper
and ventricles, we were able to co-register the FA images to
the corresponding SXRPCT using advanced normalization tools
(ANTs) (Avants et al., 2009). In addition to affine co-registration,
we used non-linear diffeomorphic registration SyN (Avants
et al., 2008) with Mattes metric (Figure 2F) to compensate for
possible small sample alterations due to different preparations
and susceptibility-induced distortions in the dMRI imaging.

Our analysis yielded a good anatomical agreement between
dMRI and SXRPCT images after co-registration. After the 3D
co-registration, the native resolution of SXRPCT images can
be restored allowing a more advanced analysis and validation
of the dMRI maps.

Therefore, a 3D high-resolution micro-imaging technique
is required in order to delineate simultaneously the complex
vascular organization, down to the smallest capillaries, and the
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neuronal and axonal morphology in a large volume of tissue (i.e.,
the same volume of the MRI scanning) This is a fundamental step
toward a better understanding of the neuro-vascular coupling.

3D dMRI/SXRPCT Co-registration of the
Mouse Spinal Cord
While existing co-registration tools could be used forthe brain,
they do not work for the spinal cord and different template and
toolbox have been proposed (De Leener et al., 2017; Cohen-Adad,
2018). The geometry of spinal cord requires more sophisticated
tools to co-register datasets into the same reference frame, and
in particular the coarse invariance for axial translations is a
significant challenge for proper co-registration. Therefore, we
devised a potential strategy, as described below, based on a
combination of MATLAB routines to obtain a good quality co-
registration between dMRI and SXRPCT images of the spinal
cord. Since the bones, i.e., vertebrae, were removed prior to the
imaging, the location of the intervertebral discs based on image
intensity was not possible. Therefore, both the SXRPCT and
dMRI data were manually labeled at two consensus reference
coordinates, e.g., close to the sample’s extremities. These reference
points were necessary to insert the images of the two different
modalities in the same space, regardless of the image resolution.
We use the spinal cord toolbox (SCT) (De Leener et al., 2017) for
spinal cord straightening (Figures 2I,J).

Synchrotron X-ray phase contrast tomography images were
first intensity-adjusted saturating top and bottom 0.3% and
down-sampled using volumetric nearest-neighbor interpolation
(Figure 2). The scaling value for down-sampling was chosen to
maximize the image gradient at the sample-medium interface on
selected slices in the xy-plane. Then, the contours of the spinal
cord were determined in the volume using the “approximate
Canny method” for 3D-edge-detection (Canny, 1987) (the
approximate Canny method uses two thresholds to detect strong
and weak edges). Image intensity threshold was calculated using
Otsu’s method (Otsu, 1979). Two different approaches were used
to determine the spinal cord position on the SXRPCT images.
The first was based on the center of mass of contour images
determined on slices in the xy-plane, which yielded spinal cord
centerlines. The second was based on filling of edge images using
three-dimensional seeded region growing, which yielded spinal
cord binary masks. The original SXRPCT stack and either the
spinal cord centerline or the binary mask were then fed to the SCT
straightening algorithm (De Leener et al., 2017). The SXRPCT
binary mask and DTI images were finally then co-registered using
ANTs (Figures 2K,L). This approach can be especially useful
with parametric maps derived in the original image reference
frames that could be transformed into the straightened form.
This approach is also robust with respect to different curvatures
in the images and, most importantly, it allows us to place all
the spinal cord images from different individuals into the same
reference frame. In addition, with XRPCT it is also possible
to extract information simultaneously about the neuronal and
vascular networks.

The potential outcomes of advancing these methods are great,
enhancing our basic understanding of healthy human CNS

function, and improving our ability to accurately diagnose and
treat injury and disease and predict treatment outcomes.

The co-registration methods presented here open new
possibilities to obtain complementary information to validate
MRI. Future directions are to include other histological
modalities, as 3D LM or EM data as well as other MRI
modalities, into the pipeline. Also, new analysis methods,
such as segmentation and quantification of individual cellular
components (Abdollahzadeh et al., 2019a,b; Figure 2L), allow
to extract more specific morphological information for the
evaluation of areas under investigation. A multiscale and
multidisciplinary approach as proposed in this article paves new
ways to study the brain and spinal cord, and more importantly,
to better understand the non-invasive information given by
in vivo MRI.

DISCUSSION

Magnetic resonance imaging has become one of the most
powerful tools in neuroscience research, with a wide range
of applications in both clinical practice and research settings.
However, the interpretation of highly complex MRI contrasts
remains a daunting task, which would benefit tremendously from
the progress of multimodal and multiscale imaging approaches.

Synchrotron X-ray phase contrast tomography, LM, or EM
can perform 3D imaging of post-mortem CNS tissue displaying,
e.g., from the architecture of the neuronal and vascular network
up to a single neuronal soma. These methods can be useful to
validate in vivo imaging techniques using the high-resolution
images as a reference (Schulz et al., 2012; Gangolli et al.,
2017; Cohen-Adad, 2018). In particular, LM and EM offer
high-resolution and specificity to visualize different cellular
substrates, which have already exploited for the microstructural
MRI validation (Mac Donald et al., 2007; Budde et al., 2011;
Salo et al., 2017; Cohen-Adad, 2018; Duval et al., 2019). In the
recent years, LM and EM have been developed into 3D imaging
techniques generating new ways for the MRI validation (Khan
et al., 2015; Schilling et al., 2016, 2018; Salo et al., 2018; Lee
et al., 2019). On the other hand, SXRPCT offers the possibility
to study the tissue in 3D without sample sectioning and specific
sample preparation (Fitzgerald, 2000). SXRPCT allows both the
assessment of the overall 3D morphology of the sample and fine
computing sectioning, as thin as 130 nm. SXRPCT has been
applied in the imaging of the 3D distribution of vasculature
and the single elements of the neuronal network in healthy and
pathological CNS (Bravin et al., 2012; Stefanutti et al., 2018).
The combination of the MRI with high-resolution SXRPCT can,
in principle, allow the assessment of the tissue morphology and
the segmentation of different anatomical structures (Schulz et al.,
2012) thus permitting to shed light on pathological alterations.

Co-registration methods, as the one presented here, allow
to gather information from complementary imaging methods
at different length scales spanning from the macroscopic to
the nanometric level. The application of these techniques to
ex vivo brain and spinal cord, for example, allows quantifying
microstructural alterations in diseased subjects, and it has the
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potential to lead to a better understanding of the relationship
between structure and function in the CNS. One of the
major limitations of the co-registration using different imaging
modalities on the same sample is the tissue preparation
(Fitzgerald, 2000). In this work, the tissue was fixed with
paraformaldehyde, which only induces a minor tissue shrinkage.
Other methods, such as LM or EM, require that the tissue
be stained, resulting in a more significant shrinkage that can
complicate the co-registration process. Prospectively, the added
value of a multimodal and multiscale imaging can be greatly
increased by further improvements in co-registration approaches
such as those outlined here.
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