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Abstract: This article focuses on the output feedback control of single-link flexible-joint robot manip-
ulators (SFJRMs) with matched disturbances and parametric uncertainties. Formally, four sensing
elements are required to design the controller for single-link manipulators. We have designed a
robust control technique for the semiglobal stabilization problem of the angular position of the link in
the SFJRM system, with the availability of only a position sensing device. The sliding mode control
(SMC) based output feedback controller is devised for SFJRM dynamics. The nonlinear model of
SFJRM is considered to estimate the unknown states utilizing the high-gain observer (HGO). It is
shown that the output under SMC using HGO-based estimated states coincides with that using
original states when the gains of HGO are sufficiently high. Finally, the results are presented showing
that the designed control technique works well when the SFJRM model is uncertain and matched
perturbations are expected.

Keywords: flexible-joint robotic manipulator; high-gain observers; output feedback control; robust
control; sliding mode control

1. Introduction

For the past several years, there has been extensive on-going research on control of
flexible joint robotic manipulators (FJRMs). This is because advanced robotic applications
require light-weight robots which could be driven by utilizing less quantity energy. In the
modern era, cost-effective robust solutions to engineering problems are highly focused.
Robotic manipulator is one of the fundamental parts of many industrial, medical, and
agricultural applications. The robotic manipulator is a complex nonlinear system that has
been widely exploited in a multitude of industries, for example, the beverage factories, and
car-assembly plants, space [1], underwater vehicles [2], agriculture [3], automation [4], and
many more. In several industrial applications, the industrial robot’s stiffness properties are
very important. The authors in [5], developed an industrial robot’s compliant joint dynamic
model, in which an impulsive modal analysis approach is used to experimentally identify
the joint stiffness. In addition to industrial applications, it has also been extensively applied
in the medical field to manipulate objects and to interact with the dynamic environment [6].
Moreover, it is also being used worldwide in the operating room to reduce the hospital
time, cost, patient discomfort, and to improve the surgical procedure by bringing precision
and the capability to access surgical areas with miniaturized instruments remotely [7].

To compare the conventional heavy-weight and rigid-link robotic manipulators (RRMs),
FJRMs have inherent advantages over the RRMs such as lightweight, smaller dimensions,
better maneuverability, better transportability, lower power consumptions, less control
effort, large work volume, lower cost, fast motion, safer operations, smaller actuators,
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and higher operational speed due to reduced inertia [8–13]. With the widespread appli-
cations and rapid development of robotic technology, under different types of environ-
ments, the requirement for well satisfactory working and flexible control is becoming
increasingly demanding.

For designing an efficient and robust control scheme, the essential and primary step is
to calculate an accurate dynamic model of FJRM system. The degree of freedom (DOF) of
the FJRM systems is greater than its number of actuators which means that’s it is an under-
actuated system [14]. For FJRMs, design of controller is intrinsically more complicated as
no exclusive control input be present for each DOF independently [15]. Majority of con-
trollers designed for industrial robots are based on rigid-link assumption [16]. To take into
account the joint flexibility, for n-link robots, it requires 2n generalized coordinates which
define its entire dynamic behavior [17]. Therefore, due to flexibility in joint, the dynamical
modelling becomes more complex compared to that of a rigid-link robotic manipulator.
Though mathematical modelling is merely the real system’s approximation, therefore sys-
tem behavior’s simplified representations certainly contain of modelling inaccuracies like
parametric and modelling uncertainties, vibrations, and external disturbances. Modelling
inaccuracies, chaotic phenomenon, friction, vibrations, extremely uncertain working condi-
tions, inherently high nonlinearities, and change of payload make the controller design
challenging [16,18]. In industrial and space applications, we require a controller that is
capable of overcome modelling uncertainties and disturbance effects.

To address the aforementioned problems, several engineers and researchers have
investigated numerous linear and nonlinear control design topologies for the FJRMs sys-
tem. For stabilization of flexible-joint robots, proportional integral derivative (PID) con-
troller has been designed by many researchers as being classical and simplest control
technique [19–22]. To address trajectory tracking control problems, the authors in [23]
designed dynamic feedback control for FJRMs. The work of [23] assumes that the measure-
ment of angular positions of link and motor are available, whereas the desired velocities in
controller are estimated by reduced-order observer. A similar approach is used in [24], in
which velocity observer is implemented based on a singular perturbation approach where
the controller needs sensors for position measurements and elastic force. In another work,
the linear matrix inequality techniques were suggested in [25] for the robust observer de-
sign and observer-based controller. For FJRMs position control, Tomei in [26] used a simple
proportional derivative (PD) control in which a full state measurement was required. The
finite-time state feedback controllers are proposed for robotic manipulators by the authors
in [27], which guarantees the state convergence for case of both bounded and unbounded
control signals. Hu et al. in [28], proposed the output feedback control (OFC) procedures,
which have incited rising attention in the tracking control area at current time and brings
the feasible routes into designing closed-loop tracking controller for FJRMs system with
position sensing only. In [29], the authors designed an adaptive controller to guarantee a
high precision position regulation of the flexible joint robots under uncertainties. For a
class of FJRM system, by using state-dependent Riccati equations, a finite-time optimal
controller was proposed by authors in [30]. Furthermore, by using the full states to sustain
the tracking ability, authors in [31] investigated an industrial flexible joint. In [32] an adap-
tive control method was proposed, without the information of the angular acceleration,
the parameter identification techniques were implemented for the flexible-joint robotic
systems. To enhance the robustness and guarantee the stability of a class of FJRMs system,
authors in [33] designed full state-feedback neural network control. The performance of
most of the control strategies described above is appropriate for nominal system, however,
to deal with the unmodeled dynamic uncertainties, parameter perturbations, faults and
external disturbances is still a challenge.

Some active disturbance rejection control techniques are suggested for robotic manip-
ulator systems to compensate and actively estimate the disturbance [34–36]. To address
the effect of mismatched disturbances, authors in [37] proposed a backstepping-based ap-
proach in conjunction with disturbance observer by using the disturbance rejection method
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for nonlinear systems. In [38] a generalized momentum based finite time disturbance
observer is proposed for robotic manipulators with assumption that sensors for all states
are available. For uncertain FJRM system motion control, a robust control technique for
trajectory tracking based-on the extended-state-observers-based controller was proposed
in [39]. However, with both external disturbances and parametric perturbations for the
FJRM system, the performance of this method was not acceptable for advanced applications.
Furthermore, multiple sensors are needed in these methods, which will not only bring ad-
ditional noise but also affect joint flexibility. Most of the work presented assumes all states
variable availability, thus robustness somewhere guaranteed are depending on modelling.

Generally, control laws via a feedback control need availability of all the states vari-
able, i.e., link positions, acceleration, jerk, and velocity. However, the position might be
precisely measured, noise disturbs velocity of the joint. Furthermore, by using numerical
differentiation in noisy measurement may lead to difficulties to obtain the unmeasured
states. Note that at least measurement of one state using sensor or knowledge of initial
conditions of the system is compulsory to design an observer. In practical scenario, it is
difficult to measurement all the state variables, or even sometimes not feasible, because of
technical or economic reasons as sensors are needed for each state of the systems [40,41].
To address this drawback, OFC can be designed that measures output of the systems
whereas for estimation of unknown remaining states an observer is used. In linear system
case, states can be estimated by using linear observers, however, the state estimation of
the complex nonlinear system is a challenging task and has gained vast consideration in
literature [42,43] and the references therein. Moreover, the traditional nonlinear sensorless
state estimators like sliding mode observer, backstepping observer, Kalman observer, etc.
can be designed only as part of the controller, and hence not only the complexity of design
increases but also the reusability of estimated states (with other control technique) is not
possible. To overcome this challenge, high-gain observer (HGO) is one of the most useful
and powerful techniques to be used for nonlinear OFC.

In the past several years, HGO has been considered as the essential technique used to
design OFC of the nonlinear systems and to estimate their unmeasured states [10]. HGO
has played an important part in advancement of regulation theory for nonlinear systems.
Furthermore, in presence of model uncertainties, HGO is robust and has capability to
estimate states of nonlinear systems, presented in normal form [44]. One of the most
important properties of HGO is the separation principle. The combination of the globally
bounded state feedback controller (SFC) and HGO allow for the separation approach. First,
the SFC is designed that stabilizes the systems and meet the requirements. Secondly, the
OFC is obtained by replacing the original states with its estimated states, provided by
HGO [44,45]. It is essential to affirm that the separation principle is a unique feature in the
HGO case which does not happen in other separation-principle results, including linear
systems, and that is state trajectories recovery by making the observers sufficiently fast.
For a wide class of nonlinear systems, HGO is used and guarantees that for sufficiently
high gain of the observer the OFC recovers the performance of SFC.

In this article, robust sliding mode control (SMC) technique is designed in conjunction
with a high-gain observer to overcome these challenges. Owing to its outstanding robust
nature and computational simplicity, SMC has attained popularity in several scientific
applications [46,47]. To deal with bounded external disturbances, perturbations, and
uncertainties of nonlinear systems, SMC is one of the most widely used powerful methods.
This is because of its fast convergence, strong robustness against perturbations, parameter
variations, external disturbances, and model uncertainties [48–51].

It is notable from the aforementioned study, that there is no significant work for
output feedback control of SFJRM using nonlinear dynamics. In the work of [39], the
linear observer is proposed to resolve the same problem but the performance of the
proposed output feedback controller is valid only locally. In this article, a control solution
is proposed for semiglobal stabilization problem of the angular position of the link in
SFJRM system with the availability of only a position sensing device. It is theoretically
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proved and validated in simulations that knowledge of exact parametric values is not
required to achieve the same controller performance as in presence of a sensor for each
state. Furthermore, the angular rate of the actuating motor is assumed to be distorted by
unknown bounded disturbance. The conventional SMC is used in conjunction with HGO
to suppress the effects of this distortion upon the systems.

The rest of the article is planned as; Section 2 describes the dynamical modelling of a
SFJRM and problem formulation. In Section 3, SMC for the SFJRM is designed, followed by
HGO design which is introduced in Section 4. MATLAB/Simulink (MathWorks Inc., Natick,
MA, USA) results and discussion are presented in Section 5. Conclusion is presented in the
last section.

2. Dynamical Model and Problem Statement

In this section, the mathematical modelling of SFJRM is explained. The working of
the system is demonstrated in detail. Finally, the problem statement of this article is given
along with basic technical definitions.

2.1. Dynamical Model of SFJRM

The basic schematic diagram of the SFJRM is shown in Figure 1. Its nonlinear dynami-
cal model can be written as [39]:

I
..
θ1 + MgL sin θ1 + K(θ1 − θ2) = 0 (1)

J
..
θ2 − K(θ1 − θ2) = τ (2)

where θ1 and θ2 are the angular positions of the link and actuator, respectively, I and J
are the inertias of link and actuator respectively, M is the link-mass, g is the gravitational
constant, L is the distance of the mass from the center, K denotes the stiffness of linear
spring, τ is the input torque applied to the actuator shaft while the viscous damping has
been neglected [16,39]. For simplification, the nonlinear dynamical model of the SFJRM
(1)–(2) can be denoted in state-space form. Defining z1 = θ1, z2 =

.
θ1, z3 = θ2, z4 =

.
θ2 and

u = τ. Then, the system (1)–(2) takes the form:

.
z1 = z2 (3)

.
z2 = −MgL

I
sin z1 −

K
I
(z1 − z3) (4)

.
z3 = z4 (5)

.
z4 =

K
J
(z1 − z3) +

u
J

(6)

Since it is desired to stabilize the angular position of the link, hence the output of the
system can be defined by:

y = h(z) = z1 (7)
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2.2. Problem Statement and Preliminaries

Design a controller for stabilization of angular position of the link in SFJRM system
(3)–(6) under that the following limitations:

(i) Sensing device is available only to measure the output i.e., position of SFJRM
(ii) The parametric values of the system (K, τ, and M) are not exactly known
(iii) The angular rate of the actuator is subjected to unknown bounded disturbances.

Remark 1. In the context of control systems, the goal is to design a robust OFC such that the effect
of parametric uncertainties and matched perturbations is diminished.

Definition 1. References ([52,53]) a system is said to be in singularity perturbed form if its
dynamics can be represented as:
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are continuously differentiable vector fields, ε ∈ (0, 1) is singular perturbation
parameter and satisfies ε� 1. The state vectors are defined by x ∈ Dx ⊂ Rm and z ∈ Dz ⊂ Rn,
while u ∈ Du ⊂ Rp denotes the input vector. Moreover, the states x and z are called slow and fast
states, respectively.

Definition 2. Reference ([54]) a single-input single-output (SISO) nonlinear system
.
ξ = f (ξ) + g(ξ)u has a relative degree r if

(i) LgLρ
f h(ξ) = 0 ∀ρ < r− 1 and for ∀ ξ in the neighborhood of ξo.

(ii) LgLr−1
f h(ξo) 6= 0.

where f and g are continuously differential vector fields, ξo denotes the equilibria of ξ and

Lρ
f h(ξ) =

∂
(

Lρ−1
f h

)
∂ξ

f (ξ) (10)
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Furthermore, L f h(ξ) = ∂h
∂ξ f (ξ). The Lie derivatives of the system are given according

to definition 2 as; Lgh(z) = 0, L f h(z) = z2, LgL f h(z) = 0, L2
f h(z) = z3, LgL2

f h(z) = 0,

L3
f h(z) = z4, LgL3

f h(z) = K/I J. Since, K, I, and J are non-zero, therefore, LgL3
f h(z) 6= 0.

So, the system’s relative degree r can be calculated as:

LgLr−1
f h(zo) = LgL3

f h(z)

By comparing we get; r− 1 = 3⇒ r = 4 ∀ z ∈ R and K/I J 6= 0 . The system’s rel-
ative degree r is equal to the order of the system i.e., n = r = 4, which indicates that
the system has no zero-dynamics and hence, the system dynamical model is completely
linearizable through feedback.

3. Sliding Mode Control Design

SMC is one of the commonly used robust control techniques for a wide class of
uncertain nonlinear systems. The design procedure consists of two main steps:

1. Design of sliding surface
2. Design of a discontinuous control to establish the sliding mode

Sliding mode control technique is advantageous because of its invariance to bounded
matched uncertainties, finite-time convergence to the sliding surface, and reduced order of
sliding equation. However, with these advantages, sliding mode control has some disad-
vantages for example chattering, unable to tackle mismatched uncertainty, and asymptotic
convergence of state variables.

Note that a nonlinear system can be transformed, utilizing an appropriate change
of coordinates in the state space, into the “normal form” of special interest, on which
numerous significant properties can be elucidated [54]. The nonlinear dynamic system (3)–
(7) is not in normal form. To simplify the control design, we will use a nonlinear coordinate
transformation so that the system can be represented in normal form. By applying the
nonlinear coordinate transformation of the form ξ = T(z), the original dynamics (3)–(7)
can be re-written in terms of the transformed new coordinates as [39]:

T(z) =


h(z)

L f h(z)
L2

f h(z)
L3

f h(z)

 (11)

where L f h(z) = z2, L2
f h(z) = −MgL

I sin z1 − K
I (z1 − z3), and L3

f h(z) = −MgL
I cos(z1)z2 −

K
I (z2 − z4). Moreover, the transformation is global transformation since the relative degree

of the system is defined for all ξ ∈ R, thus by the inverse function theorem, the inverse
transformation is also defined for all z ∈ R. Then the new coordinates are given by:

ξ1 = z1 (12)

ξ2 = z2 (13)

ξ3 = −MgL
I

sin z1 −
K
I
(z1 − z3) (14)

ξ4 = −MgL
I

cos(z1)z2 −
K
I
(z2 − z4) (15)

Remark 2. Since the transformed coordinates are themselves physically meaningful as can be seen
that ξ1, ξ2, ξ3 and ξ4 are the link position, velocity, acceleration, and jerk respectively. As the
system model is defined in these coordinates after transformation, thus these are the natural variable
to use for control.
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The normal form of the dynamical system which is in new coordinates is represented as:

.
ξ1 = ξ2 (16)

.
ξ2 = ξ3 (17)
.
ξ3 = ξ4 (18)

.
ξ4 = F(ξ) + bu (19)

y = h(ξ) = ξ1 (20)

where b = K
I J and

F(ξ) = −MgL
I

sin ξ1

(
K
J
− ξ2

2

)
−
(

K
I
+

K
J
+

MgL
I

cos ξ1

)
ξ3 (21)

Re-writing the Equations (16)–(20) in generalized form:

.
ξ = Aξ + Bφ(ξ, u) (22)

y = Cξ (23)

where ξ ∈ R4 : ξ =
[

ξ1 ξ2 ξ3 ξ4
]T , A is 4× 4 matrix, B is 4× 1, C is 1× 4, and

φ : R4 ×R→ R is a real-valued map, and φ(ξ, u) is the image of (ξ, u) under the map
given by:

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

, B =


0
0
0
1

, C =
[

1 0 0 0
]
,

And φ(ξ, u) = F(ξ) + bu + Y(t), where Y(t) is the matched uncertain term
introduced in the system due to external disturbances.

Assumption-1: There exists some positive constant L such that the uncertain function
satisfies

|Y(t)| ≤ L (24)

Remark 3. We assume that in the system (16)–(20), the function F(ξ) is the uncertain function due
to parametric variations because of external effects and uncertainties in measuring these parameters.
Thus, we know only the upper bound of an uncertain function.

We consider the sliding surface s such that

s = c1ξ1 + c2ξ2 + c3ξ3 + ξ4 (25)

where c1, . . . , c3 are chosen such that the polynomial s3 + c1s2 + c2s + c3 = 0 is Hurwitz.
Consider the Lyapunov function candidate

V(s) =
1
2

s2 (26)

Taking the time derivative of V(s)

.
V(s) = s

.
s = s(c1ξ2 + c2ξ3 + c3ξ4 + F(ξ) + Y(t) + bu) (27)

Let us consider the control input

u = (−c1ξ2 − c2ξ3 − c3ξ4 − F(ξ)− βsgn(s))/b (28)
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where β is the design parameter, positive constant and sgn is the signum function given by:

sgn(s) =


1, s > 0
0, s = 0
−1, s < 0

(29)

Substituting (28) into (27), we get:

.
V(s) = s(Y(t)− βsgn(s)) (30)

.
V(s) ≤ s(L− βsgn(s)) (31)

.
V(s) ≤ |s|L− β|s| (32)
.

V(s) ≤ −|s|(β− L) (33)

Taking β = L + K
.

V(s) ≤ −K|s| (34)

Thus
.

V(s) is negative definite, which implies that the states reach the sliding manifold
in finite-time and stabilize to the origin independent of the uncertain function Y(t), and
hence ensuring the robustness property of the SMC.

Remark 4. The SMC derived in this section considers signum function as a discontinuous control
law that not only introduces chattering in the control input but also makes the control law non-
Lipchitz. We will use an approximation of signum function by replacing it with saturation function
in control law and by abuse of notation will still call it SMC.

4. High-Gain Observer Design

For the FJSRM, the only state ξ1 is known. The following HGO is proposed that uses
the only available state ξ1 which is the measured output of the system:

.
ξ̂1 = ξ̂2 + }1

(
ξ1 − ξ̂1

)
(35)

.
ξ̂2 = ξ̂3 + }2

(
ξ1 − ξ̂1

)
(36)

.
ξ̂3 = ξ̂4 + }3

(
ξ1 − ξ̂1

)
(37)

.
ξ̂4 = F

(
ξ̂
)
+ bu + }4

(
ξ1 − ξ̂1

)
(38)

where }1 = α1/ε, }2 = α2/ε2, }3 = α3/ε3 and }4 = α4/ε4. Generally, we can write as;

.
ξ̂ = Aξ̂ + Bφ0

(
ξ̂, u
)
+ H

(
y− Cξ̂

)
(39)

where, φ0
(
ξ̂, u
)
= F

(
ξ̂
)
+ bu, is the nominal model of φ = (ξ, u) and observer gain is

defined as;
H =

[
}1 }2 }3 }4

]T

and the constant ai’s are chosen such that the polynomial

s4 + α1s3 + α2s2 + α3s + α4 = 0

is Hurwitz, and 0 < ε < 1 is the small positive constant also called the high-gain parameter.
Convergence Analysis:
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The estimation error of the observer can be represented as:

ξ̃ =


ξ̃1
ξ̃2

ξ̃3

ξ̃4

 =


ξ1 − ξ̂1
ξ2 − ξ̂2
ξ3 − ξ̂3
ξ4 − ξ̂4

 (40)

Taking the derivative of (40) and substituting (16)–(19) and (35)–(38) we obtain as:

.
ξ̃1.
ξ̃2.
ξ̃3.
ξ̃4

 =


.
ξ1 −

.
ξ̂1

.
ξ2 −

.
ξ̂2

.
ξ3 −

.
ξ̂3

.
ξ4 −

.
ξ̂4

 =


ξ2 − ξ̂2 − }1

(
ξ1 − ξ̂1

)
ξ3 − ξ̂3 − }2

(
ξ1 − ξ̂1

)
ξ4 − ξ̂4 − }3

(
ξ1 − ξ̂1

)
F(ξ)− F

(
ξ̂
)
− }4

(
ξ1 − ξ̂1

)
 =


ξ̃2 − α1

ε ξ̃1
ξ̃3 − α2

ε2 ξ̃1

ξ̃4 − α3
ε3 ξ̃1

∆
(
ξ, ξ̂
)
− α4

ε4 ξ̃1

 (41)

where ∆
(
ξ, ξ̂
)

= F(ξ) − F̂
(
ξ̂
)
. Defining the scaled estimation errors for each state;

η1 = ξ̃1/ε3, η2 = ξ̃2/ε2, η3 = ξ̃3
ε and η4 = ξ̃4. Then the system can be written into

singularity perturbed form as follows:

ε
.
η1 = −α1η1 + η2 (42)

ε
.
η2 = −α2η1 + η3 (43)

ε
.
η3 = −α3η1 + η4 (44)

ε
.
η4 = −α4η1 + ε∆

(
ξ, ξ̂
)

(45)

The scales estimation error can generally be denoted as: ηi =
(
ξi − ξ̂i

)
/εn−i for

i = 1, . . . , 4. Hence,

η1 =
ξ1 − ξ̂1

ε3 (46)

η2 =
ξ2 − ξ̂2

ε2 (47)

η3 =
ξ3 − ξ̂3

ε
(48)

η4 = ξ4 − ξ̂4 (49)

Then by simple algebraic manipulation, the system (46)–(49) can be represented in the
following form:

ξ1 = ξ̂1 + ε3η1 (50)

ξ2 = ξ̂2 + ε2η2 (51)

ξ3 = ξ̂3 + εη3 (52)

ξ4 = ξ̂4 + η4 (53)

Then, (50)–(53) can be generally written as:

ξ = ξ̂ + D(ε)η (54)

where

D(ε) =


ε3 0 0 0
0 ε2 0 0
0 0 ε 0
0 0 0 1

 (55)
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Re-arranged (54), we obtain:

D(ε)η = ξ − ξ̂ (56)

Taking derivative on both sides of (56), we obtain:

D(ε)
.
η =

.
ξ −

.
ξ̂ (57)

Furthermore, now substitute (21) and (39) in (57), we obtain:

D(ε)
.
η = Aξ + Bφ(ξ, u)− Aξ̂ − Bφ0

(
ξ̂, u
)
− H

(
Cξ − Cξ̂

)
(58)

Re-arranged (58), we obtain:

D(ε)
.
η = (A− HC)

(
ξ − ξ̂

)
+ B

(
φ(ξ, u)− φ0

(
ξ̂, u
))

(59)

Further, we can also write (59):

D(ε)
.
η = (A− HC)

(
ξ − ξ̂

)
+ Bδ

(
ξ, ξ̂
)

(60)

where δ
(
ξ, ξ̂
)
= φ(ξ, u)− φ0

(
ξ̂, u
)
. Moreover, we can also write (60):

D(ε)
.
η = (A− HC)D(ε)η + Bδ(ξ, γ(x− D(ε)η)) (61)

Pre multiplying D−1(ε) on both sides of (61), we obtain:

.
η = D−1(ε)(A− HC)D(ε)η + D−1(ε)Bδ(x, z, D(ε)η) (62)

where

D−1(ε) =


1/ε3 0 0 0

0 1/ε2 0 0
0 0 1/ε 0
0 0 0 1

 (63)

A− HC =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

−


α1/ε
α2/ε2

α3/ε3

α4/ε4

[ 1 0 0 0
]

(64)

Further simplifying (64) we get:

A− HC =


−α1/ε 1 0 0
−α2/ε2 0 1 0
−α3/ε3 0 0 1
−α4/ε4 0 0 0

 (65)

And now (65) and (55) are used to calculate the (A− HC)D(ε) as:

(A− HC)D(ε) =


−α1/ε 1 0 0
−α2/ε2 0 1 0
−α3/ε3 0 0 1
−α4/ε4 0 0 0




ε3 0 0 0
0 ε2 0 0
0 0 ε 0
0 0 0 1

 (66)

(A− HC)D(ε) =


−α1ε2 ε2 0 0
−α2ε 0 ε 0
−α3 0 0 1
−α4/ε 0 0 0

 (67)
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Pre multiplying (67) by D−1(ε) we obtain:

D−1(ε)(A− HC)D(ε) =


1/ε3 0 0 0

0 1/ε2 0 0
0 0 1/ε 0
0 0 0 1



−α1ε2 ε2 0 0
−α2ε 0 ε 0
−α3 0 0 1
−α4/ε 0 0 0

 (68)

Further simplifying (69) we get:

D−1(ε)(A− HC)D(ε) =
1
ε


−α1 1 0 0
−α2 0 1 0
−α3 0 0 1
−α4 0 0 0

 (69)

D−1(ε)(A− HC)D(ε) =
1
ε

A0 (70)

where

A0 =


−α1 1 0 0
−α2 0 1 0
−α3 0 0 1
−α4 0 0 0

 (71)

Now to calculate the D−1(ε)B, by using (63) we obtain as:

D−1(ε)B =


1/ε3 0 0 0

0 1/ε2 0 0
0 0 1/ε 0
0 0 0 1




0
0
0
1

 =


0
0
0
1

 = B (72)

Finally, substituting (70) and (72) in (62) we obtain as:

.
η =

1
ε

A0η + Bδ(x, z, D(ε)η) (73)

ε
.
η = A0η + εBδ(x, z, D(ε)η) (74)

Since A0 is Hurwitz, thus it is clear from the equation as the value of ε approaches
zero, the uncertain term becomes zero and the error converges to zero asymptotically.

5. Simulation Results and Discussion

In this section, the sliding mode control with high-gain observer design results are
validated. MATLAB/Simulink (MathWorks Inc., USA) environment is used to achieve the
simulation results. The complete block diagram of the SFJRM with the proposed output
feedback controller is shown in Figure 2. All the system parameters used in simulations
are given in Table 1. The MATLAB/Simulink block diagram of the SFJRM with proposed
output feedback controller in conjunction with HGO is shown in Figure 3. This diagram
shows that the saturated control effort and system output are fed to HGO and it estimates
the remaining sensorless states which are fed to controller. For assessment of observer
performance, the error in observer and original states is also measured and discussed in
subsequent paragraphs. The readers are directed to the supplementary files for detailed
discussion on the working of model of Figure 3. The initial conditions of the system
used in simulations are x1(0) = 0.1 and x2(0) = x3(0) = x4(0) = 0. The initial values
of the high-gain observer are assumed to be x̂1(0) = x̂2(0) = x̂3(0) = x̂4(0) = 0. To
evaluate the robustness of the output feedback under parameters variation, and external
disturbances, all the parameters are varied up to ±20 percent whereas time-dependent
matched disturbance is incorporated in the system model. In order to make the control
globally bounded, the control input is saturated within ±100.
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Table 1. System parameters.

Symbol Description Value (Unit)

M Mass of the link 1 kg

L Length of the mass location
from the center 1 m

k Spring stiffness 0.3
I Inertia of the link 0.5 kgm2

J Inertia of the actuator 0.008 kgm2

g Gravitational acceleration 9.8 m/s2
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The output y = x1 of SMC under SFC is shown in Figure 4 which is stabilized smoothly.
Whereas Figure 5 illustrates the stabilization of the remaining states x2, x3 and x4 under
SFC. The results show that the states are perfectly stabilized after few seconds. In Table 2
output feedback control parameters are given which are used in simulations. Figure 6
shows SMC control input with the signum function, which depicts that the control input is
suffering from the chattering phenomenon. To overcome the chattering, saturation is used
instead of signum function due to which the control input becomes relatively smooth when
states are on the sliding manifold. Figure 7 illustrates SMC control input with saturation
and the reduction in chattering can be observed.
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Table 2. SMC and HGO parameters.

SMC Parameter Value HGO Parameter Value

c1 6 α1 4
c2 11 α2 6
c3 6 α3 4
k 10 α4 1
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Figure 8 illustrates the output y = x1 stabilizing performance of the closed-loop (CL)
system under SFC and OFC (with HGO) without input saturation. The output feedback is
simulated for three different values of ε = 0.1, ε = 0.01, and ε = 0.005. The control input is
not globally bounded in this case. Peaking is induced by [x1(0)− x̂1(0)]/ε = 0.1/ε.
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When ε is sufficiently small. The results illustrate that the response under output
feedback deviates from the response under state feedback as value of high-gain parameters
ε is decreased. This is unanticipated as it is expected that the response under output
feedback should approach the response under state feedback as the value of ε approaches
zero. This is the impact of the peaking phenomenon. Since the system and observer initial
conditions are different thus peaking induces as the values of high-gain parameters are
decreased. If peaking of the state takes it outside the region of attraction, it could destabilize
the system.

Fortunately, the peaking phenomenon can be overcome by the saturation of the control
input outside the compact region of interest. Figure 9 shows the output y = x1 stabilization
performance of the CL system under state feedback control and output feedback control
with input saturation output. The control law is made globally bounded by saturating the
control input within −10 and 10. The output is shown for three different values ε = 0.1,
ε = 0.01, and ε = 0.001. The results show that the trajectories response of the CL system
under output feedback approaches the trajectories response of the state feedback as the high-
gain parameter values approach zero. From the results, it is noted that for a very small value
of ε = 0.001, the response under OFC is nearly indistinguishable from the response under
SFC. This leads the performance recovery under SFC. Similarly, Figures 10–12 illustrate the
remaining states x2, x3 and x4 response under SFC and OFC with input saturation. These
states for SFC and OFC are simulated for three different values of ε = 0.1, ε = 0.01, and
ε = 0.001. Furthermore, the graph shows that the trajectories response of the CL systems
under output feedback control approaches the trajectories result of state feedback control
as the values of ε decreases. This shows that the HGO (with saturated input) recover the
performance of state feedback control when the values of ε approaching zero.
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The estimation error amongst the system states and the estimated states of the HGO
are shown in Figures 13–16 for three different values of ε. It illustrates the estimation error
e1 = x1 − x̂1, e2 = x2 − x̂2, e3 = x3 − x̂3 and e4 = x4 − x̂4 convergence time is inversely
related to ε. Moreover, it can be confirmed that once the estimated states become equal to
actual states, they never leave the region of attraction for all future time. Moreover, the
control technique proposed in this article is realizable and can be implemented practically
without any major modification.
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6. Conclusions

This article presents the robust OFC for a SFJRM with matched perturbations and
uncertainties. A robust control technique is proposed for the semi-global stabilization
problem of the angular position of the link in the SFJRM system, with the availability of
only a position sensing device. In this regard, the conventional mathematical model of
SFJRM is modified to a form such that the HGO and SMC can be designed for the system.
The robustness property of the SMC to matched uncertainties is exploited to design a
robust state feedback controller. The robustness characteristic of the HGO is used for state
estimation in presence of uncertain parameters. By the virtue of the separation principle,
we have designed an OFC law based on SMC and HGO in the presence of parametric un-
certainties and external disturbances. The convergence analysis and numerical simulations
show that the performance of the OFC approaches that of the state feedback control as the
high-gain parameter is reduced. To say in nutshell, this article deals with the stabilization
of SFJRM system in presence of matched perturbations and modeling uncertainties with
the availability of only position sensors. The proposed methodology is supported by both
theoretical analysis and simulation framework.
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