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Motor cortex activity predicts response alternation
during sensorimotor decisions
Anna-Antonia Pape1,2 & Markus Siegel1

Our actions are constantly guided by decisions based on sensory information. The motor

cortex is traditionally viewed as the final output stage in this process, merely executing motor

responses based on these decisions. However, it is not clear if, beyond this role, the motor

cortex itself impacts response selection. Here, we report activity fluctuations over motor

cortex measured using MEG, which are unrelated to choice content and predict responses to

a visuomotor task seconds before decisions are made. These fluctuations are strongly

influenced by the previous trial’s response and predict a tendency to switch between

response alternatives for consecutive decisions. This alternation behaviour depends on the

size of neural signals still present from the previous response. Our results uncover a

response-alternation bias in sensorimotor decision making. Furthermore, they suggest that

motor cortex is more than an output stage and instead shapes response selection during

sensorimotor decision making.
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W
e constantly use sensory information to choose
between alternative motor actions. The neural
processes underlying such sensorimotor choices

include the representation of sensory evidence, possibly weighing
in top-down factors, deciding between choice alternatives and
finally executing the appropriate motor response1–4.
Traditionally, these processes were viewed as sequential stages,
in which the motor cortex acts as the final output stage that
merely executes responses (for example, a specific button press)
corresponding to the choices made in other brain regions
(for example, ‘yes—I saw the target’).

In contrast to this sequential view, recent evidence suggests a
more continuous flow of information and that the motor cortex,
that is, primary and pre-motor cortex, is more directly involved in
the decision-making process itself4. Before choice commitment,
motor cortex activity already reflects competing response
options5–8, and if choices are inextricably linked to a specific
response during decision formation, activity in motor areas6,9–12

as well as corticospinal excitability13,14 and motor reflexes15 track
the evolution of upcoming choices.

However, if choice–response contingencies are specified before
decision making, choices and associated responses cannot be
dissociated, neither behaviourally nor neurally. Therefore, it is
unclear if intrinsic fluctuations of motor cortex activity have a
direct impact on the decision-making process beyond represent-
ing upcoming choice-contingent responses. Here, we overcome
this limitation by dissociating choices and responses, and
investigate with magnetoencephalography (MEG) the motor
cortex’ role in human sensorimotor decision making.

We show that fluctuations over motor cortex before decision
making are predictive of upcoming responses. These signal
fluctuations are partly carried over from the previous response
and predict a tendency to alternate between response alternatives
for consecutive choices. Our results reveal a tendency to alternate
responses in perceptual decision making. Furthermore, they
suggest that motor cortex can impact response selection during
decision making.

Results
Dissociating choices from responses. We recorded MEG from
20 human participants while they judged the presence of weakly
coherent motion in a display of randomly moving dots (Fig. 1a;
see ‘Methods’ section). For each participant, stimuli were adjusted
for near-threshold performance (average correct performance:
73.9 % þ /� 9.4%). Subjects reported their choice (‘yes’/‘no’)
with a left or right hand button-press. Two design features
dissociated choices from motor responses during the decision-
phase16–18: First, the mapping between choice and response hand
was randomly re-assigned on each trial. Second, for each trial, the
choice-response mapping was indicated with a colour cue only
after the stimulus presentation was completed (Fig. 1b). Thus,
subjects had to form their decision during stimulus presentation,
but could only later map their choice onto a response.

Early response-predictive motor cortex activity. We recon-
structed neuronal activity in the left and right motor cortices as a
function of time and frequency (Fig. 2a). After the choice–
response cue and directly preceding the button-press, we
observed the typical reduction of beta-band power (12–30 Hz) in
the hemisphere contralateral to the button-press (Fig. 2a,
P¼ 0.012, two-tailed one-sample cluster permutation test; n¼ 20,
4.7–6.6 s, 10–44 Hz)9,10,19–22. Because the cortical distribution
of this lateralized pre-response activity peaked pre- and
post-centrally (Fig. 2b; 4.5–5.5 s; 12–30 Hz), we refer to it as
sensorimotor cortex activity in the following. To test if

sensorimotor cortex activity also predicted responses earlier,
that is, before the choice-response cue allowed for choice-
contingent response selection, we compared beta-band activity
(12–30 Hz) contra- and ipsilateral to the response throughout the
trial (Fig. 2c,d). This revealed significant response-predictive
lateralization not only after the choice–response cue (Fig. 2c,d;
4.6–6.1 s; P¼ 0.002, two-tailed one-sample cluster permutation
test; n¼ 20) but also at the beginning of the trial (� 1.0 to 1.1 s;
P¼ 0.01, two-tailed one-sample cluster permutation test; n¼ 20).
Beta-band activity contralateral to the button-press was
significantly lower than ipsilateral. This early response-
predictive activity was independent of accuracy. It was present
for both, correct and error trials (Fig. 2e, and Supplementary
Fig. 1).

In sum, neuronal activity in sensorimotor cortex predicted
which button participants eventually pressed not only after, but
even before the choice-response cue, before the stimulus and
more than 6 s before the final motor response. Importantly,
because choices and responses were dissociated at this point in
time, this response-predictive lateralization reflects neuronal
encoding of the upcoming response, but not of the reported
choice content.

Long-lasting effect of beta rebound. Because response-predictive
activity appeared already at trial onset, we hypothesized that it
was related to the previous trial’s response. The contralateral beta
power decrease in motor cortex before a response is typically
followed by a characteristic increase of beta power, the ‘beta
rebound’20,23,24. To investigate if this affected the early response-
predictive activity, we analysed the evolution of the beta rebound
that followed the previous trial’s button-press (Fig. 3). Indeed, we
found a prominent increase of beta power contralateral to, and
following the previous button-press that lasted for several seconds
into the current trial until presentation of the next choice-
response cue (Fig. 3a–c, 0.7 s after the previous trial’s button-
press to 4.6 s of the current trial, P¼ 0.002, two-tailed one-sample
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Figure 1 | Visuomotor decision task. (a) Participants reported the

presence of coherent motion in a display of randomly moving dots with a

left- or right-hand button-press. In each trial, the mapping from choice to

response hand was newly assigned with a colour cue after the stimulus

(choice-response cue). Successive trials were separated by a variable

length ITI (median ITI: 1,290 ms). (b) For a red cue (choice-response

mapping 1), participants reported the presence and absence of coherent

motion with a right and left hand button-press, respectively. The mapping

from choice to response was reversed for the green cue (choice-response

mapping 2).
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cluster permutation test; n¼ 20). The cortical distribution of this
beta-rebound peaked over sensorimotor cortices (Fig. 3d), and
similar to the response-predictive activity, was independent of
response accuracy. Furthermore, the beta-rebound did not differ
following correct and error trials (Fig. 3e and Supplementary
Fig. 1). At its maximum before the current trial’s stimulus onset,
the beta-rebound lateralization was about three times as strong as
the lateralization right before the previous button-press. Thus, at
the beginning of the current trial, the sensorimotor cortex was not
in a neutral state, but even stronger and reversely lateralized than
preceding the previous response.

Beta rebound predicts response alternation. The beta rebound
pushes the sensorimotor cortices into a lateralized state opposite
to the lateralization before the previous button-press (but see
lateralization with respect to current button-press plotted
separately for response alternation and non-alternation trials,
Fig. 4a,b). We hypothesized that this reversed lateralization
following the previous response in combination with the early

response-predictive lateralization for the current response may
induce a behavioural bias towards response alternations across
successive trials. Indeed, participants showed a significant ten-
dency to alternate the response hand from one trial to the next
(Fig. 5a, mean r¼ 0.04, P¼ 0.016, one-tailed one-sample t-test;
n¼ 20). Because our design enabled us to dissociate responses
from choices, we could unequivocally dissociate this response
alternation bias from the well-known preference to repeat the
previous choice10,25–27, which was also present in our data (mean
r¼ 0.13, P¼ 5.366� 10� 4; two-tailed one-sample t-test; n¼ 20).
The response bias also affected overall performance: The stronger
the participants’ response bias, the worse they performed in the
actual motion detection task (Fig. 5b, r¼ � 0.53, P¼ 0.016,
Spearman correlation; n¼ 20).

While the above findings of a long-lasting beta rebound and
response alternation suggest a mechanistic link between these two
phenomena, they might also merely coexist. Therefore, we sought
more direct evidence for a link between these two phenomena.
If they were mechanistically related, variance in one variable
should explain variance in the other. First, we tested if, across
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Figure 2 | Motor cortex activity predicts upcoming responses. (a) Time-frequency analysis of the difference of source-reconstructed motor cortex

activity contralateral minus ipsilateral to each button-press. Beta power (12–30 Hz) shows a characteristic contralateral suppression before the button-

press. Z-scores across subjects (n¼ 20 subjects). (b) Beta power (12–30 Hz) immediately before left minus right button-presses (4.5–5.5 s). Beta power

suppression is focused on motor cortex. White dashed lines mark the central sulcus. (c) Time-course of beta power (12–30 Hz) in motor cortex contra- and

ipsilateral to the button-press. Activity is normalized by the mean across trials. Shaded areas indicate SEM across participants. Black bars mark significant

differences, that is, response-predictive activity (� 1.0 to 1.1 s, P¼0.01; 4.5–6.6 s, P¼0.002; two-tailed one-sample cluster permutation tests, n¼ 20). (d)

Time-course of response-predictive beta activity, that is, of the difference in beta power between hemispheres contra- and ipsilateral to the button-press.

(e) Difference between contra- and ipsilateral beta power averaged across the prestimulus period (� 1 to 1.25 s) is significantly different from 0 in both

correct (Po0.001) and incorrect trials (P¼0.018, two-tailed one-sample permutation tests, n¼ 20).
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participants, the strength of the beta rebound predicted the
tendency to alternate responses. This is what we found (Fig. 5c,
r¼ 0.64, P¼ 0.002, Spearman correlation; n¼ 20): the stronger a
participant’s beta rebound, the more likely the participant was to
alternate responses. We repeated this analysis across the entire
cortex (Fig. 5d). This revealed that the beta rebound predicted
response alternation specifically in regions compatible with
sensorimotor cortex and similar to those regions showing
maximum pre-response lateralization (Fig. 2b). Second, we tested
if the relationship between beta rebound and response alternation
also held on the single-trial level. Indeed, we found that the
stronger the beta rebound at the beginning of a trial, the more
likely were participants to alternate responses on this trial
(random effects: P¼ 0.021; fixed effects: P¼ 0.005; two-tailed
one-sample permutation tests on beta rebound averaged in the
window � 1 to � 1.25 s; n¼ 20 ). Another third line of evidence
suggested a close relation between beta rebound and alternation
behaviour: If the response-predictive activity at trial onset
(Fig. 2d) reflects the effect of the beta rebound on response
behaviour, then removing neural variability due to the beta
rebound should reduce the response-predictive effect. To test this,
we removed neural variability due to the beta rebound by
correcting for the effect of previous responses (see ‘Methods’
section). Indeed, we found that this correction significantly
reduced the response-predictive effect (Fig. 6a,b, P¼ 0.010, one-
tailed paired permutation test; n¼ 20). This finding provides
additional evidence for a mechanistic link between beta rebound
and response alternation behaviour.

We next tested if the strength of the beta rebound was
modulated by different aspects of the previous trial. We

found that only the duration of the preceding inter-trial
interval (ITI; Po0.001; two-tailed one-sample t-test; n¼ 20),
but not the previous choice, response hand, target presence,
accuracy, or reaction time (all P40.05; two-tailed one-sample
t-tests, all n¼ 20) predicted the strength of the following
beta-rebound (Supplementary Table 1). Corresponding to this
decay of the beta-rebound, also the alternation bias was
descriptively weaker and not significant for trials following
long (mean r¼ 0.019, P¼ 0.45, one-tailed one-sample t-test;
n¼ 20) as compared with short (mean r¼ 0.052, P¼ 0.046,
one-tailed one-sample t-test; n¼ 20) inter-trial intervals (direct
comparison P¼ 0.21, one-tailed paired t-test; n¼ 20, Supple-
mentary Fig. 2).

In sum, our findings suggest that the beta rebound drives
response-predictive fluctuations of sensorimotor cortex activity at
trial onset.

Spontaneous fluctuations of beta lateralization predict responses.
Do also spontaneous fluctuations of motor cortical activity
beyond the beta rebound predict responses? In other words, can
response variability be explained by prestimulus neural
variability—over and above the fact that responses depended on
previous responses, and the fact that each response produces a
beta rebound? Removing the neural variability due to the beta-
rebound allows for also addressing this question. Indeed, we
found that even after removing neural variability due to the beta-
rebound, motor cortex lateralization at trial onset predicted
upcoming responses (P¼ 0.024, � 1 to 1.25 s, one-tailed one-
sample permutation test; n¼ 20, Fig. 6a,b). Thus, the response-
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predictive sensorimotor activity was not limited to the neural
aftermath of the previous trial, that is, the beta rebound, but also
spontaneous fluctuations unrelated to the previous button-press
predicted which button would be pressed 6 s later.

The effect of choice-contingent response planning. All of the
above results held in a situation where choices could be translated
into motor responses only after choice formation. Do motor
fluctuations also predict responses when choices can be directly
mapped onto motor responses? To test this, we recorded MEG
during a second decision task in which the choice-response
mapping was already cued before the stimulus by swapping the
order of the irrelevant and the choice–response cues (choice–
response cue for control task: 0–0.25 s).

Motor activity also predicted motor responses in this control
task, but weaker. We first focused on the beta rebound as the
major source of motor fluctuations. Again, we found evidence for
a mechanistic link between beta rebound and response alterna-
tion: Across participants, stronger beta rebound significantly
predicted stronger response alternation (Fig. 7a, r¼ 0.51,
P¼ 0.022, Spearman correlation; n¼ 20), but descriptively the
relationship was weaker than for the original task. Correspond-
ingly, participants showed a weaker tendency to alternate
responses in the control task, which was only significant in

participants with above average beta rebound (Fig. 7b, mean
r¼ 0.04, P¼ 0.0085, one-tailed one-sample t-test; n¼ 10), but not
across the entire sample (all participants: mean r¼ 0.015,
P¼ 0.132, one-tailed one-sample t-test; n¼ 20). Also the
response-predictive effect of early motor lateralization was
significantly weaker in the control task than in the original task
(Fig. 7d, Po0.001, one-tailed permutation test, � 1 to 1.25–s;
n¼ 20), and reached significance only in participants with above-
average beta rebound, not in all participants (Fig. 7 e, and
Supplementary Fig. 3, � 1 to 1.25–s, all participants: P¼ 0.18,
n¼ 20, one-tailed one-sample permutation test; participants with
above average beta rebound: Po0.001, n¼ 10, one-tailed one-
sample permutation test). The preference for repeating the same
choice as in the previous trial was present in the control task as in
original task (mean r¼ 0.055, P¼ 0.0075, two-tailed one-sample
t-test).

Why was the effect of motor fluctuations on response selection
weaker when the choice-response mapping was cued before the
stimulus? We hypothesized that this may reflect interference of
early response planning with the prestimulus motor lateralization.
Indeed, in accordance with previous reports9,10, for the control
task, response-predictive lateralization started already during
the stimulus interval (Fig. 7c, 2.3–6.1 s, P¼ 0.002, two-tailed
one-sample cluster permutation test, n¼ 20). Thus, in the control
task, subjects already mapped choices onto response plans during
decision formation, that is, earlier than in the main task. The
possibility to plan responses early on may have decreased the
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preexistent motor lateralization. To test this hypothesis, we
compared the beta rebound between the original and the control
task while ruling out confounds due to the different alternation
behaviour (Fig. 8a, see ‘Methods’ section). As hypothesized, the
beta rebound was significantly decreased for the control task in
the late stimulus interval and delay before the second cue, that is,
during response planning in the control task (Fig. 8c, P¼ 0.010,
one-tailed paired permutation test, n¼ 20). Notably, the beta
rebound was also already reduced in the delay interval directly
following the early choice-response cue in the control task
(Fig. 8b, P¼ 0.036, one-tailed paired permutation test, n¼ 20),
which may reflect the suppression of the beta rebound in
preparation of the upcoming response planning or processing of
the choice–response cue. Together, these results suggest a reduced

response-alternation bias in the control task because upcoming or
evolving response planning reduces motor fluctuations caused by
previous responses.

Discussion
Our results provide new insights into sensorimotor decision
making on both behavioural and neural levels. We uncovered that
a previous motor response can influence sensorimotor decision
making. Several factors beyond the present stimulus are known to
influence sensorimotor decisions. These factors include neural
noise at sensory stages28,29, top-down factors such as stimulus10

and reward30 expectations, motor costs associated with response
options31–33 or sequence effects such as the ‘Gambler’s fallacy’,
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two-tailed one-sample cluster permutation test, n¼ 20). Data from main task re-plotted from Fig. 2c for comparison. (d) Lateralization with respect to the

upcoming button-press in the prestimulus window of main and control trials. (e) For subjects with above median beta rebound, prestimulus lateralization

predicts the upcoming response in the control task (Po0.001, time window from � 1 to 1.25 s, one-tailed one-sample permutation test, n¼ 10), whereas

this is not possible in subjects with below median beta rebound (P¼0.90, one-tailed one-sample permutation test, n¼ 10).
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that is, the mistaken belief that high event incidence is followed
by low incidence and vice versa27, or the preference to repeat the
previous perceptual choice10,25–27 that we also observed in the
present experiment. The Gambler’s fallacy and choice repetition
effect are conceptualized on the choice-level, that is, the content
of decisions (for example, ‘yes—I saw the target’). In contrast, our
results indicate that also previous responses at the level of the
motor act (for example, a specific button-press) and independent
of previous choices influence which decisions are eventually
reported. This unravels a previously unknown decision factor that
needs to be accounted for in models of decision making as well as
in the analysis and design of decision-making experiments. In
fact, our results suggest that, for perceptual decision-making tasks
with fixed choice–response mapping, the well-known choice-
repetition bias is counteracted by an independent response-
alternation bias.

While the demonstrated response-alternation bias is behaviou-
rally detrimental for perceptual decision-making tasks, such as
the one at hand, it may be beneficial in specific behavioural
contexts. For instance, response alternation may improve
sampling of different motor acts to succeed in a task, favoring
exploration over exploitation, or it may help prevent motor
fatigue.

We identified the post-movement beta-rebound as a strong
source of sensorimotor cortex fluctuations that may drive the
response-alternation bias. Three lines of evidence support this
conclusion. First, subjects with stronger beta-rebound showed
stronger response alternation. Second, the strength of beta-
rebound predicted the likelihood of response alternation on the
single-trial level. Third, removing neuronal variability related to
the previous response’s beta-rebound reduced the early response-
predictive beta lateralization.

Our results accord well with other recent studies that provide
converging correlative34–37 and manipulative38,39 evidence for a

causal role of beta-oscillations in motor control. Nevertheless, it
remains difficult to pinpoint the exact neural source of the
demonstrated alternation behaviour based on the present data
alone. First, although we found strongest effects in regions
consistent with primary motor cortex and applied source-
reconstruction to extract primary motor cortex activity, the
spatial resolution of MEG is limited. Thus, other regions such as
for example, premotor cortex or somatosensory cortex40 may well
contribute to the observed effects. Second, only regions with a
prominent macroscopic contralateral motor organization were
apt to reflect upcoming or past responses in the present
experiment. This organization decreases upstream from primary
motor cortex, which reduces response-predictive lateralization.
Thus, the effects that we observed over motor cortex may in
principle be caused by other upstream cortical or subcortical41,42

regions that encode response specific information without a
somatotopic organization. In addition, post-central somato-
sensory areas might contribute to the observed beta oscillations.
Previous research has demonstrated monosynaptic projections
from S1 onto motoneurons43 and beta coherence between S1 and
muscle activity40. Yet, S1 stimulation does not elicit or facilitate
muscle activity44. Thus, the role of S1 in motor control remains
unclear. In sum, while our results suggest an intimate relationship
of the motor cortical beta rebound and response alternation, the
exact cortical mechanisms that drive response alternation remain
to be determined. Ultimately, invasive and manipulative
approaches will be required to unequivocally show that motor
cortex activity itself causes the response-alternation bias.
Independent from the exact cortical stage, our results show
that a post-response rebound of neural representations of
motor responses predicts response alternation in human
decision making.

Furthermore, our results show that even beyond the response-
related beta-rebound the state of the sensorimotor cortex before
decision formation and unrelated to choice content predicts the
final decision-making outcome. Previous studies showed that
neuronal activity in motor areas reflects upcoming choices during
evidence accumulation if choices and responses are inextricably
linked9,10,16,45. Our finding of response-predictive, but choice-
unrelated activity suggests that sensorimotor cortex activity
during decision making does not merely reflect the routing of
decision-related activity from higher cognitive areas18,46, but that
motor cortex activity itself can act on the resolution of response
competition in a distributed network of decision making12. As
such our results accord well with a growing body of evidence
suggesting that motor regions are directly involved in the
process of decision making4–6,8,11,15,47. That said, our results
are also well compatible with converging data that suggest a
prominent role of frontoparietal association cortices in decision
making1,12,18,46,48–50.

In summary, our results show that not only choice-related
neuronal fluctuations but also fluctuations related to the
associated motor responses predict sensorimotor decisions.

Methods
Participants. Twenty healthy, right-handed volunteers (11 female, mean age 29
years) participated in this study. All had normal or corrected-to-normal vision and
received monetary reward for their participation. The study was conducted in
accordance with the Declaration of Helsinki, and was approved by the ethics
committee of the University of Tuebingen. All participants gave written informed
consent before participating.

Behavioural task. On each trial, participants had to decide whether coherent
motion was present in centrally presented dynamic random dot pattern (random
dot kinematogram, RDK) and to report their percept (yes/no) by button-press with
the left or the right index finger (Fig. 1a, 2-alternative forced choice). The choice-
response mapping was newly assigned on each trial by a colour cue (red or green).
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Figure 8 | Differences in beta rebound between main and control task.

(a) Lateralization of beta power with respect to the previous button-press

(beta rebound) for main and control tasks across the trial. (b) Beta rebound

for the main and control task averaged between the end of the first cue

(0.25 s) and stimulus onset (1.25 s) are significantly different (P¼0.036,

one-tailed paired permutation test, n¼ 20). (c) Beta rebound for the main

and control task averaged across the second half of the stimulus and the

delay period before the second cue (2.25 s–4.25 s) are significantly different

(P¼0.010, one-tailed paired permutation test, n¼ 20).
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For the main and control task, this choic–response cue was presented after or
before the stimulus, respectively. For temporal symmetry, an irrelevant cue (blue)
was presented before or after the stimulus for the main and control task, respec-
tively. Each trial started with a 1.5 s fixation period, followed by the first 0.25 s cue
period, a blank 1 s delay, 2 s of stimulus presentation, another 1 s delay, the second
0.25 s cue period, another 1s delay and a brief (33 ms) dimming of the fixation
spot, which served as the go-cue to respond. The mean (across subjects) median
þ /� 5/95 percentile (within subject) response times were 0.63 þ /� 0.37/1.42 s
and 0.62 þ /� 0.35/1.38 s for the main and control experiments, respectively.
There was no significant difference of response times between right- and left-hand
responses for the main or control experiment (both P40.05; permutation test,
n¼ 20). 250 ms after the response, a brief (100 ms) visual feedback was presented
centrally (red or green circle; 2.1 degree diameter; green: correct, red: incorrect).
The following ITI was controlled by the participants through their fixation beha-
viour. The experiment was paused as long as participants did not fixate the central
fixation spot or closed their eyes. The pause was indicated by presentation of thin
red lines at the edges of the screen. This resulted in variable inter trial intervals with
a median duration of 1,290 ms. Participants were instructed to blink only during
the ITI. Subjects completed 240 trials of the main task and 240 trials of the control
task in two consecutive recording sessions. In addition, participants performed 240
trials (cued task), for which participants did not have to make a decision about the
stimulus but received explicit instructions which button to press on each trial.
Furthermore, for another 80 trials (passive task) participants had to press no
button at all, but were instructed to passively view the stimulus. Cued and passive
task trials were not analysed for the present study. All tasks were randomly
interleaved. Before the recording, participants practiced the task for at least 45 min.

Stimuli. Dynamic random dot patterns were presented for 2 s and consisted of
1,500 white dots (dot diameter: 0.12 deg) on a black background, moving at 10
deg s� 1 according to the ‘random direction, different rule’51 in a circular aperture
of 8.5 deg diameter. For each participant, there were exactly two stimuli, both
presented half of the trials: in the noise-only stimulus, there was no coherent
motion, whereas in the target stimulus, a fraction of dots moved coherently
downwards. Motion coherence of target stimuli was titrated to each participant’s
perceptual threshold employing a staircase procedure with 280 trials and a Weibull
function fit (average target motion coherence: 9%). All colour cues had the same
luminance (14 cd m� 2) and size (0.85 deg diameter). Choice-response mapping
was assigned as follows: red: Yes - right, No - left, green: Yes - left, No -
right, blue: uninformative.

Setup and neurophysiological recordings. We recorded the MEG (Omega 2000,
CTF Systems, Inc., Port Coquitlam, Canada ) with 275 channels at a sampling rate
of 2,343.75 Hz in a magnetically shielded chamber. Participants were comfortably
seated upright in a dark room. Stimuli were projected onto a screen at a viewing
distance of 55 cm using a hue and luminance calibrated liquid crystal display
projector (Sanyo PLC-XP41, Moriguchi, Japan) at 60 Hz refresh rate. Stimuli were
constructed offline and presented using the Presentation software (NeuroBeha-
vioral Systems, Albany, CA, USA). In addition to the MEG, we recorded the
electrooculogram and electrocardigram for offline artefact rejection.

Eye movement recordings. Throughout the experiment, we recorded the
participants’ eye movements with a video-based eye-tracker (EyeLink 1000, SR
Research, Ottawa, Canada). This ensured continuous fixation and allowed
participants to conveniently control the length of the ITI.

Structural MRI. For source reconstruction based on each participant’s individual
anatomy, we recorded structural T1-weighted MRIs of each participant (echo time
(TE)¼ 2.18 ms, repetition time (TR)¼ 2.3 ms, longitudinal relaxation time
(T1)¼ 1.1 ms, flip angle¼ 9�, 192 slices, voxel size 1� 1� 1 mm3) with a Siemens
3T Tim Trio scanner and a 32 channel Head Coil.

MEG preprocessing. MEG data were downsampled to 1,000 Hz and high-pass
filtered at 4 Hz (two-pass Butterworth filter, filter order 6). Line noise and its
harmonics were notched out (49.5–50.5 Hz, 99.5–100.5 Hz, 149.5–150.5 Hz ;
199.5–200.5 Hz, 249.5–250.5 Hz, 299.5–300.5 Hz, 349.5–350.5 Hz two-pass
Butterworth filter, filter order 4), and after careful visual inspection of the
respective signals, trials with eye blinks, saccades, strong muscle artifacts, or
signal jumps were excluded from further analyses (on average 20% and 18%
of all trials for the main and control task, respectively).

Source analysis. We used adaptive linear spatial filtering (beamforming)52,53 to
estimate neural population signals at the source level. We used frequency-domain
beamforming dynamical imaging of coherent sources (DICS)52 to investigate the
cortex-wide distribution of response-predictive beta-band activity before the
button-press. We used time-domain beamforming linearly constrained minimum
variance (LCMV)53 to analyse the dynamics of frequency-specific neural activity in
motor cortex.

The implementation details of the beamformer were as follows: for each time t,
frequency f (for frequency-domain beamforming) and source location r, three
orthogonal filters (Â¼ [Ax, Ay, Az]; one for each spatial dimension) were computed
that pass activity from location r with unit gain, while maximally suppressing
activity from all other sources:

Â r; t; fð Þ ¼ ½LT rð ÞCreal t; fð Þ� 1L rð Þ�� 1LT rð ÞCreal t; fð Þ� 1 ð1Þ
Here, L(r) is a matrix whose columns are the leadfields of three orthogonal dipoles
at source location r, and Creal denotes the real part of the complex cross-spectral-
density matrix for the data at frequency f and time t, and T indicates the matrix
transpose. For time-domain beamforming, filters are not frequency dependent and
Creal denotes the covariance matrix of the sensor-level signals. We derived a joint
filter for all contrasted conditions.

We linearly combined the three filters to a single filter pointing in the direction
of maximal variance, that is, the dominant dipole orientation. To this end, the
filters were weighted with the first eigenvectors’ elements (the eigenvector with the
largest eigenvalue of the real part of the cross-spectral-density or covariance matrix
at the source location r):

w ¼ w1;w2;w3½ � ¼ Eig1ðÂ r; t; fð ÞCreal t; fð ÞÂ r; t; fð ÞTÞ ð2Þ

A r; t; fð Þ ¼ w1 � A1 r; t; fð Þþw2 � A2 r; t; fð Þþw3 � A3 r; t; fð Þ ð3Þ
To derive the complex source estimates (frequency-domain beamforming), the
complex frequency-domain data was multiplied with the real-valued filter:

Xsource r; t; fð Þ ¼ A r; t; fð Þ � Xsensorðt; f Þ ð4Þ
where Xsensor(t,f) is the frequency-domain representation at time t and frequency f
at the sensor level and Xsource(r,t,f) is the corresponding source signal at location r.
For time-domain beamforming, Xsensor and Xsource denote the sensor-level and
source-level timecourses, respectively.

Source locations. To investigate the cortical distribution of choice predictive
neuronal activity before the button-press (Fig. 2b), we estimated neuronal activity
at 457 source locations that homogeneously covered the space at B0.7 cm beneath
the skull with a spacing of B1.25 cm. This coverage is well adapted to the spatial
resolution of MEG, samples sources with high signal-to-noise ratio (SNR) close to
the sensors, and covers a large part of the cortex.

Furthermore, we reconstructed neuronal activity specific to the button-press
near the hand representation of left and right primary motor cortex. We visually
inspected each participant’s cortical map of the contrast between contra- and
ipsilateral button-presses in main, control and cued tasks in the time-window from
4.5 to 5.5 s and the frequency range from 12 to 30 Hz. For each participant, we
selected the local spatial maximum of this functional contrast closest to the
anatomical hand representation, that is, the ‘handknob’ of the precentral gyrus.

Physical forward model for source analysis. For all source analyses, we
computed individual physical forward models (leadfields). To match participants,
we nonlinearly transformed source locations defined in standard Montreal
Neurological Institute (MNI) space into individual head space using the
participants’ individual structural magnetic resonance image (MRI). We aligned
the MEG sensors to the head geometry based on three fiducial points (nasion, left
and right ear, registered during the MEG acquisition by three head localization
coils). For each participant, we derived the physical relation between sources and
sensors using a single shell model54 that was computed based on the segmentation
of each participants structural MRI.

Spectral analysis. For time-frequency analyses of neuronal activity (Figs 2a and
3a), we source-reconstructed broad-band neuronal activity using time-domain
beamforming and employed a sliding window multi-taper Fourier analysis
(window size: 250 ms, step size: 20 ms, 8 Hz smoothing, 3 discrete prolate spher-
oidal sequences (DPSS) tapers). To account for variable response times, we
computed two time-frequency transforms: first, with data aligned to the stimulus,
and second, with data aligned to the button-press. These time-frequency trans-
forms were concatenated according to the average response time. Power was
quantified as the per cent change of power relative to the average pre-cue baseline.

To image the cortical distribution of response-predictive beta-band activity
directly preceding the response, we derived the sensor-level cross-spectral density
matrix for frequency-domain beamforming using multi-taper Fourier analysis
(4.5–5.5 s, 12–30 Hz, 17 discrete prolate spheroidal sequences tapers).

To investigate the time-course of source-reconstructed beta-band activity, we
band-pass-filtered the sensor-level MEG data in the time-domain (12–30 Hz;
two-pass Butterworth filter, filter order 4), applied time-domain beamforming,
applied the Hilbert transform, and smoothed power time-courses with a 500 ms
(full-width at half-maximum) Hanning window. Finally, all time-courses were
normalized by the average across time and trials.

Response-predictive activity. To isolate neuronal activity that predicted the
specific upcoming response (left or right hand), we contrasted power in motor
cortex contra- and ipsilateral to the response hand (Figs 2d, 6, 7c,d). This contrast
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isolates effector-specific signals and discards other unrelated neuronal variance
providing a specific proxy on neuronal activity involved in decision formation and
motor execution9,21,22. This contrast can be formalized as:

contra� ipsið Þcurrent¼
Lxr �Rxrð Þþ Rxl � Lxlð Þ

2
ð5Þ

where L and R stand for the neuronal activity measured in the left and right
hemisphere, respectively, and the first and second subscripts denote the previous
and current response hand, respectively. r, l, and� denote right, left and either
response hand, respectively. Thus, Lxr denotes the left hemispheric activity
measured for trials with left- or right-hand button-press on the previous trial and
right-hand button-press on the current trial. The left and right bracketed terms in
equation (5) correspond to neural activity contralateral–ipsilateral to current right
and left-hand button-presses, respectively.

Beta rebound. To estimate the response-specific effect of the previous button-
press on the current trial, that is, the beta-rebound, we contrasted power in motor
cortex contra- and ipsilateral to the previous trial’s button-press (Figs 3c, 8a–c):

contra � ipsið Þprevious¼
Lrx �Rrxð Þþ Rlx � Llxð Þ

2
ð6Þ

The left and right bracketed terms in equation (6) correspond to neural activity
contralateral–ipsilateral to previous right and left-hand button-presses, respec-
tively. To quantify the response-specific beta-rebound for each subject, we averaged
lateralization relative to the previous response from � 1 to 1.25 s of the current
trial.

Statistical assessment of lateralization. To assess statistical significance of
response-specific lateralization across time and frequency (Fig. 2a) or across
time (Figs 2c,d and 3b,c and 7c), we calculated cluster permutation statistics
that account for multiple comparisons with a first-level threshold of P¼ 0.05
(two-tailed) and 1,000 subject-level permutations55,56. For all contrasts tested on
specific time windows (Figs 2e, 3e, 6b, 7d,e and 8b,c), we employed permutation
statistics on un-smoothed data with 1,000 subject-level permutations. One often
employed time-window was from � 1 to 1.25 s (Figs 2e, 3e, 6b, 7d,e). We used this
window, because this period includes the entire prestimulus interval that well
matches the extent of the early response-predictive beta lateralization (Fig. 2d).
All statistics were computed across subjects (random effects) with two-tailed tests
unless noted otherwise.

Correction for previous responses. To investigate the beta rebound’s contribu-
tion to the early response-predictive activity, we computed the lateralization
relative to the current trial’s response corrected for the previous response (Fig. 6):

contra� ipsið Þcurrent corr:¼
Llrþ Lrrð Þ� Rlr þRrrð Þþ Rll þRrlð Þ� Lll þ Lrlð Þ

4
ð7Þ

The effect of previous responses is corrected for by computing the responses
contralateral and ipsilateral to the current response averaged across trials with
equal weighting across both possible previous responses (the four bracketed terms
in equation (7)). In other words, we replace the four numerator terms in
equation (5) with the same terms balanced for the previous response. By
re-ordering equation (7) it becomes evident that this balancing removes the
previous trial’s effect:

contra� ipsið Þcurrent corr:¼
Llr� Lllð Þþ Lrr � Lrlð Þþ Rll �Rlrð Þþ Rrl �Rrrð Þ

4
ð8Þ

Each of the four bracketed numerator terms in equation (8) isolates the effect of the
current response (contralateral–ipsilateral) and subtracts out the effect of a specific
previous response for a specific hemisphere. By removing the effect of previous
responses, this correction removes the neuronal variability specific to the previous
response, that is, the beta rebound. We employed this correction not only to test if
the beta rebound contributed to the early response-predictive activity, but also to
test if spontaneous, that is, beta-rebound independent, fluctuations of motor cortex
lateralization predict responses.

We applied the same correction also when comparing the size of the beta
rebound between main and control tasks (Fig. 8a–c). This allowed us to rule out
potential confounding by different alternation behaviour across tasks (for example,
less alternation trials for the control task) because correcting for the previous
response is equivalent to correcting for alternation behaviour. Again, this becomes
evident by re-ordering equation (7) accordingly:

contra� ipsið Þcurrent corr:¼
Llr� Lrlð Þþ Lrr � Lllð Þþ Rrl�Rlrð Þþ Rll �Rrrð Þ

4
ð9Þ

Now, each of the four bracketed terms in equation (9) isolates the effect of the
current response (contralateral–ipsilateral) and subtracts out the effect of the
previous response being the same or different from the previous response.

Correlation analyses. To quantify relations between nominal behavioural vari-
ables (responses ’left’ or ‘right’ on current and previous trials) we used Pearson’s
correlation coefficient for binary variables (Phi coefficient). To assess statistical
significance of correlations, we Fisher-z-transformed subjects’ r-values and applied
two-tailed t-statistics across subjects unless noted otherwise.

To test if different aspects of the previous trial modulated the strength of the
beta rebound we performed a multivariate partial correlation analysis, with the
predictors previous choice, previous response hand, previous target presence,
previous accuracy, previous reaction time, and ITI duration following the previous
response. For each subject, partial correlation was performed across trials and the
significance of predictors was assessed using a two-tailed t-statistics of the Fisher-
z-transformed r-values across subjects.

To quantify the relation between each participant’s beta rebound and tendency
to alternate responses on the subject level, we computed Spearman’s rank
correlation across subjects (Fig. 5c). We used the same approach to test for each
cortical region, how its beta rebound predicted response alternation (Fig. 5d). To
test if the strength of the beta rebound also predicted the tendency to alternate
responses on the single-trial level we either tested for a difference of the beta-
rebound between alternation and non-alternation trials across subjects (random
effects), or we tested for a difference of the beta-rebound between alternation and
non-alternation trials pooling all trials across subjects (fixed effects). For both
approaches, we employed permutations statistics and we z-scored each subject’s
single-trial beta-rebound data. Thus, both single-trial correlation analyses (random
and fixed effects) were orthogonal to the subject-level correlation analysis.

To test if the tendency to alternate responses and accuracy were related, we
calculated Pearson’s correlation across participants.

All analyses were performed in MATLAB (MathWorks Inc., Natick, USA) using
custom software and the Fieldtrip toolbox57.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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