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ABSTRACT

Rare diseases affect over a hundred million people
worldwide, most of these patients are not accurately
diagnosed and effectively treated. The limited knowl-
edge of rare diseases forms the biggest obstacle
for improving their treatment. Detailed clinical phe-
notyping is considered as a keystone of decipher-
ing genes and realizing the precision medicine for
rare diseases. Here, we preset a standardized sys-
tem for various types of rare diseases, called en-
cyclopedia of Rare disease Annotations for Preci-
sion Medicine (eRAM). eRAM was built by text-mining
nearly 10 million scientific publications and elec-
tronic medical records, and integrating various data
in existing recognized databases (such as Unified
Medical Language System (UMLS), Human Pheno-
type Ontology, Orphanet, OMIM, GWAS). eRAM sys-
tematically incorporates currently available data on
clinical manifestations and molecular mechanisms
of rare diseases and uncovers many novel associa-
tions among diseases. eRAM provides enriched an-
notations for 15 942 rare diseases, yielding 6147 hu-
man disease related phenotype terms, 31 661 mam-
malians phenotype terms, 10,202 symptoms from
UMLS, 18 815 genes and 92 580 genotypes. eRAM
can not only provide information about rare dis-
ease mechanism but also facilitate clinicians to make
accurate diagnostic and therapeutic decisions to-

wards rare diseases. eRAM can be freely accessed
at http://www.unimd.org/eram/.

INTRODUCTION

Rare diseases are usually caused by genetic disorders and
stay throughout a patient’s entire life. Featuring low preva-
lence, a rare disease is defined to affect fewer than 1 in 1500
people in the United States, while fewer than 1 in 2000 peo-
ple in Europe. As clinicians often fail to make a final diag-
nosis due to the lack of recognizable syndrome, precision
medicine is commonly adopted to select optimal therapies
based on a patient’s genetic content.

Along with increasing public awareness of rare diseases,
much effort has been devoted to relevant preclinical and
clinical research. For example, next-generation sequencing
(NGS) has been used to identify genes that cause rare dis-
eases (including some novel phenotypes), which is accom-
panied by a parallel need for large-scale phenotypic anno-
tations (1,2). The Human Phenotype Ontology (HPO) (3),
which intends to realize large-scale computational analysis
of the human phenome (a set of all phenotypes expressed by
a species), contains ∼116 000 terms to describe individual
phenotypic anomalies (4); however, the gene-to-phenotype
association has been established for only a limited number
of rare diseases. Most recently, industrialization of rare dis-
ease treatment development was proposed to drive down
the treatment cost (5). This will need to centralize expertise
and resources, which are based on various databases.

Under these circumstances, standardization of a disease-
based phenotype system is in urgent need to integrate clini-
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cal phenotypes and symptoms, which is usually overlooked
in existing databases. Over the last three years, we have ex-
tensively collected phenotypes and symptoms of rare dis-
eases from published medical literatures and clinical data;
standardized and classified extracted information via differ-
ent patterns and approaches; provided enriched clinical and
molecular annotations for most rare diseases; and finally
generated a rare disease annotation system called Encyclo-
pedia of Rare Disease Annotations for Precision Medicine
(eRAM), This results in a valuable resource for researchers
and clinicians to conduct studies and practice in rare dis-
eases.

DISEASE DEFINITION

Disease unification and cross-linkages

Currently, there is no unified, widely accepted definition for
rare diseases, and rare diseases vary in prevalence through-
out different populations (6). A need for collaboration
across different countries has long been proposed to facil-
itate better definition, data sharing and diagnosis of rare
diseases (7). In addition, considering the ubiquity of lex-
ical heterogeneity in the realm of rare diseases, a well-
structured, completed lexicon of rare diseases is neces-
sary (8,9). To this end, we integrated data from four well-
known databases – Orphanet (10), MalaCards (rare disease
category) (9), NIH-Genetic and Rare Diseases (NGRD)
(https://rarediseases.info.nih.gov/) and National Organiza-
tion for Rare Disorders (NORD) (https://www.rarediseases.
org) for rare diseases as disease name resources. We then
mapped the disease names together with their alias strings
to UMLS (2017AA release) through the lexical matching
method (11,12) to complete the textual unification. De-
tails together with an example of this method are pro-
vided in Supplementary 1. Given the fact that no exist-
ing standards/vocabularies can provide a complete list of
standardized rare disease names, for those disease terms
which cannot be mapped to UMLS, we adopted disease
names from the Orphanet database as candidate vocabular-
ies to standardize disease names since it defines each rare
disease as a recognizable and homogeneous clinical pre-
sentation. Moreover, the Orphanet is widely accepted and
used by clinicians and researchers (13). As a result, 14 771
unique disease concepts were obtained (Figure 1A). In addi-
tion, because of Orphanet’s policy of unifying several On-
line Mendelian Inheritance in Man (OMIM) disease sub-
types into one entry, to integrate and present rare diseases
in a more accurate way, we then used OMIM to add dis-
ease subtypes as an expansion of rare diseases, through
which we obtained the final disease concept list of 15 942
rare diseases. Considering the term usage variations in dis-
ease names and their identifiers (IDs), we mapped rare
diseases among the currently controlled vocabularies and
databases, including OMIM (14), Disease Ontology (DO)
(15), ICD10, UMLS, Medical Subject Headings (MeSH),
Systematized Nomenclature of Medicine - Clinical Terms
(SNOMED-CT), GARD and Orphanet (Figure 1B). Dif-
ferent rare disease IDs mapped from the above databases
were added as cross-linkage (Xref) annotations.

DISEASE ANNOTATION

After the disease unification process, we annotated rare dis-
eases in the eRAM. Currently, each disease term in eRAM
is annotated in eight aspects, including descriptions, syn-
onyms, symptoms, genes, genotypes, Xref, human pheno-
types and its relevant phenotypes in the mouse (MPO).

Disease descriptions

To help disambiguate the meaning through different disease
terms, a definition/short description (if has) for each dis-
ease is provided. To maximize the description coverage for
all the diseases in eRAM, we extracted 6322 disease defi-
nitions from MRDEF.RRF file in UMLS (2017AA), Or-
phanet, OMIM, DO, GARD and NORD. Up to now, 10
637 out of the 15 942 unique disease concepts in eRAM have
their descriptions. Users can retrieve disease descriptions by
clicking the ‘research’ button.

Disease symptoms and phenotypes

Accurate disease manifestations and sufficient clinical
records are critical for the establishment of a rare dis-
ease annotation system. eRAM obtained symptom and
phenotype information from the following sources: (i) hu-
man Phenotype Ontology (version 2017) (16). We extracted
disease–phenotype (D–P) associations from HPO for all
rare disease terms (including their synonyms) in eRAM.
(ii) DO symptoms, using the ‘has symptom’ relationship.
(iii) Orphanet. (iv) UMLS (2017AA) disease manifesta-
tion file––MRREL.RRF. As a result, a total of 16,944
phenotypes/symptoms were mapped to 1756 diseases. To
ensure the high accuracy and integrity of the results, a
pattern-based text mining approach was used to leverage
external knowledge and limit the amount of human effort
(17). To carry out this approach, we took the following two
steps.

I. To build up a phenotype and symptom lexicon. The two
most popular vocabularies containing disease manifes-
tations are HPO and UMLS. Since the UMLS has
now integrated the entire HPO (version 2017), we built
up a comprehensive lexicon by extracting the symp-
tom concepts as well as its synonym terms from UMLS
(2017AA) symptoms using semantic type assignment
of Sign or Symptom. Considering that the HPO has
been not only adopted as a standard for phenotypic ab-
normalities but also treated as a computational bridge
between genome biology and clinical medicine (18),
thus allowing for deep phenotyping of rare diseases in
health records and registries, we divided the whole lex-
icon into two sublexicons––the HPO terms as the ‘phe-
notype’ lexicon, and the UMLS unique manifestation
terms as the ‘Symptom’ lexicon (19–21). As a result, 23
907 HPO terms (including alias strings) together with
16 178 UMLS unique manifestation terms (including
alias strings) were obtained. The overlap terms between
UMLS and HPO are 2212.

II. To develop the pattern dictionary. To develop the pat-
tern dictionary that represents the relationship between

https://rarediseases.info.nih.gov/
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Figure 1. (A) Overlaps among the major disease sources. Venn diagram for the major sources of disease names in eRAM. (B) Overlaps among all primary
disease resources. The symmetric matrix shows the number of overlapping diseases between all pairs of primary name sources according to eRAM mapping.
Colors and numerals represent the overlapping degree in disease counts. Source abbreviations: DOID – Disease Ontology (Identifier), GARD – NIH Rare
Diseases. (C) (a) Overlap between diseases which have phenotypic annotations (phenotypes and symptoms) between existing databases and text-mining
results. (b) Statistics of diseases and D-M pairs which have phenotypic annotations between existing databases and text-mined literature. (c) Distributions
of disease-manifestation associations between existing databases and text-mined literature. The x-axis represents the diseases with phenotypic annotation
from both existing databases and literature, while y-axis represents the proportion of disease corresponding manifestations. (D) Coverage of the text-mined
result. Comparison of text-mined sentences containing phenotypes. The y-axis represents the number of sentences containing disease-related phenotypes
for each disease. DS, Disease-Symptom pairs; DP, Disease-Phenotype pairs. (E) Distributions of disease similarity scores. Blue bins represent phenotypes
(existing in 6147 diseases), and red bins represent genes (existing in 5593 diseases).
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disease and phenotype/symptom, we used the disease–
manifestation (D–M) pairs in MRREL.RRF file from
UMLS (2017AA) as the training source for disease-
phenotype patterns and expanded both disease and
phenotype/symptom concepts by mapping their corre-
sponding synonyms from the whole UMLS (2017AA)
Metathesaurus. Then, we extracted the syntactic pat-
terns associated with the D–M pairs to train D–M spe-
cific patterns from abstracts and full-text articles in
MEDLINE through a co-occurrence text mining ap-
proach. In total, 8 488 796 abstracts and 774 514 full-
text articles were text-mined respectively from PubMed
and PubMed Central, leading to the identification of 10
530 disease–symptom (D–S) pairs and 61 714 disease–
phenotype pairs.

Next we applied the selected D-M patterns to text-mine
the abstracts and full-text articles (from year 2010 to 2015)
in MEDLINE using the pattern-based method. In total,
636 722 sentences together with 192 074 unique D–M (in-
cluding alias strings) annotations were generated. The ex-
tracted D–M pairs were proved to be highly accurate (pre-
cision of 0.927, recall of 0.84 and F-score of 0.878) based
on our manually selected 2000 pairs as test set (Supplemen-
tary 2). We then manually curated all the text-mined D-M
results. Consequently, 181 978 out of 192 074 unique D–
M pairs (including alias strings) were verified to be cor-
rect. The 181 978 D–M pairs are involved in 430 785 ab-
stracts and 72 993 full-text articles. To evaluate the coverage
of the text-mined D–M pairs, we calculated the number of
unique D–M pairs extracted from articles in different size
and observed the trend towards saturation. The extracted
pairs from both abstracts and full-text articles showed a
high coverage of phenotypic annotations of rare diseases.
As expected, full-text articles contained more phenotypic
and disease information than abstracts (Figure 1D). All the
D–P and D–S sentences together with their PubMed iden-
tifiers (PMIDs) were retained for each rare disease.

Phenotype and symptom annotations in eRAM are rep-
resented separately. The annotations generated by HPO
terms are shown in the ‘Phenotype’ tab, while the rest are
shown in the ‘Symptom’ tab. All records consist of the
results generated from text-mining and currently existing
databases as previously mentioned (Figure 1C).

In addition, because of the wide application of animal
models in better understanding human diseases, especially
the mouse as the primary model organism in research on hu-
man biology and diseases, we mapped phenotype terms be-
tween HPO and Mammalian Phenotype Ontology (MPO)
(22) based on both homologous gene mapping and lexical
matching method. All information has been recorded in the
eRAM.

Disease gene and genotype

The genotype refers to the genetic constitution of an in-
dividual, which is responsible for a particular trait. To
better understand both etiology and mechanisms of dis-
ease, both gene and genotype information is necessary.
In the present study, we collected disease-gene associa-
tions from several existing databases including Orphanet,

OMIM, UniProtKB (23–25), ClinVar (26), DISEASES (in-
cluding text-mined data) (27) and DisGeNET (CTD data)
(28,29), as well as disease-gene associations inferred by the
disease comorbidity-based network approach (30) using
data in ClinVar. To make a better classification, we divided
all these associations into three categories: curated (data
manually curated by experts or validated by experiments),
text-mined and inferred disease–gene associations. In total,
eRAM contains 316 311 disease–gene association records
currently, including 18 815 genes and 5593 diseases. For
all genes, we collected, the corresponding locus informa-
tion was also added. eRAM contains genotype information
from the following resources: (i) existing databases: Dis-
GeNET, GWASdb (31), LOVD (32) and PharmGKB (33);
(ii) data from Beijing Children’s hospital. In total, eRAM
contains 92 580 gene variants. Users can view those data
through clicking the ‘gene’ or ‘genotype’ button after query-
ing a disease.

DISEASE CONNECTIONS

Connecting diseases with similar pathological mechanisms
can inspire novel strategies on the effective repositioning
of existing drugs and therapies (34). Usually, disease pairs
sharing more involved genes or phenotypic information
are more likely to have similar pathological mechanisms
(35,36). Thus, we connected diseases by both phenotype-
based and gene-based approaches (phenotypes and genes
are curated or text-mined) using the following method.

Calculation of Phenotype-Based disease similarity

We adopted the equation of symptoms-based disease
similarity introduced in previous work to calculate the
phenotype-based disease similarity (37). The similarity
ranges from 0 (no shared phenotype) to 1 (identical phe-
notypes). Details together with an example of phenotype-
based disease similarity method are provided in Supplemen-
tary 3.

Calculation of Gene-Based disease similarity

We calculated gene-based disease similarity by determining
the uniqueness of shared genes described in the former re-
search (38). Details together with an example of gene-based
disease similarity evaluation method are provided in Sup-
plementary 4.

Users can retrieve top ten similar diseases based on
phenotype-based or gene-based similarity for each dis-
ease from eRAM. The disease similarity generated from
the phenotype-based method provides additional infor-
mation on disease connections (Figure 1E), thus comple-
menting the molecular biology-based classifying approach
(20,39,40). In addition, to ensure the integrity of the gene-
based disease connections, we combined disease-gene as-
sociations from all three categories, and obtained a gene-
disease matrix connecting 17 324 genes with 5593 disease
entries. The supplementary associations extracted from the
inferred and text-mined categories intensify the disease net-
work, suggesting much complicated relationships among
diseases.
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The gene-based and phenotype-based approaches ex-
pand connections among diseases in eRAM. However,
when studying the mechanism-based disease connection in
rare diseases, connections to common diseases are also very
informative (41). Thus, we added connections between rare
diseases and common diseases in two ways:

I. Connecting rare diseases to common diseases by gene
based and phenotype-based methods. We integrated a
common disease list by integrating common diseases in
DO, and then we integrated disease–gene and disease–
phenotype associations from HPO. In total, 9633 com-
mon diseases with 5317 disease-gene associations and
8906 disease-phenotype associations were generated.

II. Connecting rare diseases to common diseases by co-
morbidity. The comorbidity information in eRAM was
mainly collected in two ways: (i) extracted from elec-
tronic health records (EHRs). We extracted the dis-
ease comorbidity information from Multiparameter In-
telligent Monitoring in Intensive Care (MIMIC II)
database, from which we collected 34 261 unique dis-
ease comorbidity pairs. This information has been pre-
sented in eRAM in the comorbidity section. (ii) Text-
mined disease comorbidity information from MED-
LINE. We first integrated disease concepts from eRAM,
DO and OMIM, and obtained 171 938 disease terms
(including synonyms). We then adopted the pattern-
based approach described above to mine the literature
from MEDLINE database. In total, 8 488 796 abstracts
and 774 514 full-text articles were text-mined respec-
tively, resulting in 142 422 unique disease comorbidity
pairs with 356 845 sentences. The text-mining results
were manually curated by experts in Beijing Children’s
hospital. All the text-mined sentences as well as their
PMIDs have been deposited in eRAM.

DISCUSSION

Nowadays, rare diseases have drawn a lot of attention
worldwide. NIH has launched Undiagnosed Disease Pro-
gram for rare disease study and Canada has funded the
Canadian FORGE (Finding of Rare Disease Genes) ini-
tiative (42). Similarly, the United Kingdom has conducted
100K genome project that includes a major focus on rare in-
herited diseases with the goal of introducing genomics diag-
nostics into the mainstream healthcare system for the bene-
fit of patients and researchers (43). All of those projects rely
on precisely defining the clinical phenotypes and symptoms.
As a comprehensive platform for rare disease research and
diagnoses, eRAM provides enriched clinical and molecular
annotations for 15 942 rare diseases, consisting of integrated
6147 human disease-related phenotypic terms, 31 661 mam-
malian phenotypic terms, 10 202 symptoms standardized
by UMLS, 18 815 genes and 92 580 genotypes, which pro-
vides systematic information combining clinical manifesta-
tions and molecular mechanisms. For convenient communi-
cation, a community-based disease annotation system has
also been developed in the eRAM, where researchers and
clinicians can exchange the latest advances and discoveries
in rare diseases.

eRAM is delicate to providing rich and accurate knowl-
edge that not only helps researchers to explore underlying
mechanisms of rare diseases but also facilitates clinicians to
make accurate diagnoses and therapeutic decisions. How-
ever, to develop a systematic and comprehensive database
for rare diseases, more efforts remain to make. In the current
eRAM, only 10,637 unique disease concepts have their cor-
responding descriptions. We will continuously collaborate
with the experts from Beijing Children’s Hospital and add as
many short descriptions/summaries as possible for the rest
5305 diseases by integrating disease information from newly
published articles and available clinical data. We will also
continue to mine disease-manifestation associations from
newly published abstracts/full-text articles. eRAM contains
no performed phenotypic annotations extracted from the
EHR database yet, mainly because the extracted informa-
tion is in Chinese. In the future study, we will translate
relevant annotations into English and integrate them into
eRAM.

As the prevalence of rare diseases is extremely low, data
sharing plays a critical role in exploring the diagnosis and
mechanism of rare diseases. Thanks to Science China Life
Sciences and Pediatric Investigation journals, we are autho-
rized to host the related data about rare diseases published
in these two journals. Under this policy, all de-identified
clinical data with standardized phenotypes or manifesta-
tion terms will be deposited into eRAM. For example, all
the relevant data of rare diseases published in the 2017 July
special issue of Science China Life Sciences have been de-
posited into eRAM (44–55). In the future, we will continue
to collect new rare disease cases, phenotypes and genotypes
from published literature and other resources; meanwhile,
we will standardize the electronic medical records for rare
diseases from Beijing Children’s Hospital and record those
de-identified clinical data into eRAM. We plan to update
annotations in eRAM every six months and change the ver-
sion number every year.

The key point of precision medicine is to collect and
analyze disease information from different individuals. To
reach this goal, a well-structured and standardized database
is needed to ensure the correct recording of patient-based
data. With a rich accumulation of annotated phenotypes,
clinical information, patient-based genotypes and pheno-
types, eRAM will be the most comprehensive system to pro-
vide rare disease information, which is believed to facilitate
the application of precision medicine for rare diseases in di-
agnosis and treatment selection. In the meantime, eRAM
will serve as a useful source for exploring the underlying
mechanism of rare diseases, while triggering the develop-
ment of new therapeutic drugs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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