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Recent strategies for the treatment of cancer, other than just tumor cell killing have been under intensive
development, such as anti-angiogenic therapeutic approach. Angiogenesis inhibition is an important strat-
egy for the treatment of solid tumors, which basically depends on cutting off the blood supply to tumor
micro-regions, resulting in pan-hypoxia and pan-necrosis within solid tumor tissues. The differential acti-
vation of angiogenesis between normal and tumor tissues makes this process an attractive strategic target
for anti-tumor drug discovery. The principles of anti-angiogenic treatment for solid tumors were originally
proposed in 1972, and ever since, it has become a putative target for therapies directed against solid
tumors. In the early twenty first century, the FDA approved anti-angiogenic drugs, such as bevacizumab
and sorafenib for the treatment of several solid tumors. Over the past two decades, researches have con-
tinued to improve the performance of anti-angiogenic drugs, describe their drug interaction potential, and
uncover possible reasons for potential treatment resistance. Herein, we present an update to the pre-
clinical and clinical situations of anti-angiogenic agents and discuss the most recent trends in this field.
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Introduction

Cancer is one of the leading causes of death and constitutes a
national and international health problem regardless of the devel-
opment status of the country (developed, developing or undevel-
oped country) [1]. Yet, no single outstanding anticancer
treatment has been discovered. The World Health Organization
(WHO) reported ideological failure in changing the mortality
attributed to cancer over the past 5 decades (1950–2000), in con-
trast to other death-causing diseases [2]. Solid tumors constitute
more than 94.4% and 96.8% of cancer-caused mortalities in males
and females, respectively [3]. Recent strategies, other than just dis-
covering novel anticancer agents, have been under intensive devel-
opment such as pharmacokinetic utilization of the anti-angiogenic
therapeutic approach [4]. Specifically, deregulation of angiogenesis
by synthetic and natural products is being accepted as a good tar-
get for cancer prevention and treatment [5–8].
Angiogenesis phenomenon in healthy and diseased tissues

The term ‘‘angiogenesis” was introduced in 1787 by the British
surgeon John Hunter in order to describe the formation of new ves-
sels in the process of wound healing [9]. Angiogenesis is an essen-
tial, temporary physiological process of forming a new vascular
tree from an existing one to supply a certain tissue with oxygen
and nutrients as well as removing its carbon dioxide and waste
products. Apart from embryogenesis, in rare cases, angiogenesis
can be a healthy process such as during wound healing and the
menstrual cycle [10]. Vasculogenesis is a different process in which
blood vessels are formed from angioblast cells (rather than from
mature blood vessels) during embryogenesis [11]. Prolonged
angiogenesis is usually indicative of a pathological condition such
as arthritis, diabetic retinopathy or cancer progression [12]. The
differential activation of angiogenesis between normal and tumor
cells makes this process an attractive strategic target for anti-
tumor drug discovery. The principles of anti-angiogenic treatment
were originally proposed by Judah Folkman in 1972, and ever
since, the ability of a tumor to form new blood vessels to feed their
abnormally high growth rate has become a therapeutic target.
Hence, this has become a putative target for therapies directed
against solid tumors [12–14].

Targeting tumor angiogenesis not only confers relative selectiv-
ity to tumor tissue but also enables the targeting of wide-range
heterogeneous tumors that only share high angiogenic potential.
Within the human body, angiogenesis is orchestrated by two sets
of regulatory molecules with opposing functions; pro-angiogenic
molecules (such as vascular endothelial growth factor, VEGF) and
anti-angiogenic molecules (such as thrombospondin-1) [15].
Under homeostatic conditions, pro/anti angiogenic balance is
shifted toward anti-angiogenic factors, resulting in quiescent blood
vessels. On the other hand, the angiogenic balance in neoplastic
lesions is shifted toward pro-angiogenesis [16]. This pathological
transition is known as the angiogenic switch. Tumor hypoxia is
believed to be the main pathological deriver behind this switch
[17]. The release of pro-angiogenic factors from tumor cells and
host cells, such as macrophages, causes disruption of the surround-
ing vasculature’s basement membrane which is attributed to the
activation of a group of proteases, such as plasminogen activator
and collagenases [18]. These pro-angiogenic factors also work as
chemotactic factors for endothelial cells (ECs), causing migration
and proliferation within the tumor tissue and thus forming a vas-
cular lumen structure [10]. In addition, the released angiogenic fac-
tors attract circulating bone marrow progenitor cells and stimulate
their differentiation into ECs [19]. Then, new basement membrane
is formed, and pericytes are attracted to circumvent the neo-vessel
[20]. Apart from meeting the metabolic demands of the pre-
existing tumor cells, these neo-vessels support further tumor
growth and invasion [21]. In addition, intratumoral angiogenesis
could serve as potential gateway to spread tumor cells toward dis-
tant tissues and facilitate the process of metastasis [22]. Interest-
ingly, pathogenic induction of intratumoral angiogenesis appears
to begin as early as during the pre-malignant phase of tumor
development [23].

The degree of angiogenesis is not similar in all tumor types.
Pancreatic neuroendocrine carcinoma is a highly vascularized
tumor, while pancreatic ductal adenocarcinoma possesses low
angiogenic potential [24,25]. In addition, the degree of vasculariza-
tion varies from one micro-region to another within the same
tumor tissue [26]. Sustained activation of angiogenesis within
tumor micro-regions ultimately results in hypervascular structure
with dysfunctional endothelium. These neo-vessels are character-
ized by increased permeability and leakiness [27]. In addition to
ECs, pericytes are vascular support cells that functionally and
structurally support the vascular endothelium. Yet, pericytes tend
to be loose around intratumoral vasculature, suggesting a potential
reason for the high permeability of tumor vasculature [28]. In
1989, the successful cloning of vascular endothelial growth
factor-A (VEGF-A) could be considered the first clue to understand-
ing the molecular bases of angiogenesis in solid tumors [29].
Principles of anti-angiogenic treatment for cancer ‘‘tumor
under siege strategy”

Normal blood vessels are classified into three major types
according to their endothelial lining and their underlying base-
ment membranes. 1 – Continuous capillaries which are character-
ized by continuous sheets of sub-endothelial basement membrane
and tightly packed monolayer of endothelium to prevent uncon-
trolled transfer of substances such as in blood brain barrier.
2 – Fenestrated capillaries which are characterized by continuous
sheets of sub-endothelial basement membrane and loosely packed
monolayer of endothelium to allow regular substances transfer
(e.g. lung and GIT). 3 – Perforated capillaries which are character-
ized by perforated sheets of sub-endothelial basement membrane
and loosely packed monolayer of endothelium to allow transfer
of macromolecules such as hormones and peptides (e.g. endocrine
glands). Intratumoral blood vessels are phenotypically similar to
perforated capillaries; however, they are premature and possess
unique peculiarities. In contrast to normal blood vessels, the intra-
tumoral blood vessels are immature, highly permeable, and chaotic
with heterogeneous and interrupted blood flow [30]. Angiogenesis
inhibition is a potential novel appealing strategy for the treatment
of solid tumors which basically depends on cutting off the blood
supply to tumor micro-regions, resulting in pan-hypoxia and
pan-necrosis within solid tumor tissues. Selectivity of anti-
angiogenic agents toward intratumoral vasculature depends
mainly on the phenotypic differences between the premature
intratumoral vasculature and normal blood vessels. These pheno-
typic differences result in relative increased sensitivity of the intra-
tumoral blood vessels to anti-angiogenic agents. The general
mechanism of action of angiogenesis inhibitor (AI), nonetheless,
vascular disrupting agent (VDA) is through induction of morpho-
logic changes in the intratumoral endothelium; this in turn triggers
a cascade of events that ultimately leads to vascular shutdown and
tumor necrosis [30]. Initial events can be detected as early as 5–
25 min following drug administration in the form of increased vas-
cular permeability, vasoconstriction of tumor-supplying arterioles,
reduction of blood flow and tumoral pan-hypoxia [31]. A few hours
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later (6–24 h), platelet activation, coagulation, vascular occlusion,
recruitment of inflammatory cells and vascular remodeling may
occur, leading to tumoral pan-necrosis [32]. VDAs are a subclass
of AIs that acutely cut off the blood supply with a very early onset
of action (a few hours or even minutes). VDA mainly interacts with
intratumoral chaotic vasculature; however, a certain degree of
ambiguity can occur that might result in adverse pathological
changes in normal blood vessels. Anti-angiogenesis is gaining
much attention as a unique mechanism for targeting solid tumors
[33]. Preventing de novo angiogenesis and leaving a solid tumor
mass to die silently without blood supply appears very appealing
as an anti-cancer tumor strategy [34].

In the current review, the term AI will be used to represent both
subtypes. An important question to understand the clinical effec-
tiveness of using AI should be asked; does it work against large-
sized tumors only such as in the primary site or against the small
malignant foci of metastasis? Tumor cell proliferation and hence
generalized tumor mass growth rate must be accompanied by fast
growth of an intratumoral vascular tree. Nutrients and oxygen can-
not diffuse from a functioning blood vessel to a tumor cell beyond
100–500 mm [35], which is approximately as small as the size of
newly formed metastatic focus. In addition, metastatic tumor cells
are originally released to bloodstream from within an intratumoral
blood vessel [36]. Yet, bigger and more diverse intratumoral vascu-
lar density increases the chance of metastasis. Clinically, high
intratumoral vascular density in nearly all types of cancers is asso-
ciated with increased metastasis and poor survival [37]. Recently,
several clinical trials for investigational anti-angiogenic agents
against metastatic melanoma, head and neck cancers, malignant
melanoma, non-small cell lung cancer and other tumor types have
been completed or undergoing [38]. Another conceptual question
is whether there is any significance to using AI for hematological
malignancies. It is reported that there is excessive angiogenesis
and higher microvascular density within bone marrow of patients
suffering from hematological neoplasia and is associated with poor
survival and prognosis [39,40]. To the best of our knowledge, there
is no approved anti-angiogenic agent for the treatment of hemato-
logic malignancies. However, several clinical trial are under way
[40].
Different angiogenic pathways targeted/potentially targeted for
anticancer therapeutic purposes

The intratumoral microenvironment is formed of complex sol-
uble, non-soluble and cellular factors that control tumor growth-
derived angiogenesis. Formation of an intratumoral neo-vessel
takes place when pro-angiogenic factors overweigh anti-
angiogenic factors within the intratumoral micro-milieu. Yet, sev-
eral factors/molecular pathways are known to directly/indirectly
influence the process of intratumoral angiogenesis. Targeting one
or more of these pathways would result in therapeutic benefits
attributed to intratumoral anti-angiogenesis (Fig. 1).
VEGF/VEGFR pathway

Vascular endothelial growth factor (VEGF) was appointed by
the father of intratumoral angiogenesis, Judah Folkman, as the hall-
mark symbiotic messenger between tumor cells and ECs [41].
VEGFs are secreted from several cell types (fibroblasts, inflamma-
tory cells and many tumor cell types) to interact with the trans-
membrane tyrosine kinase dimeric receptors (VEGFRs) that are
abundant on ECs. VEGF/VEGFR interaction within ECs initiates an
intracellular cascade of signaling events that ultimately results in
ECs’ survival, proliferation, maturation, migration and tube forma-
tion [42]. The first FDA-approved anti-angiogenic agent for the
treatment of solid tumors was bevacizumab, a humanized mono-
clonal anti-VEGF antibody [43,44]. Four different well-identified
VEGF ligands (VEGF-A, VEGF-B, VEGF-C and VEGF-D) interact with
three VEGF receptors (VEGFR-1, VEGFR-2 and VEGFR-3). Of these
interactions, the VEGF-A/VEGFR-2 interaction is the most promi-
nent interaction in promoting intratumoral angiogenesis [45].
VEGF-A and VEGF-B possess the highest affinity to VEGFR-1 and
VEGFR-2. Yet, VEGFR-1 is thought to be a decoy receptor involved
in negative feedback control of VEGF-A/VEGFR-2 interaction [46].
The other VEGFs (C and D) are responsible for lymphangiogenesis
via interacting with VEGFR-3 [47]. Some reports indicated the
importance of the VEGF/VEGFR pathway in normal vascular integ-
rity as well [48].

FGF/FGFR pathway

Fibroblast growth factors (FGFs) are heparin-binding growth
factors secreted mainly from fibroblasts and stored bound near
the basement membrane of EC’s. Two well-identified variants of
FGF (FGF-1 and FGF-2) can interact with their corresponding
trans-membrane tyrosine kinase receptors, FGFR-1 and FGFR-2,
respectively. FGF and particularly, FGF-2/FGFR-2, are involved in
EC proliferation, migration and differentiation leading to intratu-
moral angiogenesis [49,50]. Light was shed on FGF as an important
pro-angiogenic factor due to the involvement of FGF-2 in colorectal
cancer resistance to anti-VEGF therapies [50,51]. FGF-2/FGFR-2
interaction might bypass the role of the VEGF/VEGFR pathway in
inducing angiogenesis via activating ECs’ proliferation and induc-
ing differentiation of epiblast cells to ECs. Besides, FGF-2/FGFR-2
interaction is involved in the production of collagenase and
urokinase-type plasminogen activator with consequent excessive
chemo-attraction and facilitated tissue remodeling for angiogene-
sis [42,52]. In 2000, it was the first time to target FGF-2/FGFR-2
interaction as anti-angiogenic approach [53]. Besides, combined
anti-VEGF and anti-FGF approaches showed more prominent
anti-angiogenesis than either alone [54].

PDGF/PDGFR pathway

Platelet-derived growth factors (PDGFs) are group of peptides
(PDGF-A, B, C and D) which dimerize (homodimers or heterodi-
mers) and interact with trans-membrane tyrosine kinase receptors
(PDGFR-a and PDGFR-b) to elicit downstream signaling very simi-
lar to VEGFRs, such as MAPK, Raf/Ras, PKC and PI3K [55]. Activation
of PDGF signaling (PDGF-B/PDGFR-b) primarily recruits pericytes
to neo-vessels with subsequent secretion of a wide range of pro-
angiogenic factors leading to EC proliferation, migration and vascu-
lar maturation [56].

PlGF/VEGFR pathway

Placental growth factor (PlGF) belongs to the VEGF superfamily
and interacts with VEGFR-1. Unlike VEGF, activation of PlGF is
merely pathologic in conditions such as inflammation and intratu-
moral angiogenesis. PlGF knockout mice survive healthy normally
with intact vascular system [57]. However, the true potential for
anti-PlGF as a therapeutic remedy in inhibiting intratumoral angio-
genesis is questionable because it shares the same receptors with
the hallmark angiogenic agent, VEGF [58].

ANG/TIE receptors pathway

Angiopoietins (ANG) is a family of growth factors (ANG-1, ANG-
2, ANG-3 and ANG-4) which couple tyrosine kinase receptors (TIE-
1 and TIE-2) expressed on ECs. Their most prominent intratumoral
pro-angiogenic effects are attributed to complicated interaction



Fig. 1. Molecular aspects of different angiogenic pathways; brief diagrammatic summary for different molecular pathways involved in angiogenesis. Designed using Mind
The GraphTM, Zendesk Inc., San Francisco, CA, USA.
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between ANG-1 and ANG-2 with TIE-2 receptors [59]. ANG-1 is a
super agonist that recruits pericytes to premature segments of
neo-vessels. On the other hand, ANG-2 is considered as a partial
agonist that induces pericytes to reside and exposes ECs to other
angiogenic factors [60]. The delicately programmed ANG-1 and
ANG-2 interaction with TIE-2 receptors results in intratumoral EC
sprouting, vascular remodeling and plasticity. It is worth mention-
ing that, ANG-1 is merely expressed and secreted from tumor cells
[52]. In addition, overexpression of ANG-2 was associated with
tumor invasiveness and poor clinical prognosis [52].
HGF/c-MET

The cellular mesenchymal-epithelial transition protein (c-MET)
belongs to the trans-membrane tyrosine kinase family which upon
activation by the pleiotropic hepatocyte growth factor (HGF) elicits
survival, proliferation and motility of normal as well as tumor cells
and tumor associated ECs [61]. Interestingly, HGF/c-MET-induced
angiogenic response was found to be mediated via excessive
release of pro-angiogenic factors such as VEGF. Besides, HGF/c-
MET pathway activation is a potential cue in the development of
anti-VEGF resistance [62].
RET

The mutated form of the proto-oncogene tyrosine kinase
protein, rearranged during transfection (RET), is known for its
association with the progression of various tumor types. It is found
that RET is involved with intratumoral angiogenesis as well [63].
However, the exact mechanism of RET involvement in intratumoral
angiogenesis is not fully understood. It is suggested to be via
recruitment of pro-angiogenic cytokine factor [56]. Some clinical
studies showed that anti-VEGFR-2 and anti-FGFR treatment can
downregulate the expression of RET [64].
Notch signaling pathway

Notch signaling comprises cell-cell interaction mediated by
membrane bound Notch receptors (Notch-1, Notch-2, Notch-3
and Notch-4) and membrane bound Notch ligands (Jagged-1,
Jagged-2, Dll-1, Dll-3 and Dll-4). All Notch receptors (except
Notch-3) and ligands (except Dll-3) are expressed on the outer sur-
face of EC [65]. Notch signaling is upregulated by VEGF activation
and mediates tip-to-tip interaction between ECs and vascular stalk
sprouting/formation. In other words, Notch signaling mediates the
three dimensional awareness of ECs within the newly formed
blood vessels. Reciprocally, Notch signaling down-regulates
VEGFR-1 and VEGFR-2 [66]. It is worth noting that Dll-4 is highly
expressed within different human intratumoral blood vessels
[67]. Experimentally, Notch1 antibody and soluble Notch1 receptor
(decoy receptor) exert significant anti-angiogenic and antitumor
effects against different xenografts models [50]. Notch signaling
pathway is physiologically essential during development as
Notch-1 homozygous knockout mice results in embryonic fatality
[68]. In addition, prolonged exposure to anti-Dll-4 induced abnor-
mal hepatic pathological features and vascular neoplasia in differ-
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ent animal species (mice, rats and monkeys) [69]. Accordingly, it
might not be appropriate to depend on the anti-Notch strategy
for anti-angiogenic drug development.
Ephrins/Eph receptors pathway

Similar to Notch signaling, ephrins are a family of 9 different
membrane bound ligands that mediate cell-cell interaction via
coupling with their corresponding Eph tyrosine kinase receptors.
Interestingly, Ephrin/Eph signaling is bidirectional in both cell-
harboring ligands and cell-harboring receptor [50]. Amongst,
ephrinA1/EphA2 and ephrinB2/EphB4 are of special interest in
embryonic vasculogenesis, arteriogenesis (arterio-venous anasto-
moses) and intratumoral angiogenesis [70]. Besides, ephrinA1
was found to be overexpressed in response to elevated VEGF sig-
naling [71]. In addition, several tumor cell types express EphB4,
which further activates ECs-expressing ephrinB2. Backward signal-
ing within ECs further promotes the expression of VEGFR-2 and EC
tip guidance [72].
Integrins

Integrins are heterodimeric functional extracellular matrix
(ECM) signaling peptides composed of several a- and b-subunits.
They mediate the cross talk between cells and ECM components,
such as fibrinogen, fibronectin and vitronectin, via argenine-
glycine-aspartate residue (RGD motif) [73]. Integrins a5b1, avb3
and avb5 are the most abundant integrins within ECs. They are
upregulated during intratumoral angiogenesis [50]. Integrin-avb3
mediates FGF-2- and (tumor necrosis factor-a) TNF-a-induced
angiogenesis, while integrin-avb5 mediates VEGF- and TGF-a-
induced angiogenesis [74]. Amongst all integrins, avb3 is the most
frequently targeted due to high potential as angiogenic factor [50].
MCAM (CD146)

Melanoma cell adhesion molecule (MCAM) is a newly identified
VEGFR-2 co-receptor which was found to be overexpressed in wide
range of tumor-associated ECs [75]. AlthoughMCAM interacts with
several ECM components such as laminin-411, it is believed not to
be involved in critical physiological function [76,77]. Pro-
angiogenic effects such as ECs’ proliferation and migration of
MCAM were found to be mediated via the interaction with
netrin-1 (neuronal guidance protein) [78].
VE-cadherin

VE-cadherin is an endothelial cell-specific-homo-dimeric adhe-
sion molecule that facilitates the formation of cell/cell adherent
junctions [79]. VE-cadherin is upregulated and the human VE-
cadherin promoter region is highly activated during tumor angio-
genesis [80]. Experimentally, several decoy VE-cadherin domains
inhibited HUVEC tube formation and possessed considerable
anti-tumor activity in xenograft models [81].
TEM8/ANTXR1

Tumor endothelial marker-8 (TEM8) is an anthrax toxin recep-
tor (ANTXR1) expressed on the intratumoral ECs. TEM8 interacts
with the a3 subunit of collagen VI and is suspected to elicit angio-
genic effects and tumor progression [82]. TEM decoy receptor
showed anti-angiogenic and subsequently antitumor effects
against xenograft model [50].
Cytokines

Transforming growth factor-b (TGF-b) super-family comprises
more than 30 different growth factors. Amongst, three TGF-b iso-
types (TGFb-1, TGFb-2 and TGFb-3) which were found to be of spe-
cial interest for ECM deposition and integrin expression to promote
wound healing, ECs proliferation and migration and vascular
lumen formation [83]. Besides, the expression of dimeric co-
receptor for TGF-b, endoglin (CD105) on adult ECs as well as on
the proliferating intratumoral ECs was detected. Exposure to
hypoxia or VEGF-blockade induces overexpression of endoglin
[50,84].

The inflammatory cytokine TNF-a is believed to possess angio-
genic effects directly via promoting ECs differentiation and indi-
rectly via promoting the secretion of other angiogenic factors [85].

Semaphorins/plexins

Semaphorins (Sema) are secreted proteins that are implicated
in neuronal development and immunologic functions. Class 3
semaphorins such as, Sema-3A, Sema-3C and sema-3F, are secreted
from the intratumoral ECs and possess autocrine pro-angiogenic
and tumor progression effects [86,87]. In addition, Sema-4D pos-
sesses a pathological intratumoral pro-angiogenic effect via
Plexin-B1 receptors [88].

Rho-J

Rho-J is an endothelial-expressed Rho-GTPase member of cell
division cycle protein-42 (Cdc42). It interacts with cellular
cytoskeleton proteins such as actin. Rho-J was found important
for ECs focal adhesion, motility, tubulogenesis, and lumen forma-
tion during angiogenesis [89].

CLEC14A

CLEC14A is a newly identified specific intratumoral endothelial
marker which is overexpressed in a wide range of intratumoral
vasculature [90]. CLEC14A interacts with a specific endothelial
ECM component, multimerin-2 (MMRN2), and elicits intratumoral
angiogenic features which is associated with tumor progression
[91].

Anti-angiogenic drug families for cancer treatment

Since the implementation of anti-angiogenesis as a strategy in
treating cancer, a long list of chemical synthetic moieties, natural
compounds, macromolecules and even treatment modalities have
been suggested under this mechanism (Table 1).

Monoclonal antibodies

Monoclonal antibodies synthesized to target specific ligands or
receptors involved in angiogenesis would be the most straightfor-
ward approach to neutralize specific pathogenic pathways. The use
of protein-based drugs is technically challenging; however, many
monoclonal antibody-based drugs succeeded and got approved
by the FDA (Fig. 2A). Another challenge for any highly specific
mono-targeting anti-angiogenic agent is the development of
molecular bypass utilizing another pro-angiogenic pathway of
angiogenesis.

Bevacizumab
Bevacizumab (Avastin�) is the prototype humanized mono-

clonal anti-VEGF-A antibody used clinically for several solid



Table 1
List of FDA-approved anti-angiogenic agents.

Anti-angiogenic agent Targeted pathway Clinical indications Ref.

Bevacizumab Humanized monoclonal anti-VEGF-A antibody Several solid tumors such as, non-small cell
lung cancer, renal cell cancer, colorectal cancer,
ovarian cancer, breast cancer, cervical cancer
and glioblastoma

[88]

Ziv-aflibercept Fusion protein directed against VEGF-A, VEGF-B and PlGF Metastatic colorectal cancer in combination
with 5-FU, irinotecan and leucovorin

[92]

Sorafenib Multi-tyrosine kinase inhibitor Hepatocellular carcinoma, renal cell
carcinoma, thyroid carcinoma

[93]

Sunitinib Multi-tyrosine kinase inhibitors Hepatocellular carcinoma, renal cell
carcinoma, thyroid carcinoma

[94]

Axitinib Receptor tyrosine kinase inhibitor Advanced renal cell carcinoma [52]
Nintedanib Receptor tyrosine kinase inhibitor Idiopathic pulmonary fibrosis [52]
Regorafenib Receptor tyrosine kinase inhibitor Metastatic colorectal cancer, gastrointestinal

stromal tumor and hepatocellular carcinoma
[52]

Pazobanib Receptor tyrosine kinase inhibitor Advanced renal cell carcinoma, advanced soft
tissue sarcoma

[52]

Cabozantinib Receptor tyrosine kinase inhibitor Metastatic medullary thyroid cancer [52]
Vandetanib Receptor tyrosine kinase inhibitor Medullary thyroid cancer [52]
Thalidomide Inhibitor of Akt phosphorylation Multiple myeloma in combination with

dexamethasone
[95,96]

Fig. 2. Diagrammatic illustration for the interaction between monoclonal antibodies with pro-angiogenic ligand or receptor (A) and the interaction between decoy receptor
and soluble pro-angiogenic ligand (B). Designed using Mind The GraphTM, Zendesk Inc., San Francisco, CA, USA.
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tumors, such as non-small cell lung cancer, renal cell cancer, col-
orectal cancer, ovarian cancer, breast cancer, cervical cancer and
glioblastoma. Bevacizumab prolonged the progression free survival
and overall survival rate in all of these tumor types except breast
cancer [56]. It was approved by the FDA in 2004 [97]. Rapid resis-
tance to bevacizumab appeared via the development of non-VEGF
pathways for angiogenesis. Bevacizumab failed to provide any sur-
vival benefit to EGFR-2 negative breast cancer patients and the FDA
withdrew the approval for its use in metastatic breast cancer in
2011 [98].

Ramucirumab and IMC-18F1
Instead of blocking the ligand (as in bevacizumab), ramu-

cirumab is a humanized monoclonal anti-VEGFR-2 antibody which
selectively binds the extracellular domain of VEGFR-2. Due to the
conflicting results of phase-III trails showing a non-significant clin-
ical improvement in hepatocellular carcinoma patients, it has not
yet been approved by the FDA [92]. On the other hand, IMC-18F
(recombinant monoclonal anti-VEGFR-2 antibody) has been
approved for non-small lung, gastric and metastatic colorectal can-
cers [99].
Other monoclonal antibodies
Many other humanized monoclonal antibodies targeting partic-

ular ligand/receptor involved in angiogenesis are being under con-
sideration for treating malignancies, such as cetuximab (anti-EGFR
antibody), volociximab (anti-integrin-avb1 monoclonal antibody),
etaricizumab or vitaxin (anti-integrin-avb3 antibody), MEDI3617
or REGN910 (anti-Ang-2 antibody) and GAL-F2 (anti-FGF-2 anti-
body) [50]. Many of these were mainly designed to augment or
overcome resistance to anti-VEGF pathway antibodies. Another
very interesting bi-specific anti-Ang2/anti-VEGF antibody is cur-
rently under development; yet, it might be less likely to develop
resistance to anti-VEGF therapy [100].
Decoy receptors/fusion peptides

Decoy receptors are soluble form of certain membrane bound
receptors that compete with the original membrane-bound recep-
tors with the same affinity to their ligand (Fig. 2B). This competi-
tion results in suppressing the downstream signaling of the
membrane-bound receptors
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Ziv-aflibercept (Zaltrap�)
It is a complicated fusion protein composed of the extracellular

domain of both VEGFR-1 and VEGFR-2 linked together via Fc-tag
segment. Ziv-aflibercept binds to VEGF-A, VEGF-B and PlGF, pro-
hibiting their interaction with VEGFR and inhibiting angiogenesis
[101]. Zaltrap� was recently approved by the FDA for metastatic
colorectal cancer in combination with 5-FU, irinotecan and leucov-
orin [102].

Trebananib
It is biologically-active peptide fused to Fc-tag segment and

designed to interrupt the interaction between both Ang-1 and
Ang-2 with Tie-2 receptors, leading to anti-angiogenic response
[103]. Clinical trials for trebananib against hepatocellular carci-
noma have been halted due to lack of efficacy [104]. On the other
hand, clinical trials against ovarian cancer are still undergoing
despite several disappointing outcomes [105].

Other decoy receptors/fusion peptides
Many anti-angiogenic decoy receptors are being used to sup-

press intratumoral angiogenesis. FGFR-2 extracellular domain
fused to Fc-tag peptide can act as a trap for FGF-2, preventing
FGFR-2 downstream signaling [106]. Similarly, Dll4 fused to Fc-
tag was used to interrupt the interaction between Notch receptors
and Dll4 ligands and to elicit an anti-angiogenic response [107]. In
addition, EphA2 extracellular domain fused to Fc-tag interrupted
EphA2/ephrinA1 interaction and inhibited angiogenesis experi-
mentally in an in vivo xenograft model [108]. Some peptides, such
as Annexin-A2 (Anx-A2), are known for their regulatory effects
against VEGF-dependent angiogenesis. Purification of peptides
such as Anx-A2, is currently under investigation to inhibit angio-
genesis [93,94].

Receptor tyrosine kinase inhibitor small molecules (RTKIs)

These are the most rationalized and common anti-angiogenic
agents for cancer therapy. Originally, the first RTKI was designed
in 1996 to inhibit VEGFR intracellular tyrosine kinase activity
and elicit an anti-angiogenic response [109]. Computational
chemistry was used to design such small molecules. Indeed, these
RTKI’s inhibit the enzyme activity of the tyrosine kinase motif
attached to the intracellular domain of a wide range of receptors
involved in angiogenesis, such as VEGFR, FGFR, PDGFR, Tie
receptors, RET, c-MET and Eph receptors. RTKI might be specific
for one receptor-bound intracellular tyrosine kinase domain or
non-specific to cross-react with more than one of the
aforementioned receptors (also called dirty tyrosine kinase
inhibitor). Non-specific RTKIs can be prescribed as mono-therapy
due to its multiple targets [110]. In fact, it is less common to
develop resistance to multi-kinase inhibitors as they are covering
more than one pathway involved in angiogenesis. However, resis-
tance to more than one RTKI was also reported (Fig. 3A).
Fig. 3. Diagrammatic sketch for the molecular bases of RTKI’s action (A) and example
angiogenic receptors (B). Designed using Mind The GraphTM, Zendesk Inc., San Francisco,
FDA approved RTKIs
The FDA has approved many RTKIs for the treatment of several

solid tumors. Sorafenib and sunitinib are multi-tyrosine kinase
inhibitors targeting VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-b and
RET receptors. Sorafenib is approved for the treatment of hepato-
cellular carcinoma, renal cell carcinoma and thyroid carcinoma
[111]. Sunitinib is approved for the treatment of gastrointestinal
stromal tumor and renal cell carcinoma [112]. Other RTKIs such
as axitinib, nintedanib, regorafenib, pazobanib, cabozantinib and
vandetanib inhibit various angiogenic mediating receptors. RTKIs
have also been approved by the FDA for different types of solid
tumors such as, advanced renal cell carcinoma, metastatic medul-
lar thyroid cancer, soft tissue sarcoma, non-small cell lung cancer,
metastatic colorectal cancer, gastrointestinal stromal tumor and
hepatocellular carcinoma [56].

Investigational RTKIs
Due to the success of many approved RTKIs, intensive research

is being carried out on other RTKIs to be approved for other solid
tumor types. Similar to other RTKI’s, the new agents are inhibiting
more than one angiogenic receptor (Fig. 3B). Amongst, brivanib,
cediranib, dovitinib, lenvatinib and linfanib are undergoing or
completed phase-III clinical trials against several tumor types such
as hepatocellular carcinoma, metastatic colorectal cancer,
advanced non-small lung cancer, metastatic renal cell carcinoma
and thyroid cancer [113–118].

Non-RTKI anti-angiogenic small molecules

The vast majority (if not all) of natural products and their
derivatives belongs to this group. This group of compounds was
discovered via conventional drug screening procedures; later on,
these compounds were found to possess anti-angiogenic activity.
In many cases, the exact molecular bases for their anti-
angiogenic activity are not fully understood. Besides, some small
molecules were designed and synthesized to interrupt a particular
pathway essential for angiogenesis in addition to inhibiting the
tyrosine kinase motif.

Cilengitide
This cyclic RGD complex was designed to interfere with the

effect of integrin-avb3 and integrin-avb5 in promoting intratu-
moral ECs and angiogenesis [95]. Despite its promising preclinical
results, clinical trials against glioblastoma were disappointing and
failed to add any significant benefits to patients [96].

Thalidomide and analogues
The old anti-emetic agent, thalidomide, which caused a terato-

genic disaster in the middle of the last century was repositioned to
be used as anti-angiogenic agent [119]. Thalidomide inhibits the
phosphorylation of Akt which is crucial for the downstream signal-
ing of wide range of growth factors such as, VEGF, FGF-2 and
of the versatile interaction between different investigational new RTKIs and pro-
CA, USA.
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hypoxia inducible factor-a (HIF-a) [120]. Due to the severe side
effects of thalidomide (teratogenicity, thromboembolism, pancy-
topenia, neuropathy and tremors), several analogues, such as
lenalidomide and pomalidomide are under investigation [120]. In
general, thalidomide has not shown any significant anti-
angiogenic effect as a monotherapy; however, it has been approved
by the FDA to be used in combination with dexamethasone against
multiple myeloma [121].

Combretastatin (CA4-P)
Combretastatins are naturally occurring stilbenes isolated from

the South African hush pillow, Combretum caffrum [122]. CA4-P is
known as a VDA that induces intratumoral ECs’ killing effect as
rapidly as within 4 h of administration. It is believed that CA4-P
interferes with the microtubular structure of the intratumoral
ECs [123,124]. Clinical trials showed beneficial effects for combin-
ing CA4-P with chemotherapeutics in treating platinum-resistant
ovarian cancer and anaplastic thyroid tumors [125]. However,
CA4-P is not yet clinically approved due to its unwanted adverse
effects, which warrant further clinical trials to determine its risk/
benefit ratio [126,127].

Vadimezan (DMXAA, ASA-404)
DMXAA is a synthetic oxygenated xanthone compound with an

excellent preclinical profile as an anti-angiogenic agent/VDA. Its
mode of action is not fully understood; it is assumed to target
the TBK-1/IRF-3 interferon pathway [128]. However, the clinical
output of DMXAA was disappointing and failed to provide any sig-
nificant survival benefit for patients in clinical trials [129].

Vinblastine (VBL) and vincristine (VCR)
Vinca alkaloids are natural compounds derived from Catharan-

thus roseus. VBL and VCR are well-established anti-cancer agents
with a well-known tubulin spindle stabilizing mode of action.
Their anti-angiogenic effect is believed to be via inhibiting ECs
motility, proliferation and migration attributed to their cellular
spindle interfering activity [130,131].

Paclitaxel
Taxanes are well-recognized naturally occurring anti-cancer

drugs; they are originally isolated from the tree Taxus brevifolia
and kill tumor cells by interfering with their mitotic tubulin spin-
dles [132]. During the last decade, taxol was found to possess very
potent anti-angiogenic activity with much lower doses than its
cytotoxic dose. Metronomic therapy (continuous treatment with
very much lower dosing) with taxol induced promising anti-
angiogenic effects and overall clinical anti-tumor response
[131,133].

Curcumin/ferulic acid
Curcumin is naturally occurring ferulic acid-based polyphenol

found in plants such as Curcuma longa. Curcumin possesses a wide
range of anticancer pleiotropic effects as well as anti-angiogenic
effects [134]. There is no comprehensive understanding of the
anti-angiogenic mechanism of curcumin. It might be attributed
to the EC-killing effect of the curcumin metabolites, ferulic acid
and vanillin [135].

Resveratrol
Resveratrol is a stilbene phytoalexin-based polyphenol with a

wide range of pleiotropic health effects; it is found in several edible
fruits, berries and nuts. It is the hallmark compound of the French
paradox and several studies showed evidence for its chemopreven-
tive, chemotherapeutic and chemomodulatory effects [136,137].
Resveratrol inhibits ECs proliferation and matrix
metalloproteinase-2 (MMP-2) activity required for ECM remodel-
ing and angiogenesis. Besides, resveratrol interrupts VEGF-
dependent angiogenesis via inhibiting src kinase and subsequent
VE-cadherin phosphorylation [134]. Most interestingly, resveratrol
inhibits HIF-1a accumulation, VEGF secretion and VEGFR-2 phos-
phorylation [52].

Carnosic acid/carnosol
Carnosic acid and carnosol are polyphenolic compounds found

in Rosmarinus officinale L. They show an anti-angiogenic response,
which is believed to be attributed to direct effect on ECs. Carnosic
acid and carnosol inhibit ECM remodeling via inhibiting MMP-2;
inhibit proliferation, migration and invasion; and induce apoptosis
in ECs [138].

Quercetin
Quercetin belongs to the flavonol family of natural compounds

and is found in a wide range of edible plants, such as onions, rasp-
berries, grapes, cherries and leafy plants. Flavonols such as querce-
tin possess strong anti-angiogenic effects via
inhibiting/downregulating the expression of VEGF, MMP’s, NFjB
and FGFR signaling [139]. Specifically, quercetin was found to inhi-
bit the VEGFR-2-dependent akt/mTOR pathway in an experimental
xenografts model [134,140].

Genstein
Similar to quercetin, the phytoestrogen genstein is a naturally

occurring isoflavone abundant in soy beans (Glycine maxima L.).
Genstein down-regulates the expression of several tyrosine kinases
which that play essential roles in a wide range of pro-angiogenic
pathways. Besides, it down-regulates several ECM remodeling
enzymes such as, MMPs [141,142].

Other natural compounds
Many other natural products showed preliminary experimental

and occasional clinical evidence for anti-angiogenic effects, as
summarized in Table 2 [52,134,143–145].

Anti-angiogenic vaccines

Vaccination is the traditional method to eradicate any human
disease. Theoretically, vaccines developed against intratumoral
ECs are preferred than those developed against tumor cells due
to two main reasons. First, the better exposure of ECs to blood-
stream and blood born immune cells; in contrast to tumor cells
which are most probably deeply hidden and far of reach from
immune T-cells. Secondly, ECs possess significantly less genetic
instability than tumor cells. Surface epitopes of intratumoral ECs
are less frequent to be mutated compared to tumor cells [146].
Yet, some studies showed some kinds of genetic instabilities for
intratumoral ECs [147]. Breast cancer ECs and hepatocellular carci-
noma ECs showed acquired resistance to chemotherapies such as
vincristine and 5-FU/doxorubicin, respectively [148,149], indica-
tive of genetic instability. On the other hand, it is very challenging
to find the antigenic components exclusively expressed on intratu-
moral ECs when they are not abundant on normal ECs. Cross-
reaction of anti-intratumoral EC vaccines with normal blood ves-
sels’ ECs might be devastating and can induce a long list of patho-
logical features from impaired wound healing to autoimmune
diseases [150]. However, some vaccines are suggested to target a
particular ligand or receptor involved in angiogenesis and showed
sort of experimental or even clinical beneficial outcomes.

Despite its importance in hematopoiesis, anti-VEGF vaccine was
designed and elicited promising anti-angiogenic anti-tumor effects
against several tumor xenograft models. Some anti-VEGF vaccines
(CIGB-247: VEGF variant/bacterial adjuvant vaccine) showed rea-
sonable tolerability in phase-I clinical trials with minimal



Table 2
Compounds of natural origin with preclinical evidence for anti-angiogenic effects [52,134,143–145].

Anti-angiogenic agent Natural source Anti-angiogenic agent Natural source

Allin Allium sativum Barbaloin, emodin Aloe vera, Rheum palmatum
Apigenin Apium graveolens Artemisinin Artemisia annua
Berberine Berberis vulgaris Senegin-II, Senegin-III, Senegin-IV,

Senegasaponin-a and Senegasaponin-b
Polygala senega

Ginkgolide B Ginkgo biloba Genistein, daidzein Glycine maxima
Isoliquiritigenin, glabridin Glycyrrhiza glabra Protocatechuic acid Hibiscus sabdariffa
Isorhamnetin Hippophae rhamnoides Floroglucin Hypericum perforatum
Melatonin Juglans region Magnosalin, honokiol, magnolol Magnoliae spp.
Apigenin, fiseti Matricaria chamomilla Cortistatins J, K, and L Marine Sponge Corticium simplex
Ponicidin, oridonin Rabdosia rubescens Cryptotanshinone Salvia miltiorrhiza
Capsaicin Capsicum spp. Baicalein, baicalei Scutellaria baicalensis
Silymarin Silybum marianum Parthenolide Tanacetum parthenium
6-Gingerol Zingiber officinale Sanguinarine Sanguinaria Canadensis
Betulinic acid Prunus dulcis Pyripyropenes A, B and D Marine-Derived Fungus of Aspergillus sp.
Globostellatic Acid X Methyl Esters Marine Sponge Rhabdastrella globostellata Bastadin-6 Marine Sponge Ianthella basta
Aeroplysinin-1 Marine sponge Phylum Poriphera
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hematopoietic or wound-healing impairments [151]. In addition,
DNA and peptide based vaccines against VEGFR-2 showed potent
humoral- and cellular-based anti-vascular immunity with subse-
quent anti-angiogenesis, anti-tumor and anti-metastatic responses
[152,153]. These vaccines showed negligible adverse effects
against wound healing and embryogenesis [153]. Interestingly, a
specific intratumoral VEGFR-2 peptide (VEGFR2-169 peptide) was
identified to elicit a selective T-cell cytotoxic response against
intratumoral ECs. In a phase-I clinical study against pancreatic can-
cer, it was well tolerated in combination with gemcitabine and
showed no severe adverse effects [154].

Apart from VEGF pathway targeting and its high risk for cross
reaction with normal vasculature, several vaccines are investigated
for other angiogenic cues. Vaccines against FGF-b, FGFR-2, endol-
gins, PDGFR-b, TEM-1 and TEM-8 showed considerable anti-
angiogenic/anti-tumor effects with minimal adverse effects
regarding wound healing and embryogenesis in experimental
models [146]. The neonatal lung peptide, HP59, in particular was
found overexpressed in the intratumoral vasculature of wide range
of solid tumors (lung, colon, ovary and breast) but was not
detected in normal vasculature. Vaccines against HP59 suppressed
tumor growth of Lewis lung cancer model due to anti-angiogenic
effect [155]. Interestingly, clinical evidence showed a significant
survival benefit for patients with non-small cell lung cancer who
receive anti-EGF vaccine (CIMAvax�) made of recombinant human
EGF linked to Neisseria meningitides carrier proteins [156]. CIMA-
vax� did not induce any significant pathological effects against
normal blood vessels nor wound healing process [157].

Drug interaction with anti-angiogenic agents

According to many clinical trials, selective anti-angiogenic
remedies (Uni-targeted), such as bevacizumab, are not
recommended to be used as monotherapy. One the other hand,
multi-kinase inhibitors which target more than one pro-
angiogenic pathway could be used as monotherapy [158]. In the
current section, the importance, and therefore the inevitability of
using anti-angiogenic agents in combination with other classic
chemotherapies or with other anti-angiogenic drugs will be dis-
cussed. During the early phases of solid tumor exposure to anti-
angiogenic treatment, the intratumoral vasculature undergoes
what is called vascular normalization. Vascular normalization is
accompanied by improved intratumoral perfusion characteristics
and better delivery of nutrients, oxygen and chemotherapeutic
agents themselves to deeper micro-regions of solid tumors [159].
Further exposure of solid tumors to anti-angiogenic drugs results
in vascular shutdown and tumoral tissue necrosis, which is severe
but typically restricted to the central part of the tumor, leaving a
rim of viable tumor cells [160] that presumably receive their nutri-
tional requirements from nearby normal blood vessels [161].
Tumor cells of the peripheral surviving rim are properly blood-
perfused compared to the central compartment of the solid tumor.
Yet, it is suggested that the most potent VDA will be unable to
eradicate tumor cells based solely on cutting down its blood supply
[162]. Besides, time span between anti-angiogenic induced vascu-
lar normalization and the ultimate vascular shutdown is called
normalization window. The duration of this normalization window
differs for each anti-angiogenic agent and represents the intratu-
moral drug delivery ‘‘honeymoon” for optimum intratumoral drug
accumulation. This normalization window starts as early as 4 h
after delivery of some anti-angiogenic VDA’s such as, combretas-
tatin [163].
Pharmacokinetic drug interaction with anti-angiogenic agents

The two major effects of anti-angiogenic agent on intratumoral
vasculature are sequential vascular normalization followed by vas-
cular shutdown. These effects presumably influence intratumoral
drug delivery and entrapment, respectively. Pharmacokinetic
improvement attributed to anti-angiogenesis is not only due to
direct enhancement of vascular perfusion but also due to a
decrease in the intratumoral interstitial fluid pressure [164]. Intra-
tumoral drug distribution starts with initial accumulation of drug
nearby intratumoral blood vessels due to its enhanced permeation
and retention (EPR) effect. Later on, the drug needs to diffuse pas-
sively though the crowded avascular tumor parenchyma; this pro-
cess is challenged by the elevated interstitial fluid pressure within
tumor micro-regions [165]. Temporal design of the sequence and
time lapse between administering an anti-angiogenic agent and
its combined chemotherapy is crucial for optimum anticancer out-
comes [166].

Pre-administration of bevacizumab (Avastin�) 1–3 days before
topotecan/etoposide administration to neuroblastoma patients,
induced vascular normalization (decreased vessel density and
improved tumor perfusion) and enhanced tumor uptake of topote-
can and etoposide. However, simultaneous co-administration the
same drugs or after a 7-days lapse did not improve tumor uptake
for topotecan or etoposide within the same tumor type [167]. Sim-
ilarly, bevacizumab enhanced doxorubicin intratumoral uptake of
hepatocellular carcinoma after pre-treatment (3–5 days earlier).
However, pre-administration of bevacizumab one day earlier; or
7 days before doxorubicin administration, did not induce any sig-
nificant improvement of doxorubicin tumoral uptake [168].
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Pharmacodynamic drug interaction with anti-angiogenic agents

Combination therapy (or cocktail therapy) is a general principle
for chemotherapeutic treatment protocols. This is primarily to
avoid potential resistance attributed to the high rate of genetic
variability in tumor cells. During the early phase of anti-
angiogenic drug discovery, it was believed that ECs are not as
genetically unstable as tumor cells. Yet, targeting a specific angio-
genesis pathway (such as VEGF) was expected be selective enough
to eradicate intratumoral blood vessels with minimal adverse
effects [50,169]. The discovery of non-VEGF angiogenesis pathways
and its potential for circumventing VEGF-dependence resulted in
treatment failure of mono-therapies of selective mono-targeted
monoclonal antibodies [158]. On the other hand, some non-
selective (multi-targeted) RTKIs succeeded in some clinical trials
as a monotherapy [110].

Therapeutic exposure of solid tumors to anti-angiogenic agent
would elicit vascular shutdown and tumoral tissue necrosis, partic-
ularly to the central part of tumor micro-regions, leaving a rim of
viable tumor cells [160]. Tumor cells in the peripheral rim of tumor
micro-regions are properly blood perfused. Yet, this suggests a log-
ical pharmacodynamic-based rationale for the need to combine
anti-angiogenic agents with chemotherapy or radiation to achieve
full tumor cell eradication [162]. Many reports showed superior
antitumor response to combination regimens containing an anti-
angiogenic agent with a classic chemotherapeutic drug [170].
Combination between anti-angiogenic agents with radiation
seemed very promising. Leftover tumor cells after successful intra-
tumoral shutdown survive mainly due to proper blood perfusion
using normal surrounding tissues’ blood vessels. Radiation mainly
targets well-perfused and properly oxygenated tumor regions
(such as the remaining viable rim) and suffer resistance from the
poorly perfused micro-regions [171,172].
Resistance to anti-angiogenic treatment

Neoplastic cells are known for their high rate of genetic instabil-
ity and mutations compared to non-malignant cells. Yet, vascular
ECs possess much less potential to develop resistance compared
to tumor cells. This was the major rationale behind implementing
the anti-angiogenic therapeutic strategy. Accordingly, it was
assumed that targeting the normal ECs lining tumor blood vessels
would be an appropriate way to tackle cancer with minimal risk of
developing resistance [173,174]. However, it was found that resis-
tance to anti-angiogenic therapy can be developed as rapidly as for
other conventional therapies. Also, the beneficial effects of anti-
angiogenic monotherapy to control tumor progression lack satis-
factory sustainability [175–177]. Unfortunately, it became clear
that resistance to angiogenic therapy is major obstacle for cancer
treatment options. Resistance to angiogenic therapy is widely
believed to be mediated by several mechanisms that fall into two
main categories; adaptive and intrinsic resistance [178].

First, adaptive resistance to anti-angiogenic treatment is an
indirect method of resistance adopted by malignant cells to cope
with blood supply shortage caused by anti-angiogenic therapy.
This type of resistance is considered functional compensation of
the target inhibited by anti-angiogenic therapy utilizing several
molecular mechanisms [178]. Induction of tumor hypoxia attribu-
ted to anti-angiogenic therapy seems to upregulates several inde-
pendent pathways implicated in restoring angiogenesis
[179,180]. In a study conducted in a genetic mouse model of neu-
roendocrine cancer, it was observed that blocking the VEGF path-
way by administering anti-VEGF monoclonal antibody resulted in
upregulation of several pro-angiogenic factors, such as FGF-2
[179]. Accordingly, this up-regulation was associated with an
increase in intratumoral angiogenesis. Besides, increased plasma
levels of FGF-2 were observed in patients treated with the VEGFR
inhibitor cediranib [181]. Induction of hypoxia by anti-angiogenic
therapy could also elicit a cellular response that might eventually
lead to neo-vascularization within tumor micromilieu. Besides, it
appears to attract bone marrow-derived endothelial progenitor
cells, pericytes and other growth factor-secreting cells to the site
of neoplastic lesion in order to further promote tumor angiogenesis
[182–184]. In alignment with experimental studies, clinical evi-
dence suggests that therapy-induced hypoxia seems to promote
accumulation of bone marrow-derived progenitor cells around
malignant tumors [185]. In addition to the cellular response medi-
ated by bone marrow-derived progenitor cells, pericytes are also
implicated in promoting resistance to anti-angiogenic therapy. It
was found that tumor blood vessels densely enveloped by peri-
cytes are relatively resistant to anti-angiogenic therapy [186]. Sup-
portive cells are believed to confer resistance to ECs by dual
mechanisms. It is believed that pericytes influence negative regu-
lation on endothelial cell proliferation, rendering them quiescent
and less responsive to anti-angiogenesis therapy [187]. In addition,
these cells offer an alternative signaling pathway to functionally
support ECs targeted by anti-VEGF therapy [188,189]. Therefore,
targeting both pericytes and ECs appears to be an effective strategy
to guard against the development of anti-angiogenesis resistance.
Furthermore, malignant tumor cells could adapt to shortage in
blood supply by increasing their invasive potential. Several types
of malignant tumors respond to anti-angiogenesis therapy by
invading nearby normal tissues to exploit their blood supply
[190,191]. This pathological phenomenon is known in some types
of cancer as perivascular tumor invasion, which is believed to be
provoked to counteract the inhibition of angiogenesis [178].

The second type of anti-angiogenesis resistance is intrinsic
resistance. In this type of resistance, tumors are inherently unre-
sponsive to anti-angiogenic therapy, and patients do not show
any sign of clinical or histological response [192]. Intrinsic resis-
tance to anti-angiogenic therapy can be derived from the intrinsic
pattern of tumor growth. In pancreatic ductal adenocarcinoma,
tumor cells grow and proliferate originally in a hypoxic environ-
ment with little or no vascularity [193]. In stage II and III astrocy-
toma tumors, cells proliferate in an invasive, hypovascularized
manner [194]. These malignant tumors with their unique growth
patterns are intrinsically unresponsive to anti-angiogenic therapy,
as they originally lack the demand for angiogenesis [178]. Other
mechanisms could account for this type of resistance, such as com-
pensatory activation of angiogenic receptors by other factors that
are not targeted by the anti-angiogenic therapy. Breast cancer
tumors only respond to bevacizumab at the early stages of tumor
progression [195]. Late-stage tumors usually secrete several
growth factors, such as FGF-2 with superior ability to activate VEGF
receptors beyond the inhibitory capacity of bevacizumab [196].
Yet, these alternative factors are derived not only from tumor cells
but also from the pre-existing immune cells [177].

Finally, there are several well-established and potential molec-
ular mechanisms that could account for both types of resistance.
The effects of these mechanisms of resistance on the response to
anti-angiogenic therapy are clear, which is reflected on the tran-
sient clinical response to angiogenic treatment [197]. Further
research is required to investigate the clinical significance of tar-
geting these molecular pathways and also to elucidate additional
pathways implicated in this type of resistance.
Conclusions and future perspectives

Targeting intratumoral vasculature as an anticancer treatment
strategy is rapidly and successfully emerging due to continuous
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uncovering of different molecular cues of angiogenesis. Despite
reports for some kinds of genetic instability in intratumoral ECs,
they are far more genetically stable than tumor cells [146].
Folkman expected that killing one EC would elicit nutritional
deprivation capable of killing 100–300 tumor cells [198]. In addi-
tion, vascular targeting agents positively influence the anticancer
activity of conventional chemo-radiotherapies when properly
orchestrated together. Accordingly, several success stories are
expected in the near future for anti-angiogenic agents against
cancer. Among these, the use of multi-targeted RTKI and decoy
receptors are considered the most promising approaches for
anti-angiogenic drug discovery. Combination of antiangiogenic
agents opens a new horizon for better efficacy and less toxicity
of anticancer drugs [199–201]. On the other hand,
anti-angiogenic vaccines seem to have weak potential for the
development of marketed drugs due to the excessive risk of
debilitating adverse effects, such as autoimmune diseases.
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