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Abstract Understanding the origin and maintenance of biodiversity is a fundamental problem.

Many theoretical approaches have been investigating ecological interactions, such as competition,

as potential drivers of diversification. Classical consumer-resource models predict that the number

of coexisting species should not exceed the number of distinct resources, a phenomenon known as

the competitive exclusion principle. It has recently been argued that including physiological

tradeoffs in consumer-resource models can lead to violations of this principle and to ecological

coexistence of very high numbers of species. Here, we show that these results crucially depend on

the functional form of the tradeoff. We investigate the evolutionary dynamics of resource use

constrained by tradeoffs and show that if the tradeoffs are non-linear, the system either does not

diversify or diversifies into a number of coexisting species that do not exceed the number of

resources. In particular, very high diversity can only be observed for linear tradeoffs.

Introduction
Life on Earth is spectacularly diverse (May, 1988). For example, one study in the early 2000s found

that the number of species of fungi is, by a conservative estimate, ca. 1.5 million (Hawks-

worth, 2001), which was subsequently revised to be between 2.2 and 3.8 million species

(Hawksworth and Lücking, 2017). Microbes are by far the most diverse form of life. They constitute

approximately 70–90% of all species (Larsen et al., 2017). Perhaps even more astonishing than the

number of species is the fact that all of them came from a single common ancestor (Darwin, 1859;

Steel and Penny, 2010; Theobald, 2010). To understand the fundamental mechanisms behind such

diversification is one of the most relevant problems addressed by the scientific community

(Mayr and Mayr, 1963; Coyne, 1992; Rice and Hostert, 1993; Higashi et al., 1999;

Dieckmann and Doebeli, 1999; Gavrilets and Waxman, 2002; de Aguiar et al., 2009;

Doebeli, 2011).

Recently, ecological interactions, such as competition, have received a lot of attention as poten-

tially very strong drivers of diversification and speciation. A widely used class of models in which this

phenomenon can be observed is based on classical Lotka-Volterra competition models, which are

augmented by assuming that the carrying capacity is a (typically unimodal) function of a continuous

phenotype, and that the strength of competition between two phenotypes is measured by a compe-

tition kernel, which is typically assumed to be a (symmetric) function of the distance between the

competing phenotypes, with a maximum at distance 0 (so that the strength of competition

decreases with increasing phenotypic distance).

These assumptions are biologically plausible, and such models have been widely used to provide

insights into evolutionary diversification due to competition (Dieckmann and Doebeli, 1999;

Doebeli and Ispolatov, 2010; Doebeli and Ispolatov, 2017). However, these models are not

derived mechanistically from underlying resource dynamics, and in fact it is known that the

Caetano et al. eLife 2021;10:e67764. DOI: https://doi.org/10.7554/eLife.67764 1 of 20

RESEARCH ARTICLE

https://doi.org/10.1101/2020.10.20.347419
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.67764
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


commonly used Gaussian functions for the carrying capacity and the competition kernel are not com-

patible with resource-consumer models (Abrams, 1986; Ackermann and Doebeli, 2004). A more

mechanistic approach is desirable.

Recently, a MacArthur consumer-resource model (Macarthur and Levins, 1967) was studied in

an ecological context with a view toward explaining the existence of very high levels of diversity

(Posfai et al., 2017; Erez et al., 2020). The authors consider different species competing for p inter-

changeable resources, each supplied at a constant rate (Posfai et al., 2017) or periodically repleted

after being used (Erez et al., 2020). A consumer species is characterized by an uptake strategy,

a ¼ ða1; :::;apÞ, where the j th component aj � 0 represents the amount of cellular metabolism allo-

cated to the uptake of the j th resource. The rate of consumption of the j th resource and thus its

contribution to the growth rate is assumed to be proportional to aj. The total amount of cellular

metabolism available for resource uptake is limited, and hence it is natural to assume a tradeoff

between the uptake rates of different resources. In general mathematical terms, a tradeoff is typi-

cally given by a function TðaÞ ¼ Tða1; :::;apÞ that is increasing in each of the arguments aj, and such

that the only permissible allocation strategies a are those satisfying TðaÞ � E, where E is a constant.

The analysis is then typically restricted to the subspace of strategies defined by TðaÞ ¼ E (because T

is increasing in each aj). It was shown in Posfai et al., 2017; Erez et al., 2020 that, under the

assumption of a linear tradeoff,
Pp

j aj ¼ E, very high levels of diversity, that is, many different spe-

cies with different a-strategies, can coexist. This is a very interesting finding because it violates the

competitive exclusion principle (Hardin, 1960), according to which at most p different species

should be able to stably coexist on p different resources. Such high levels of diversity emerging from

simple consumer-resource models could help solve the paradox of the plankton (Hutchinson, 1961)

from an ecological perspective.

However, metabolic tradeoffs are not necessarily linear, and in fact there is reason to believe that

they almost never are. Nature owes its complexity and diversity to the non-linearity of the underlying

physical and chemical processes. In particular, the non-linearity of tradeoffs is an essentially inevita-

ble consequence of the general non-linearity of chemical kinetics. The rate and mass action equilib-

rium of even a simple bimolecular reaction are in general non-linear functions of the concentrations

of reactants. Linear approximations are commonly used when the concentrations of certain reactants

are vastly exceeding the concentrations of others, or when the binding is so strong that the dissocia-

tion constant of a complex is much less than typical concentrations of its constituents. However,

while the concentrations of enzymes in bacteria (which are probably the most realistic prototype for

models of Posfai et al., 2017; Erez et al., 2020) are generally below those of their substrates, the

difference is often only few- or 10-fold, which is insufficient to approximate the enzymatic kinetics by

functions that are linear in enzymatic concentrations. For example, a detailed study (Bennett et al.,

2009) of the model microbe Escherichia coli revealed that out of 103 metabolites, 35 have concen-

trations above 1 mM, but the concentrations of 46 metabolites are in tens or single micromole digits,

including two metabolites with concentrations below 1 mM. Supporting this, BIONUMBERS

(Milo et al., 2010) estimate the typical metabolite concentration in an E. coli bacterium as 32 mM. At

the same time, BIONUMBERS provide the evidence for concentrations of important E. coli glycolysis

enzymes in tens and even hundreds of mM, and hence the difference between metabolite and

enzyme concentrations generally does not seem to be large enough to justify linear approximations.

Another argument for the prevalence of non-linearity in tradeoffs is based on the oligomerization

of more than half of all metabolic enzymes (Marianayagam et al., 2004). The dissociation constants

of dimer or oligomer enzymes is often comparable to the concentrations of its monomer units to

make the dimerization sensitive to environmental conditions and use it as a regulator of enzymatic

activity (Ali and Imperiali, 2005 Traut, 1994). Thus, doubling the concentration of an oligomer

requires more (in case of hetero-oligomer) or less (in case of homo-oligomer) than doubling the con-

centrations of its monomers, and hence the metabolic costs of the former in terms of the metabolic

costs of the latter are non-linear.

Since metabolic tradeoffs can often be expected to be non-linear, here we generalize the models

of Posfai et al., 2017; Erez et al., 2020 by incorporating non-linear tradeoffs in resource use. Spe-

cifically, we consider energy budgets of the form
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X

p

j¼1

a
g
j ¼ E; (1)

where g and E are positive constants.

In addition, we incorporate evolutionary dynamics into the ecological models of Posfai et al.,

2017; Erez et al., 2020, which allows us to investigate not only the conditions under which diversity

can be maintained, but also the evolution of diversity from a single ancestral species. We show that

in the resulting evolutionary model, coexistence of more than p species only emerges for the (struc-

turally unstable) linear case g ¼ 1. Using adaptive dynamics and numerical simulations, we show that

regardless of the value of g, an initially monomorphic population always evolves to an attractive

fixed point (also called ‘singular point’), after which two generic scenarios are possible: (i) if g<1, the

population branches and diversifies, with the maximal number of coexisting species equal to the

number of resources p, a state in which each species is a complete specialist on exactly one of the

resources; (ii) if g>1, an initially monomorphic population also evolves to a singular point, but subse-

quently does not diversify and instead remains a monomorphic generalist.

To make the argument for the relevance of non-linear tradeoffs even more solid, we prove that

an omnipresent non-linearity in the dependence of nutrient uptake rates on a can be transformed

into the non-linearity of tradeoff (Equation 1), and vice versa. Thus, a non-linearity in either the

tradeoff or the metabolic rates is sufficient to bring the diversity down to the competitive exclusion

limit. We also show that the two scenarios (of either a generalist or p specialists) emerge as a result

of purely ecological dynamics in a system initially populated with multiple species with different

uptake strategies a that satisfy (Equation 1).

Overall, our results show that very high levels of diversity do not evolve in the consumer-resource

model considered here in a realistic scenario where tradeoffs in resource preference or the resource

uptake rates are non-linear.

Model and results
We consider a population competing for p substitutable resources in well-mixed environments. A

phenotypic species a is characterized by its metabolic allocation strategy a ¼ ða1; . . . ;apÞ, where aj

is the per capita rate at which individuals of species a take up the j th nutrient. Various coexisting

species are distinguished by their specific a’s. From a physiological perspective, aj is proportional to

the amount of metabolic effort allocated by the individuals of species a to capture nutrient j. Intrinsic

limitations on metabolic activities impose a restriction on the total amount of nutrient uptake. For

simplicity, we assume that this intrinsic limitation leads to a tradeoff in the components aj of the

form (Equation 1). (Note that we also assume aj � 0 for all j.) Throughout, we will set the scaling

parameter E ¼ 1. (See Appendix 1 for a more general treatment, in which the exponent g can differ

for different directions aj in phenotype space.)

Following Posfai et al., 2017, we denote by cjðtÞ the concentration of resource j at time t, and we

assume that the amount of resource j available for uptake per individual (e.g., the amount of

resource bound to the outer membrane of a microbial cell) is given by a monotonously increasing

function rjðcjÞ. Specifically, we assume this function to be of Monod type, rjðcjÞ ¼ cj=ðKj þ cjÞ. Thus,
the rate of uptake of resource j by an individual consumer with uptake strategy a is ajrjðcjÞ.

Chemostat conditions
We assume that resources are supplied to the system at a constant rate defined by the supply vector

s ¼ ðs1; . . . ; spÞ, so that resource j is supplied at a constant total rate sj and decays at a rate

�j (Posfai et al., 2017). This generates the following system of equations for the ecological dynamics

of the concentrations cj, j ¼ 1; :::; p:

dcj

dt
¼ sj �

X

a

naðtÞaj

 !

rjðcjÞ��jcj: (2)

Here, naðtÞ is the population density of species a at time t, so that
P

a naðtÞaj is the total amount

of metabolic activity invested into uptake of resource j (the sum runs over all species a present in

the community). We further assume that the cellular per capita birth rate of species a is equal to the
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amount of nutrient absorbed by each individual. The dynamics of the population density na then

becomes

dna

dt
¼

X

p

j¼1

ajrjðcjÞ� d

 !

na; (3)

where d is the per capita death rate, which is assumed to be the same for all consumers.

The evolutionary dynamics of the the traits aj can be solved analytically only for a simplified sys-

tem in which the resource decay (dilution) rates �j are set to 0. This assumption, also made in

Posfai et al., 2017, corresponds to rapid consumption of almost all resource. In Appendix 1, we

derive the adaptive dynamics for the allocation strategies, that is, for the traits aj (Metz et al., 1992;

Dieckmann and Law, 1996; Dieckmann and Doebeli, 1999; ; Hui et al., 2018; Doebeli, 2011;

Geritz et al., 1997). We show that with vanishing decay rates, there is a unique singular point

a�
j ¼

sj
Pp

k¼1
sk

� �1

g

: (4)

Calculations of the Jacobian of the adaptive dynamics (an indicator of convergence stability of a

fixed point) and of the Hessian of the invasion fitness function (which distinguishes whether the fixed

point is an evolutionary endpoint or a branching point) yield the following conclusions: Regardless of

the value of g, the singular point a� is always convergent stable, so that the system approaches a�

from any initial condition. If g>1, the singular point a� is also evolutionarily stable and hence repre-

sents the evolutionary endpoint. In particular, no diversification takes place. On the other hand, if

g<1, the singular point is evolutionarily unstable and hence is an evolutionary branching point. In

particular, if g<1, the system will diversify into a number of coexisting consumer species. If g¼ 1 (lin-

ear tradeoff), the fitness Hessian is 0, representing evolutionary neutrality.

To check our analytical approximations and to investigate the details of diversification after con-

vergence to the evolutionary branching point, we performed numerical simulations of evolving popu-

lations consisting of multiple phenotypic strains. The simulations were performed without the

simplifying assumption of zero resource degradation (dilution) rates; further details of the numerical

simulations are presented in Appendix 1.

In the figures below we show evolving populations as circles with radii proportional to the square

root of population size na in three-dimensional strategy space ða1;a2;a3Þ, viewed orthogonally to

the simplex plane
P

3

i¼1
ai ¼ 1. With the constraint

P

3

i¼1
a
g
i ¼ 1, the coordinates of each population

are ðag
1
;ag

2
;ag

3
Þ. In the following numerical examples, we considered a symmetric supply of resources

si ¼ 1 and a slow resource degradation, �iKi ¼ 0:1.

We first consider scenarios with linear tradeoffs, g ¼ 1. Figure 1 shows the evolution of a popula-

tion (shown in blue circles) whose individuals die at constant rate d ¼ 1 (corresponding videos of the

simulations can be accessed through the links provided in the figure legends). The black circle repre-

sents the singular point that is calculated in the limit of low degradation of nutrients, given by Equa-

tion 4. Figure 1(a) shows the initial monomorphic population far from the singular point. An

intermediate time of the evolutionary process is shown in Figure 1(b), in which the population

remains monomorphic and is approaching the singular point a�. For g ¼ 1, the singular point is neu-

tral evolutionarily (all eigenvalues of the Hessian of the invasion fitness function are 0 due to the lin-

earity of the tradeoff), and once the population converges to the singular point, it starts to diversify

‘diffusively’, as anticipated in Posfai et al., 2017: neutrality of selection results in communities con-

sisting of a large number of species. Thus, the high diversity observed in this case is an evolutionary

consequence of the selective neutrality caused by a linear enzymatic tradeoff.

The situation changes for non-linear tradeoffs, g 6¼ 1, which generates two very different evolu-

tionary regimes depending on whether g>1 or g<1 (even when the deviation of g from one is small).

Figure 2(a–c) shows an example of the evolutionary dynamics for g ¼ 1:1.

The dynamics starts with an initial monomorphic population far from the singular point, as shown

in Figure 2(a). As in the linear case, and as predicted by the analytical theory, the monomorphic

population converges toward the singular point Figure 2(b). However, because g>1 the singular

point is evolutionarily stable, and no diversification occurs (apart from mutation-selection balance

around the singular point). Instead, when the population reaches the singular point, evolution comes
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to a halt, and all individuals are generalists, that is, use all resources to some extent (as determined

by the location of the singular point), as depicted in Figure 2(c).

On the other hand, Figure 3(a–c) shows the evolutionary process for a community with g ¼ 0:9.

The initial configuration is shown in Figure 3(a). As in the previous examples, the initial phase of evo-

lution ends with the population converging to the singular point a�. However, in this case, the singu-

lar point is an evolutionary branching point giving rise to the emergence of distinct and diverging

phenotypic clusters (Figure 3(b)). The final state of the evolutionary process is shown in Figure 3(c):

there are three coexisting phenotypic clusters, each being a specialist in exactly one of the resour-

ces. Our numerical simulations indicate that the results shown in Figures 1–3 are general and robust:

non-neutral diversification occurs only for g<1 and typically leads to coexistence of p specialists. In

fact, the results easily generalize to situations in which the exponent g in the tradeoff function may

be different for different directions in phenotype space, that is, for different aj. As we show in

Appendix 1, evolutionary branching along a direction aj in phenotype space can occur if the

Figure 1. Snapshots illustrating the beginning, intermediate, and advanced stages of evolution under a linear constraint, g ¼ 1 . A video of the entire

evolutionary process can be found here, frames are recorded every 200 time units until t=30,000 and then, to better illustrate slow neutral evolution, the

frame recording times ti were defined as a geometric progression tiþ1 ¼ 1:006ti. Other parameter values were sj ¼ 1, �jKj ¼ 0:1 for j ¼ 1; 2; 3, and d ¼ 1.

Figure 2. Example of evolutionary dynamics for g ¼ 1:1, showing convergence to the singular point given by Equation 4 (and indicated by the black

dot), but no subsequent diversification. The corresponding video can be found here , each frame in the video is separated by 1,000 time steps. Other

parameter values were sj ¼ 1, �jKj ¼ 0:1 for j ¼ 1; 2; 3, and d ¼ 0:25.
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corresponding exponent gj<1. Appendix 1—figure 2 and Appendix 1—figure 3 in Appendix 1

illustrate scenarios in which only a subset of the phenotypic directions aj are branching directions

along which evolutionary diversification occurs. In such a case, the number of distinct species result-

ing from the evolutionary process is less than p.

Finally, we note that our results for the effects of non-linear tradeoffs on evolutionary dynamics

have corresponding results in purely ecological scenarios, such as those studied in Posfai et al.,

2017. We simulated ecological time scales by seeding the system with a set of for example ran-

domly chosen phenotypes throughout phenotype space and running the population dynamics with

the mutational process turned off. Again, as shown in Appendix 1—figure 4, non-linear tradeoffs

have a profound effect on the number of surviving species in such ecological simulations, with many

species coexisting when g ¼ 1, as reported in Posfai et al., 2017, but with typically only p species

surviving when g<1 and only very few species surviving in the close vicinity of the singular point when

g>1.

Serial dilution conditions
Serial dilution conditions are defined as a sequence of explicitly non-stationary inoculation and

growth events (Erez et al., 2020), which mimics seasonality or batch culture experiments (e.g.,

Lenski and Travisano, 1994). Each growth phase starts with the introduction of a diluted collection

of species from a previous batch

nað0Þ ¼ �0
naðtfinÞ

P

a;na; ðtfinÞ
; (5)

into a fresh batch of resources with a given composition cjð0Þ. In each batch, the species densities

nað0Þ increase with time as

dna

dt
¼

X

p

j¼1

ajrjðcjðtÞÞ
 !

na; (6)

while resources are depleted:

dcj

dt
¼�

X

a

naðtÞaj

 !

rjðcjÞ: (7)

Figure 3. Example of evolutionary dynamics for g ¼ 0:9, showing initial convergence to the singular point (indicated by the black dot) and subsequent

diversification into three specialists, each consuming exclusively one of the three resources. The corresponding video can be found here, each frame in

the video is separated by 1,000 time steps. Other parameter values were sj ¼ 1, �jKj ¼ 0:1 for j ¼ 1; 2; 3, and d ¼ 0:25.
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Unlike in the chemostat model, the death of individuals and the decay of resources are ignored

(d¼ 0 and �¼ 0). Each event ends at time tfin when all resources are almost completely depleted,

X

p

j¼1

cjðtfinÞ ¼ cfin »0; (8)

and the process is repeated.

Due to the explicit non-stationarity of such serial dilution processes, one of the main assumptions

of our adaptive dynamics analysis, the stationarity of resident populations, is not satisfied. Neverthe-

less, our numerical simulations show that the conclusions drawn for the chemostat case also hold for

the serial dilution conditions, to the point that the simulation snapshots are visually indistinguishable

from those shown in Figure 2 and Figure 3. However, in the videos, which can be found here , it is

possible to see the oscillating population density, caused by the serial dilution protocol.

Specifically, we simulated the serial dilution for three limits considered in Erez et al., 2020,

cjð0Þ ¼ 10K, cjð0Þ ¼ K, and cjð0Þ ¼ 0:1K for �0 ¼ 10
�3 and cfin ¼ 10

�8. All other parameters were the

same as used in Figure 1, Figure 2, Figure 3 and corresponding videos.

In all three cases cjð0Þ � K, cjð0Þ ~K, and cjð0Þ � K, we observed that for g>1, the monomorphic

population converges toward the singular point a� (Figure 2(b)) and video files here . The singular

point is evolutionarily stable, hence, as shown in Figure 2(c), no subsequent diversification occurs

(apart from narrow mutation-selection spreading around the singular point).

On the contrary, Figure 3(a–c) and videos accessible here show the evolutionary process for a

community with g<1. The initial configuration is shown in Figure 3(a). As in the previous examples,

in the initial phase the monomorphic population evolves close to the singular point a�. However, in

this case, the singular point is again an evolutionary branching point giving rise to the emergence of

distinct and diverging phenotypic clusters (Figure 3(b)). The final state of the evolutionary process is

shown in Figure 3(c): there are three coexisting phenotypic clusters, each being a specialist on one

of the resources.

In addition, purely ecological (i.e., mutationless) simulations performed similarly to what is

described above and in Erez et al., 2020 resulted in similar outcomes as in the chemostat model. In

a system initially filled with many (200) species, only a few species survive after a fairly short transi-

tory time. When g>1, one or a few species remain very close to the singular point a�, while for g<1,

typically p specialist species remain in the system. The videos of pure ecological simulations can be

seen here.

Once evolution has come to its steady state, resulting in a single generalist species when g>1 or p

specialist species when g<1, each species is represented by a ‘cloud’ of phenotypes a (Panel C

in Figure 2 and Figure 3). Such a cloud is formed by a competition between the deterministic selec-

tion gradient that acts toward the center of the cloud, making the survival of peripheral species less

likely, and the stochastic mutational process that broadens the distribution of strains in all directions,

‘reseeding’ new strains everywhere in the cloud, including its periphery. This is analogous to the clas-

sical mutation-selection balance occurring with stabilizing selection. When stabilizing selection is rel-

atively weak, which occurs when the tradeoff is only weakly non-linear (with g close to 1), the

dispersion of phenotypes around the centers of clouds is larger. Technically, this can be concluded

from the factor 1� g in Equation A20. Thus, we make a potentially testable predictions that a

weaker non-linearity in tradeoffs or uptake rates should result in broader distributions of correspond-

ing phenotypes within specialist or generalist species. At the same time, the perspective of muta-

tion-selection balance makes it easier to see the difference between the neutral evolutionary

scenario of linear tradeoffs and the weakly non-linear case: While in the former case the distribution

of strains will be uniform across the simplex (constrained only by the ‘convex envelope’ condition;

Posfai et al., 2017), the non-linear tradeoffs lead to distinct species with well-localized distributions

of phenotypes for any g 6¼ 1. In an analogy with critical phenomena in physics, correlations typically

decay exponentially, except at critical points, where they are exceptionally long-ranged. Such an

‘anomalous’ behavior requires careful tuning of parameters to get exactly to the critical point, unless

the system is ‘self-organized critical’. A similar situation appears to be the case with linear tradeoffs.

It could be possible in principle that a system possesses carefully adjusted metabolic parameters so

that for a range of uptake rates, the tradeoffs in enzyme concentrations are linear. Yet there appears
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to be no evolutionary reason for ‘self-organization’ to such a state, and the accidental cancelation of

all non-linearities is very unlikely.

Discussion
To understand the origin and maintenance of diversity is a fundamental question in science. In partic-

ular, the mechanisms of diversification due to ecological interactions still generate lively debates.

Recently, tradeoffs in the rates of uptake of different resources were suggested as a mechanism

to generate large amounts of diversity (Posfai et al., 2017; Erez et al., 2020), possibly solving the

‘paradox of the plankton’ (Hutchinson, 1961), and violating the competitive exclusion principle (Har-

din, 1960), which states that the number of coexisting species should not exceed the number of

resources. It has been shown that enzymatic allocation strategies that are plastic instead of fixed, so

that individuals can change their allocation (while maintaining a linear tradeoff under a fixed alloca-

tion budget) in response to resource availability during their lifetime, tend to reduce the amount of

diversity maintained in the ecological communities (Pacciani-Mori et al., 2020). Perhaps this is not

surprising, since more plastic strategies tend to be able to be more generalist as well. As in

Posfai et al., 2017; Erez et al., 2020, here, we consider the case of non-plastic strategies, in which

each individual is defined by its allocation vector a, but assuming a more general, non-linear form of

tradeoffs. Moreover, we investigate evolutionary rather than just ecological dynamics to determine

the conditions under which evolutionary diversification can occur. There are no true jacks-of-all

trades in biology and tradeoffs are a ubiquitous assumption in evolutionary thinking and modeling.

However, the cellular and physiological mechanisms that underly such tradeoffs are typically very

complicated and the result of biochemical interactions between many different metabolic pathways.

Attempts have been made to understand tradeoffs more mechanistically, particularly in microbes

(Litchman et al., 2015), but higher-level modeling efforts most often still require a mostly phenome-

nological approach to incorporating tradeoffs. In this paper we assumed that each of p resources is

available to each microbial organism at a certain rate that depends on the resource concentration in

the system. The microbe in turn is described phenotypically by the metabolic allocation strategy that

defines its uptake of the available resources.

Without tradeoffs, and everything else being equal, the best strategy would be to allocate an infi-

nite amount (or at least the maximal amount possible) of metabolic activity to every resource, a sce-

nario that is generally unrealistic biologically. Rather, tradeoffs inherent to cell metabolism prevent

such strategies. Formally, tradeoffs are given by one or more equations (or more generally inequal-

ities) that the phenotypes of individuals have to satisfy.

In our simplistic models, tradeoffs are determined by the parameter g, which essentially describes

the curvature of the tradeoff function, with the linear tradeoff g ¼ 1 being the threshold between

concave (g<1) and convex (g>1) tradeoffs. Formally, linear tradeoffs are the simplest case, but there

is no a priori general reason why tradeoffs should be linear. Our results show that generically, diver-

sity only evolves with concave tradeoffs, and the number of coexisting species never exceeds the

number of resources. Only in the structurally unstable linear case (g ¼ 1), it is possible for very high

levels of diversity to evolve due to the cessation of selection at the evolutionary equilibrium. Any

value of g 6¼ 1 precludes high amounts of diversity. Extensive numerical explorations revealed that

these results are robust and qualitatively independent of particular parameter choices, such as the

number of resources or the dynamics of resource input.

Furthermore, in Appendix 1 we show that the originally non-linear tradeoffs can be made linear

by re-defining uptake rates ai (Equation A8), thus ‘transferring’ the non-linearity to the nutrient

uptake and the birth rate functions (Equation A8). But a metabolic and nutrient uptake rate is itself

a linear function in the enzyme concentration only when the concentration of the substrate vastly

exceeds the enzyme concentration. A good example is the well-known Michaelis-Menten approxi-

mation, which is identical to the formula used in Posfai et al., 2017; Erez et al., 2020 for the depen-

dence of nutrient uptake on enzyme allocation a. While such linear approximations have been

successfully applied in chemical kinetics for over a century, often without questioning their formal

validity, the effect of linearization on ecological and evolutionary properties turns out to be very sig-

nificant. The Michaelis-Menten kinetics is valid when the formation of enzyme-substrate complexes

does not reduce the concentration of free substrate. Yet the intracellular concentration of enzymes

in bacteria are often comparable to or are just few- or 10-fold smaller than those of their substrates
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(Bennett et al., 2009; Milo et al., 2010). In Appendix 1 we sketch a derivation of kinetics of an enzy-

matic reaction in the general case assuming the steadiness of the concentration of the enzyme-sub-

strate complex, but without the assumption that the enzyme concentration is negligible compared

to that of the substrate. It follows that enzymatic reaction rates are generally sublinear in the concen-

trations of enzymes, which is intuitively clear from considering the rate saturation in the limit of infi-

nite enzyme concentrations. However, sublinear rates are not the only possible deviation from

linearity: the formation of enzyme oligomers (Marianayagam et al., 2004, Traut, 1994; Ali and

Imperiali, 2005; Traut, 1994) and spatially organized complexes (Schmitt and An, 2017) are con-

trolled by intrinsically non-linear (superlinear in case of homo-oligomers) mass action equilibria, thus

making the enzymatic rates generally sigmoid functions (Ricard and Noat, 1986) of the amount of

enzyme. Again, it follows that the physiological costs of the production of individual enzymes are

typically non-linear.

There are also more direct ways to demonstrate the ubiquity of non-linear dependences of meta-

bolic rates or fluxes f on enzyme concentrations a, for which quantities known as reaction elasticities

or flux control coefficients are normally defined as double-logarithmic derivative, d ln½ðf ðaÞÞ�=d lnðaÞ.
For example, for a general power law f ðaÞ � Cag that we used to define metabolic tradeoffs (or

uptake rates, see Appendix 1), the log-log derivative is equal to g, the non-linearity parameter. For

the tradeoffs used in Posfai et al., 2017; Erez et al., 2020, this derivate is always 1. However, it is

not surprising that realistic assessments of such coefficients (e.g. Loder et al., 2016; Giersch, 1995;

Sun and Qian, 2002; Saavedra et al., 2005; Rohwer et al., 2000; Rutkis et al., 2013;

Schmidt et al., 2016; van der Vlag et al., 1995; and many other references) produce values that

rarely come close to 1, and hence that the measured dependencies of metabolic fluxes on enzyme

concentrations are significantly non-linear. For an easier parametrization of these non-linearities, it

was suggested to express rates of complex enzymatic reactions as products of power-law functions

of concentrations of enzymes and substrates (Savageau, 1969). This idea, originally suggested more

than 50 years ago, has since developed a substantial following, which once again indicates the

necessity to account for non-linearity in the kinetics of enzymatic pathways. All this indicates that

reaction elasticities and flux control coefficients are typically distinct from one, which is essentially

the main raison d’être for those quantities and for the science of metabolic engineering itself.

Whether sub- or super-linear, any deviation of the growth rates from the linear form (Equation 3)

and Equation A3 results in a revalidation of the competitive exclusion limit, similarly to non-linearity

in tradeoffs. This serves as another indication that linear tradeoffs in metabolic rates is a biologically

unrealistic and exceptional case, while generic non-linearities do not generate high levels of diver-

sity, and instead the outcomes are in line with classical results about the evolution of resource gener-

alists vs. resource specialists (Ma and Levin, 2006).

It is well known that the shape of tradeoff curves is, in general, an important component in adap-

tive dynamics models (Kisdi, 2006; Kisdi, 2015). In particular, studies of evolution of cooperation

(e.g. Damore and Gore, 2012; Archetti and Scheuring, 2012) have stressed that the outcome of

evolution is conditional on the curvature of the public good and cost functions and provided numer-

ous biochemical reasons for non-linearity of metabolic rates in enzyme concentrations. Here, we

have shown the importance of the tradeoff curvature for the evolution and maintenance of diversity

in a general consumer-resource model. Of course, many potentially important ingredients that could

yet lead to high or low diversity in these models were not considered in the present work. For exam-

ple, dynamic and optimal metabolic strategies (Pacciani-Mori et al., 2020) and cross-feeding have

recently been suggested as factors that could potentially enable such diversity (Goyal and Maslov,

2018), while ‘soft constraints’ that allow random deviations of metabolic strategies from the exact

tradeoff constraint were reported in Cui et al., 2020 to reduce the diversity even below the compet-

itive exclusion limit. It will be interesting to consider these model extensions with non-linear

tradeoffs.

Furthermore, it is possible that non-equilibrium ecological dynamics can allow for the mainte-

nance of excess diversity. While this is not the case for externally imposed batch culture dynamics,

as reported in the present paper, we have recently shown, using a different ecological model

(Doebeli et al., 2021), that endogenous non-stationary ‘boom-bust’ population dynamics can lead

to a significant increase in diversity above the saturation limit expected with equilibrium population

dynamics. Together with many experimental results reporting non-stationarity and apparent chaotic-

ity of the population dynamics of actual plankton species, this leads to the conjecture that rather

Caetano et al. eLife 2021;10:e67764. DOI: https://doi.org/10.7554/eLife.67764 9 of 20

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.67764


than the neutral evolutionary regime predicted in Posfai et al., 2017, non-stationary population

dynamics induced by competition and predation (and perhaps external factors) may be more impor-

tant in explaining high levels of diversity in natural systems.
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Appendix 1

Ecological and evolutionary dynamics
We assume as in Posfai et al., 2017 that metabolic reactions occur on a much faster time scale than

cellular division, so that resource concentrations are always at their ecological equilibrium values c�j
determined as solutions of equations:

dcj

dt
¼ sj �

X

a

naðtÞaj

 !

rjðcjÞ��jcj: (A1)

with dcj=dt¼ 0. (Note that these equilibrium resource concentrations are determined by the current

populations sizes naðtÞ.) In practice, a faster time scale can be achieved by multiplying the right-hand

side of Equation A1 by a large dimensionless constant. The cellular per capita birth rate ga of spe-

cies a is proportional to the amount of nutrient absorbed by each individual,

gaðc�1; :::c�pÞ ¼
X

p

j¼1

ajrjðc�j Þ: (A2)

The dynamics of the population size na then becomes

dna

dt
¼ gaðc�1; :::c�pÞ� d
� �

na: (A3)

To derive the evolutionary dynamics for the allocation strategies, that is, for the trait a, we follow

the adaptive dynamics approach, a powerful tool to study gradual evolutionary diversification due to

frequency-dependent ecological interactions (Metz et al., 1992; Dieckmann and Law, 1996; Doe-

beli, 2011; Dieckmann and Doebeli, 1999; Doebeli and Dieckmann, 2003; Geritz et al., 1997;

Hui et al., 2018). In particular, adaptive dynamics can generate the paradigmatic phenomenon of

evolutionary branching (Metz et al., 1992; Geritz et al., 1997; Doebeli and Dieckmann, 2000;

Hui et al., 2018; Doebeli, 2011; Dieckmann and Doebeli, 1999), during which a population that

evolves in a continuous phenotype space first converges to a fitness minimum (evolutionary branch-

ing point) and then splits into two (or more) diverging phenotypic branches. We start with consider-

ing a monomorphic resident population at its ecological equilibrium n�a, which is defined as the

population size for which the equilibrium resource levels c�j are such that gaðc�1; :::;c�pÞ ¼ d (note again

that the ðc�
1
; :::;c�pÞ implicitly depend on a). The invasion fitness of a rare mutant a0 is then the per

capita growth rate of the mutant a0 at the resource levels defined by the resident:

f ða;a0Þ ¼ ga0ðc�
1
; :::c�pÞ� d: (A4)

To derive the adaptive dynamics, we consider the selection gradient qðaÞ ¼ ðq1ðaÞ; :::;qpðaÞÞ, with
components

qiðaÞ ¼
qf ða;a0Þ

qa0
i

ja0¼a: (A5)

qðaÞ defines a p-dimensional dynamical system in unrestricted a-space,

dai

dt
¼ sn�aqiðaÞ: (A6)

The speed of evolution of a is proportional to the current ecological equilibrium population size

n�a because the number of mutations occurring at any given point in time is proportional to n�a. The

parameter s describes both the per capita rate and effective size of mutations. Without loss of gen-

erality, we set s¼ 1.

To take the enzymatic tradeoff into account, the unconstrained adaptive dynamics (Equation A6)

needs to be restricted to the surface in a-space that is defined by the tradeoff
Pp

j¼1
a
g
j ¼ E, where E

is a positive number (Ito and Sasaki, 2016). An illustrative example is the one in which the nutrients

come from three different resources. The tradeoff a
g
1
þ a

g
2
þ a

g
3
¼ E defines a surface in a-space
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containing all strategies. The curvature of each surface is determined by g. Appendix 1—figure 1a

shows an example of the surface defined by the tradeoff for the case that g>1 while Appendix 1—

figure 1b and c show the curvature for the case where g ¼ 1 and g<1, respectively. The blue star

and the orange diamond illustrate possible position of the strategies in a-space. The individuals with

strategy indicated by the blue star uptake nutrients only from resource s1, while the individuals with

strategy indicated by the orange diamond uptake nutrients from all three resources.

Appendix 1—figure 1. Three possible surfaces defined by a tradeoff: (a) shows the concave surface

for the case g>1, while (b) and (c) show the surface for the cases g ¼ 1 and g<1, respectively. The

blue star and the orange diamond represent possible strategies. Individuals with strategy

represented by the blue star obtain their nutrients only from resource s1 while the individuals that

adopt strategy indicated by the orange diamond uptake nutrients from all three resources.

Equilibrium points of the adaptive dynamics, the so-called singular points, are resting points a� of

the resulting dynamical system in phenotype space. Given a singular point a�, two stability concepts

are important. First, there is stability in the usual sense of converging to a� from nearby initial condi-

tions, which is measured by the Jacobian matrix of the functions defining the adaptive dynamics,

evaluated at a�. Second, evolutionary stability is measured by the Hessian of the invasion fitness

function f ða�;a0Þ with respect to the mutant trait, evaluated at the singular point a�, and taken along

the constraint surface (Ito and Sasaki, 2016). A negative definite Hessian (all eigenvalues negative)

means that the singular point is a maximum of invasion fitness and no branching occurs. Alterna-

tively, a singular point is called an evolutionary branching point if it is both convergent stable with

regard to the Jacobian and evolutionarily unstable with regard to the Hessian. Thus, a singular point

is a branching point if all eigenvalues of the Jacobian have negative real parts, and if the Hessian

matrix is not negative definite.

Singular points and their convergence and evolutionary stability
The case where the decay rates, �j, are zero for any j admits an analytical solution. We consider allo-

cation strategies a ¼ ða1; :::;apÞ as in the main text, but here we assume a more general tradeoff

function:

X

p

j¼1

bja
gj

j ¼ 1: (A7)

It turns out to be convenient to reparametrize the strategy space as follows:

bj � bja
gj

j (A8)

for j¼ 1; :::;p. This simplifies the tradeoff expression to

X

p

j¼1

bj ¼ 1: (A9)

Because the bj increase monotonically with aj, the adaptive dynamic properties in terms of con-

vergence and evolutionary stability of singular points are the same for a¼ ða1; :::;apÞ and b¼
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ðb1; :::;bpÞ phenotypes. However, the tradeoff in b, Equation A9, is linear, which simplifies the

analysis.

In terms of b, the per capita rate of use of resource j of an individual with phenotype b is

bj

bj

� � 1

gj

rj: (A10)

We assume that nutrients are supplied to the system at a constant rate given by the vector

s¼ ðs1; s2; . . . ; spÞ, where sj is the supply rate of the j th resource. We consider the low degradation

rate regime, that is, �j ! 0 for all j in Equation A1. Setting the right-hand sides of Equations A1, A3

equal to zero and taking into account that the sum in Equation A1 consists of a single term, we

obtain for the equilibrium density of a population monomorphic in b

n�b ¼
X

p

j¼1

sj

d
(A11)

The invasion fitness of a rare mutant with uptake strategy b0 in a resident b at ecological equilib-

rium n�b becomes

f ðb;b0Þ ¼
X

p

j¼1

b0
j

bj

 !1=gj

sj

n�b
� d: (A12)

To derive the adaptive dynamics of b, we calculate the selection gradient qðbÞ ¼ ðq1ðbÞ; :::;qpðbÞÞ
and project it onto the linear constraint space:

qjðbÞ ¼
qf ðb;b0Þ

qb0
j

�

�

�

�

�

b0¼b

¼ sj

bjgjn
�
b

(A13)

dbj

dt
¼ sn�b qjðbÞ�

1

p

X

p

k¼1

qkðbÞ
 !

¼ sn�b
sj

bjgjn
�
b

� 1

p

X

p

k¼1

sk

bkgkn
�
b

 !

: (A14)

Here, the term

1

p

X

p

k¼1

qkðbÞ ¼
1

p

X

p

k¼1

sk

bkgkn
�
b

(A15)

is the component of the selection gradient (Equation A13) that is orthogonal to the tradeoff hyper-

plane (note that ð1= ffiffiffi

p
p

; . . . ;1=
ffiffiffi

p
p Þ is a unit vector orthogonal to the tradeoff hyperplane).

If we set the mutational parameter s ¼ 1, the adaptive dynamics of b becomes

dbj

dt
¼ sj

bjgj

� 1

p

X

p

k¼1

sk

bkgk

: (A16)

Note that we only need p� 1 equations due to the (linear) tradeoff. It is easy to see that

Equation A16 has a unique fixed point, that is, there is a unique singular point for the adaptive

dynamics given by

b�
j ¼

sj=gj
Pp

k¼1
sk=gk

(A17)

for j¼ 1; :::;p. In terms of the original trait a, Equation A17 is (Equation 4) in the main text.

To check for convergence stability of b� ¼ ðb�
1
; :::;b�

pÞ, we have to calculate the Jacobian matrix J

of the right-hand side of Equation A16, evaluated at the singular point b�. It is easy to see that the

jk th element of J is
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Jjk ¼�djk
sj

gjb
�2
j

þ 1

p

sk

gkb
�2
k

: (A18)

Thus, J is of the form

J ¼ Jd þA; (A19)

where Jd is a diagonal matrix with element Jjj ¼� sj

gjb
�2
j

and A is a matrix whose elements in the k th

column are all identical and equal to 1

p
sk

gkb
�2
k

. This implies that the matrix A maps any vector in pheno-

type space to a vector that is orthogonal to the tradeoff hyperplane (i.e., to a multiple of the vector

ð1; :::;1Þ). If Db¼ ðDb1; . . . ;DbpÞ is any vector of deviations from the singular point, it follows that the

projection of JDb onto the tradeoff hyperplane is the same as the projection of the vector JdDb.

Since all eigenvalues of Jd are real and negative, it follows that the singular point b� is a local

attractor, that is, convergent stable, regardless of the exponents gj, j¼ 1; :::;p.

For evolutionary stability, we have to calculate the Hessian matrix H of second derivatives of the

invasion fitness function, Equation A12 with respect to the mutant trait b0 and evaluated at the sin-

gular trait value b�. The jk th element of H is

Hjk �
q
2f

qb0
jqb

0
k

�

�

�

�

�

b0¼b¼b�

¼ djkn
1�gj

sj
; (A20)

where n is a constant:

n¼ d

Pp
l¼1

sl=gl

� �2

Pp
m¼1

sm
: (A21)

Thus, H is diagonal (due to the transformation from a to b), and H is negative definite, that is, all

eigenvalues are negative, if and only if gj>1 for all j¼ 1; :::;p. Because the tradeoff hyperplane is lin-

ear in b, it follows that any index j with gj<1 provides a branching direction bj, that is, a direction in

phenotype space along which evolutionary diversification is possible. More precisely, any direction in

b-space (other than orthogonal to the tradeoff surface) along which the unconstrained Hessian

(Equation A20) has a minimum corresponds to a direction on the tradeoff surface along which diver-

sification is possible.

The results presented in the main text now follow from the above by setting gj ¼ g for j ¼ 1; :::; p.

But the above analysis also suggests that with suitably chosen gj, it is possible to generate evolution-

ary branching in some directions, but not in others. This is illustrated in Appendix 1—figure 2. Our

analysis and numerical procedure are applicable to an evolving system of populations with any num-

ber of resources. To facilitate visualization, in the following, we consider just three resources, so that

because of the constraint, each population is characterized by two independent parameters ai.

Appendix 1—figure 2 illustrates diversification in the direction of a3 (g3<1) without diversification in

the directions a1 and a2 (g1; g2>1).

Appendix 1—figure 3 illustrates diversification in the directions a1 and a2 (g1; g2<1), with no

diversification in a3 (g3>1).

Appendix 1—figure 2 continued on next page
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Appendix 1—figure 2 continued

Appendix 1—figure 2. Example of evolutionary dynamics for g1 ¼ g2 ¼ 1:1 and g3 ¼ 0:9, showing

convergence to the singular point and subsequent diversification only in the a3 direction. (Note that

the dynamics are shown in the original a-phenotype space.) The corresponding video can be found

here, each frame in the video is separated by 2,000 time steps. Other parameter values were sj ¼ 1,

�jKj ¼ 0:1 for j ¼ 1; 2; 3, and d ¼ 0:25.

Appendix 1—figure 3. Example of evolutionary dynamics for g1 ¼ g2 ¼ 0:9 and g3 ¼ 1:2, showing

convergence to the singular point and subsequent diversification only in a1 � a2 directions. (Note

that the dynamics are shown in the original a-phenotype space.) The corresponding video can be

found here, each frame in the video is separated by 2000 time steps. Other parameter values were

sj ¼ 1, �jKj ¼ 0:1 for j ¼ 1; 2; 3, and d ¼ 0:25.
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Appendix 1—figure 4. Initial population configuration of 100 randomly placed clusters in the phe-

notypic simplex (a), final configurations after 5,000,000 time units for g ¼ 1 (b), g ¼ 0:9 (c), and g ¼
1:1 (d). Videos of the entire ecological processes can be found here, time interval between frames

increased as a geometric progression, tðiþ 1Þ ¼ 1:05tðiÞ. Other parameter values were sj ¼ 1, �jKj ¼
0:1 for j ¼ 1; 2; 3, and d ¼ 0:25.

Numerical procedures
In the chemostat simulations, we numerically integrate the system of population dynamics

Equation A3 for M populations using a simple Euler update (M ¼ 1 at the beginning of the simula-

tions). After each integration step, the populations that fall below a small ‘extinction’ threshold den-

sity (normally nmin ¼ 10
�6) are removed from the system. The resource concentrations ci and uptake

rates ri are considered relaxed to their steady states for a given set of populations fnag,

ri ¼
ðsiþfiþ�iKiÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsiþfiþ�iKiÞ2� 4fisi

q

2fi

; (A22)

where fi ¼
P

a naai.

To simulate serial dilutions, we numerically integrate Equations 6, 7 for M populations and p

resources using also the Euler update (M ¼ 1 at the beginning of the simulations). After each integra-

tion step, the populations that fall below a small ‘extinction’ threshold density (normally nmin ¼ 10
�6)

are removed from the system. Once the resources are depleted so that the condition (Equation 8) is

satisfied, the populations of all existing species are rescaled according to Equation 5 and the

resource concentrations are reset to cjð0Þ.
To mimic mutations in both simulation setups, periodically (typically once every Dtmutation ¼ 1 time

units) a mutant is split from an ancestor, which is randomly chosen with probability proportional to
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its total birth rate. The mutant’s phenotype is randomly offset from the ancestral phenotype along

the constraint surface. The offset distance is drawn from a uniform distribution in the interval

½�m;m�. Unless otherwise noted, m ¼ 0:005. The mutant population is set to be 10% of the ancestral

one, and the ancestor population is reduced by 10%. In addition to mutations, periodically (typically

once every Dtmerge ¼ 100Dtmutation time units) populations that are within a distance m of each other are

merged (preserving their phenotypic center of mass) and their population sizes added. Periodic rep-

etition of mutation and merging procedures preserves the phenotypic variance necessary for evolu-

tion while limiting computational complexity.

This produces clouds or clusters of a-values in phenotype space (see figures), with each pheno-

type a representing a monomorphic population of individuals with that phenotype a. Somewhat

imprecisely, we refer to a distinct cluster of phenotypes as a species. The clusters move in phenotype

space due to extinction and merging of phenotypes, and due to creation of new phenotypes by

mutation. This movement represents evolution and occurs along the constraint surface. A diversifica-

tion event occurs when a cluster corresponding to the diversifying species spontaneously splits into

two or more clusters that diverge from each other and move apart.

Maintenance of diversity in ecological time scales
Here, we briefly show how non-linear trade-offs affect diversity on ecological time scale. To do this,

we initiate the simulations with a set of for example randomly chosen phenotypes throughout phe-

notype space and then run the systems with the mutational process turned off. In Appendix 1—fig-

ure 4a, we show the initial configuration used for three different scenarios with different exponents

g of the tradeoff (here, we again assume that gj ¼ g for all j). The functional form of the tradeoffs

has a profound effect on the number of surviving species, with many species coexisting when g ¼ 1,

as reported in Posfai et al., 2017 (Appendix 1—figure 4b), but with typically only p species surviv-

ing when g<1 (Appendix 1—figure 4c) and only very few species surviving in the close vicinity of the

singular point when g>1 (Appendix 1—figure 4d).

Videos of ecological simulation of serial dilution scenario can be found here.

Non-linear metabolic rates
Consider the consumption or transformation of a resource substance c into a downstream metabolic

product m using a specific enzyme a:

cþa
k�1

�!k1 ca�!k2 mþa: (A23)

The assumption that the concentration of the complex ca instantaneously relaxes to its steady

state defined by the current concentrations of c and a constitutes the Michaelis-Menten

approximation,

q½ca�
qt

¼ 0: (A24)

Assuming mass action kinetics and denoting by c and a the total (bound in the complex plus free)

concentrations of the resource and enzyme, and dropping the traditional symbols for concentrations,

one gets a quadratic equation for the concentration  of the ca complex:

k1ðc� Þða� Þ ¼ ðk2 þ k�1Þ ; (A25)

with the solution

 ¼
aþ cþ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ cþ�Þ2 � 4ac

q

2
: (A26)

Here, �� ðk�1 þ k2Þ=k1 is the dissociation constant for the complex. The more common form of

the Michaelis-Menten approximation,
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 »
ac

cþ�; (A27)

is obtained in the limit when the substrate concentration is much larger than that of the enzyme.

(We note that this form is linear in a and is identical to the product of a Monod function and the cor-

responding a used in Equation 3). Since

q
2 

qa2
¼� 2c�

½ða� cþ�Þ2 þ 4c��3=2
<0 forany a>0; (A28)

the resource uptake and the growth rates are always sub-linear in the concentration of the enzyme

a.
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