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Modeling Living Cells Within 
Microfluidic Systems Using Cellular 
Automata Models
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Several computational models, both continuum and discrete, allow for the simulation of collective 
cell behaviors in connection with challenges linked to disease modeling and understanding. Normally, 
discrete cell modelling employs quasi-infinite or boundary-less 2D lattices, hence modeling collective 
cell behaviors in Petri dish-like environments. The advent of lab- and organ-on-a-chip devices proves 
that the information obtained from 2D cell cultures, upon Petri dishes, differs importantly from the 
results obtained in more biomimetic micro-fluidic environments, made of interconnected chambers and 
channels. However, discrete cell modelling within lab- and organ-on-a-chip devices, to our knowledge, 
is not yet found in the literature, although it may prove useful for designing and optimizing these 
types of systems. Consequently, in this study we focus on the establishment of a direct connection 
between the computer-aided designs (CAD) of microfluidic systems, especially labs- and organs-on-
chips (and their multi-chamber and multi-channel structures), and the lattices for discrete cell modeling 
approaches aimed at the simulation of collective cell interactions, whose boundaries are defined 
directly from the CAD models. We illustrate the proposal using a quite straightforward cellular automata 
model, apply it to simulating cells with different growth rates, within a selected set of microsystem 
designs, and validate it by tuning the growth rates with the support of cell culture experiments and by 
checking the results with a real microfluidic system.

Recent progresses in the design, prototyping and manufacturing of microfluidic systems1,2 have enabled new 
ways to approach the study of disease, with the advent of lab-on-a-chip technologies that integrate several lab 
operations in single microfluidic networks, and to advance in the comprehension of cell-cell and cell-material 
interactions, with the engineering of organ-on-a-chip (O-o-C) devices that mimic the physiological response of 
entire organs and systems by employing multi-channel cell culture chips3,4. These models are starting to replace 
more common cell culture systems, mainly Petri dishes, as the multi-channel structure provides cells with a 2D1/2 
or 3D environment more similar to the actual in vivo configurations.

In spite of the impressive advances achieved in the field of organs-on-chips in the last decade, mainly in 
connection with prototyping and validating the viability of these organ-on-chip systems as relevant research 
tools for studying complex pathologies in a sustainable and systematic way, there is still place for performance 
optimisation. For example, the successful integration of organ-on-a-chip devices into completely functional 
humans-on-chips is still matter of research, as happens also with the need for systematic engineering design 
processes oriented to these types of devices, in which extensive use of simulation techniques may help to optimise 
the design and channel configurations, among other challenges5,6. Until now, the application of simulations to 
improve the design process of these systems, mainly resorting to finite-element modelling (FEM) has proven 
useful7,8, although the simulation of cell growth and interaction within these systems is not so common.

In fact, being the eukaryotic cell an extremely complex micro-cosmos in itself, simulating its behavior and the 
interactions with companion cells and extra-cellular environment, so as to model their in vivo performance and 
hence advance in our understanding of disease, constitutes a long-pursued objective and a current research chal-
lenge in the intersection between engineering, medicine, basic and biological sciences with varied approaches9,10. 
Modelling to collective behavior of cells within in vitro culture environments is also a complex issue, usually 
performed by means of discrete cell models, typically cellular automata and cellular automata-like models (i.e. 

1Laboratorio de Desarrollo de Productos, Departamento de Ingeniería Mecánica, Universidad Politécnica de Madrid, 
c/José Gutiérrez Abascal 2, 28006, Madrid, Spain. 2Centro de Tecnología Biomédica, Universidad Politécnica de 
Madrid, Parque Científico y Tecnológico, M40, Km. 38, 28223, Pozuelo de Alarcón, Madrid, Spain. *email: adiaz@
etsii.upm.es

OPEN

https://doi.org/10.1038/s41598-019-51494-1
mailto:adiaz@etsii.upm.es
mailto:adiaz@etsii.upm.es


2Scientific Reports |         (2019) 9:14886  | https://doi.org/10.1038/s41598-019-51494-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

cellular Potts, Glazier-Graner, agent based, among others)11,12. These discrete models have some drawbacks when 
compared to continuum approaches, including computational cost for larger cell numbers and precise lattices and 
need for calibration upon macroscopic measurements. However, discrete models can be more easily fine-tuned 
by means of averaged measurements from controlled experiments, when the model parameters from continuum 
models are related to difficult-to-measure cell scale phenomena12. In this study we focus on modelling collective 
cell behavior by using discrete cell models, whose origins and applications to modelling cell colonies are detailed 
below.

Going to the origins of modern discrete modelling, cellular automata were developed on the basis of work 
by pioneers, such as Stanislaw Ulam and John von Neumann, as a collection of elements or cells defined upon a 
grid that evolves through time steps following a set of rules applied iteratively. Along the time steps, the state (i.e. 
colour or value, typically “0” or “1”) of the cells within the grid changes according to the rules and to the previous 
states of neighbor cells13. Since the beginning, these models were conceived as possible simulators for biological 
systems and well-known examples of application appeared, such as Conway’s game of life14, in which the cells 
upon a two-dimensional grid have two possible states, dead or alive, and in which cells survive, reproduce, die by 
under- or over-population, depending on the 8 neighboring cells or the previous generation. Apart from the ini-
tial game-like demonstrations, further studies led to verifying that extremely complex systems could be modeled 
by using cellular automata15.

More recently, in the specific area of modelling cell behavior, cellular automata have been used for modelling 
cell adhesion and proliferation;16 for modelling migration, proliferation and differentiation17,18; or, in connection 
with lattice-Boltzmann methods, to model multi-scale avascular tumor growth coupled with nutrient diffusion 
and immune competition19. As for other discrete cell models working upon lattices, the cellular Potts model20 
complements the lattice with an energy function or Hamiltonian that can be defined to control different cell 
behaviors, including migration, clustering and growth, and to add volume and surface constraints to the model. 
This approach has led to the implementation of CompuCell3D21, one of the most used software worldwide for 
modelling cells and their collective behavior, which has been employed for modelling cancer growth and inva-
sion22, to simulate epithelial-mesenchymal transitions23, and also as educational tool for biomedical engineering 
degrees24, to cite just some examples selected among dozens of publications available in the CompuCell3D web-
site (http://www.compucell3d.org).

In any case, all these discrete cell models used for predicting collective behaviors normally operate on infinite 
or boundary-less 2D lattices, hence modelling cell growth, migration, death and interactions in “Petri dish” like 
environments, with the same limitations as the use of Petri dishes for understanding in vivo performance using 
an in vitro approach. To the best of our knowledge, these cellular automata and cellular automata-like models 
have not yet been applied to modelling cells within lab- or organ-on-a-chip devices, which could support the 
systematic design and optimisation of these sorts of innovative biomedical devices and their steady regulatory 
compliance verification, by means of selected experiments and exhaustive simulations.

Consequently, in this study we focus on the establishment of a direct connection between the computer-aided 
designs (CAD) of microfluidic systems, especially labs- and organs-on-chips (and their channel structures), 
and the lattices for discrete cell modelling approaches aimed at the simulation of collective cell interactions, 
whose boundaries are defined directly from the CAD models. We illustrate the proposal using a quite straight-
forward cellular automata model, apply it to simulating cells with different growth rates, within a selected set of 
microsystem designs, and validate it by tuning the growth rates with the support of cell culture experiments and 
by checking the results with a real, although simple, microfluidic system. The materials and methods employed 
are detailed further on, before presenting and discussing the key results.

Materials and Methods
Creating the grid and boundaries for a cellular automata model from the CAD file.  Throughout 
the study we use NX-8.5 (Siemens PLM Solutions) for computer-aided design purposes –mainly for designing 
the microfluidic systems and organ-on-a-chip devices– and Matlab (The Mathworks Inc.) for developing the code 
of the cellular automata model working upon such microsystems and performing the collective cell simulations. 
As mentioned earlier, a key objective of our model is to directly link the computer-aided designs of organ-on-a-
chip devices with the lattices used for the cellular automata model. Accordingly, the channels and chambers of 
the microsystems should define the allowed cell positions limited by the vertical walls, which prevent cells from 
escaping the microsystems, as they operate typically closed by a microscope glass cover slip in real applications.

Such a connection can be performed in a quite straightforward fashion: Starting with the 3D CAD file of 
the microfluidic system, the model is positioned to show a top view, whose surfaces are painted using “paint 
operation” tools, so as to display the channels in white and the boundaries in black. A final conversion into.
jpeg format enables direct import using Matlab as working lattice. The process has direct connections with the 
generation of digital masks, directly from CAD files, for the manufacture of microfluidic devices by mask-less 
UV-photolithography25. Figure 1 provides a simple example by showing the computer-aided design of a device, 
made of a single channel connecting an inlet and an outlet, and the obtained boundaries for the lattice-based sim-
ulation, in which the white pixels represent allowed regions for the cells (one cell-one pixel), while the black zone 
is prohibited and not considered for the simulation. As can be seen, each pixel or point of the lattice is defined by 
its position [X, Y] and by a colour in [R G B] format. The colour helps to distinguish between prohibited lattice 
points (black), empty lattice points (white) or lattice points with different cell types (i.e. green and blue), with 
dead cells (red) or cells affected by a drug (pink), to cite some options.

In order to avoid scale problems, the size of the mask should be carefully selected according to the real size of 
the microsystem and to the actual size of the cells under study, which defines each pixel, in our case correspond-
ing to a square of some 20 × 20 μm2. Having a pixel per cell may be in some cases computationally expensive, so 
an alternative option would be to generate coarser lattices and to work with cell aggregates. Besides, in some cases 
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a fine-tuning of the generated lattice, which derives from the digital mask created from the CAD file, is needed 
before starting the simulations. The reason is that sometimes the boundaries between the allowed (white) and 
prohibited (black) zones are not so sharp, due to exporting from CAD to a.jpeg file, and some slightly grey bor-
ders appear, which should be transformed to real white [255, 255, 255] (or alternatively to real black [0, 0, 0]) by 
automated loop inspection of the generated hyper matrix and substitution of all pixels with colour values different 
from [0, 0, 0] or [255, 255, 255] by [255, 255, 255] (or [0, 0, 0]). Regarding the incorporation of 3D CAD models 
into Matlab workspace, other Matlab functions may be used to complement the imported.jpeg images that define 
the boundaries of the cellular automata.

Modelling cell behaviors with the cellular automata model.  Summarizing, our cellular automata 
working on chips follows and enables the following steps and operations: a) establishes allowed zones of the 
microsystem for the cells being cultured and simulated (those pixels with RGB values equal to: [255, 255, 255]); b) 
models cell proliferation, as in Fig. 2a, using equation: [eq. 1] = + ×−y y n(4 )n n 1 , for the number “yn” of cells at 
time step “n”; c) may incorporate cell death by adding a probability of cell death (Pd) from one time step to 
another, hence leading to a modified proliferation equation: [eq. 2] = + ∑ × × −y y n P(4 (1 ))n

n
m0 1  with y0 = 1; 

d) models interactions between different cell types, defined with different colors, enabling the simulation of inva-
sive cells (i.e. blue) that convert surrounding healthy cells (i.e. green) in invasive cells, as in Fig. 2b; and e) models 
the addition of a substance, drug or reactive, which diffuses following a proliferation equation similar to the one 
already discussed but with another dynamic, as it is defined to interact with a specific type of cell line. Cell migra-
tion is not considered in this first model implementation, as the cells we would be testing (see Section 2.4) are of 

[X, Y]: [53 161]

[R,G, B]: [255 255 255]

a) 

b) 

Figure 1.  (a) Computer-aided design of a simple microfluidic device. (b) Boundaries for the lattice-based 
simulation, in which the white pixels represent allowed regions for the cells (one cell-one pixel), while the black 
zone is prohibited and not considered for the simulation.

a) 

b) 

Figure 2.  Example of different evolutions along consecutive time steps. (a) A single cell reproduces making the 
adjacent positions become populated. (b) A normal cell is transformed into an abnormal state by the presence 
of an invasive cell.
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adherent nature, but could be of direct implementation to achieve a more universal simulator, which could be also 
complemented with energetic functions similar to those used in the cellular Potts model and related ones. For the 
purpose of connecting CAD models with cellular automata with defined boundaries for simulating collective cell 
behaviors within organ-on-chip devices this preliminary approximation may prove sufficient. A simulation starts 
by defining the initial positions of the microsystem where the cells are placed, either by modifying pixel color of 
the desired positions by writing within the lattice matrix or by clicking in the ad hoc developed interface to posi-
tion cells of different types and eventual substances, reactives or drugs. Each step goes on by evaluating the allowed 
positions in loops along x and y directions, by leaving white positions without neighboring cells white, by evaluat-
ing the probability of death of each cell (and eventually transforming those dead into red), by making healthy cells 
proliferate according to scheme 2a and by taking account cell-cell interactions, according to scheme 2b.

Set of computer-aided designs and prototypes of microsystems for testing the model.  A set 
of computer-aided designs was used to test the proposed simulation process. The models are shown in Fig. 3 
and include: the already mentioned simple channel design (3a); a design with a central chamber and multiple 
radial channels, adapted from previous designs by our team and conceived for studying cell communication 
(3b)26; a multi-chamber organ-on-chip with a central vascular channel, aimed at studying metastasis (3c); and an 
organ-on-chip device designed for studying interactions of the blood-brain barrier also adapted from previous 
designs by our team (3d)27. In our opinion, the selected set of designs provides enough versatility to test the cellu-
lar automata in connection with real examples of labs- and organs-on-chips.

Cell culture experiments for adjusting and validating the simulation.  Two different cell lines 
N2A (ECACC 89121404) and MC3T3 (ECACC 99072810) were used, in the facilities of the UPM Centro de 
Tecnología Biomédica, which helped to adjust the growth rate of different cell types by means of Petri dish cul-
tures and to incorporate these growth rates into the cellular automata model, running upon the multi-chamber 
microsystem, in which finally the cells were also cultured to validate the simulation.

Both types are adherent cells, in connection with our cellular automata model, in which the cells live, die 
or proliferate, but do not migrate. The N2A cells are a mouse neuroblastoma cell line with a neural and amoe-
boid stem cell morphology, which can differentiate into cells with features of neurons28, while the MC3T3 is an 

Figure 3.  Selected set of computer-aided designs of microfluidic devices connected to lab-on-a-chip and 
organ-on-a-chip applications: (a) Simple channel connecting inlet and outlet. (b) Design with radial channels 
for modelling cell migration. (c) Multi-chamber microsystem with a central “vascular” channel conceived for 
studying metastasis “on-a-chip”. (d) Active layer of a biomedical microdevice aimed at modelling the blood-
brain barrier.
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osteoblast precursor cell line derived from mouse calvaria29. Both cell types are cultured using the Dulbecco’s 
Modified Eagle Medium (DMEM) enriched with 10% fetal bovine serum (FBS), 2 mM glutamine 2 mM, and 1% 
penilicin-streptomycin and maintained in a humidified atmosphere at 37◦C and 5% CO2, either when initially 
cultured upon P24 multi-well culture plates for evaluating growth and death rates to adjust the model, or when 
cultured upon the microfluidic system prototype for final validation purposes. The medium was changed twice 
a week. Confluent cells were detached from the dishes by using Trypsin-EDTA (0.05% in HBSS, HyClone) when 
needed.

After counting with the support of a hemocytometer, both cell lines were seeded at 10.000 cells/cm2 in a P24 
multi-well plate to determine the cell proliferation rates for collecting information with the cell culture plates in 
similar conditions to those that would be applied upon the final validation in the organ-on-chip prototype, in 
which the same number of cells is placed in the different inlets. Imaging and counting was also performed with 
the support of a Leica DMIRB inverted microscope equipped with a digital Leica DC100 camera (Leica, Nussloch, 
Germany). Cell viability was monitored for 11 days in P24 multi-wells and in the organ-on-chip prototype, by 
calcein/propidium iodide staining to analyze the number of living and dead cells and adjust the cellular autom-
ata. Cell viability was determined using a calcein/propidium iodide dual-staining assay (Invitrogen, Molecular 
Probes). Briefly, the cell culture medium was removed and the cells were rinsed with phosphate-buffered saline. 
Next, 1 μM calcein and 2 μM propidium iodide were added in each well and incubated at 37 °C for 20 minutes. 
Fluorescence was evaluated using an inverted Leica DMIRB microscope equipped with a digital camera, Leica 
DC100 (Leica, Nussloch, Germany).

Results and Discussion
Simulation results and potential applications of the model.  The procedure for defining the bound-
aries of cellular automata lattices directly from the CAD models is tested with different designs (see Section 
2.3), upon which the collective dynamic behaviors of cells are simulated, to better expose the potential of this 
approach. Some results from the developed simulator performing within different devices are included in Fig. 4, 
which shows the results for: a) Cells seeded in opposite inlets and growing through a single-channel device; b) 
a detailed view of another simulation within the same single-channel device, in which two cells types -healthy 
(green) and invasive (blue)- are seeded and in which the addition of a drug (pink) and its diffusion, interacting 
just with the invasive cells, is also modeled; and c) different cells seeded in radially placed inlets and proliferating 
along the radial channels to meet in a central chamber. The healthy (green) and invasive (blue) cells, with different 
growth rates, can be appreciated and the incorporation of a drug (pink) and its diffusion is also modeled. The 
red points represent dead cells according to the defined death probabilities (Pd = 0.3 in these trials). The cellular 
automata is programmed so as to ask the user to select the seed zones for placing the initial cells and cell types and 
the stepped dynamic process can be also modified to add, at a certain step (or time), a drug or reagent, which typ-
ically interacts with one of the different cell types. In our cases we are modelling the interaction between the drug 
(pink) and the invasive (blue) cells. The growth rates and the diffusion speed of cells and incorporated substances 
can be defined and adjusted according to experimental data (see Section 3.2).

A more realistic view, thanks to the use of Matlab’s CAD import tools and its three-dimensional views, is 
presented in Fig. 5, in which the simulation results of collective cell behaviors within different organs-on-a-chips 
are presented. Figure 5a shows a 3D view of the interactions among different cell types along a single channel 
and Fig. 5b corresponds to a 3D view of the interactions among different cell types within a blood-brain barrier 
chip. To illustrate the whole modelling process, Fig. 6 presents a summary of the development of a simulation for 
a multi-chamber and multi-channel organ-on-a-chip device conceived for studying metastases. Figure 6a shows 
the computer-aided design (NX-8.5) of the system and Fig. 6b shows the CAD incorporated to Matlab, while 
Fig. 6c presents the related lattice with the allowed and prohibited zones. The final microfluidic system, used as 
preliminary validation prototype, is based on the simple design of Figs 4a and 5a (mainly a microchannel con-
necting two inlet wells) and is obtained by PDMS casting upon a laser stereolithography mold.

Preliminary model adjustment through cell culture experiments.  Adherent cells (MC3T3 
-osteoblast precursors- and N2A -neuronal phenotype-) are used to adjust the growth rates and obtain a pre-
liminary validation, connected to actual experimental data, of the cellular automata working upon CAD-based 
lattices. The growth rates are calculated, as detailed below, by culturing cells in multi-well plates and monitoring 
cell proliferation, by taking detailed microscope images from the cultures at different times. A total of 10 fields 
(n = 3) for each cell type culture were photographed at days 1, 3, 5, 7 and 11. Final calcein propidium iodide 
staining let us analyze the number of living and dead cells and adjust the cellular automata by setting Pd. Then, 
the calculated rates and probabilities are introduced in the simulator and applied to modelling the collective 
behavior of cells cultured within a simple microfluidic system, similar to that of Figs 4a and 5a, whose prototype 
is also seeded with cells to provide a experimental comparison between O-o-C simulation and O-o-C culture for 
a first validation of the simulator. These cell culture processes are detailed in Section 2.4 and their results further 
illustrated in Figs 7 and 8.

The information from the cell cultures is summarised in Fig. 7, which presents (in Fig. 7A–J) the evolution 
along 11 days of the MC3T3 (Fig. 7A–E) and N2A (Fig. 7F–J) cells in a representative position of the culture well, 
taken as example from the culture tests used to evaluate proliferation dynamics. All culture data are presented (in 
Fig. 7K–L) in the form of summary graph of the cell growth dynamics (Fig. 7K) and cell viability (Fig. 7L) for the 
MC3T3 and N2A cells studied. Mean values corresponding to different areas of the wells and their standard devi-
ations are presented. With the information of Fig.  7K and the cell proliferation equation [eq. 1]: 

= + ×−y y n(4 )n n 1 , it is possible to adjust the required iterations for the different cell types in accordance with 
the days under culture and, hence, adjust the simulator, by employing different step numbers to trigger the prolif-
eration step (Fig. 2a) of each cell type. The proliferation steps for each cell type, which lead to simulated cell 
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numbers according to experimental cell culture results and are finally used for simulating the O-o-C of Fig. 6, are 
included in Table 1. Subsequently, Fig. 8a presents the simulation results upon the microfluidic system using the 
adjusted growth rates and providing a simulated overview of the dynamic growth process along 11 days after 
seeding the cells through the microsystem inlets. In green, the N2A cells are presented, while the MC3T3 cells are 
shown in dark blue; besides, the red points represent dead cells. For comparative purposes, Fig. 8b shows the 
actual cell culture results upon a physical prototype of the multi-chamber organ-on-a-chip device, shown in 
Fig. 6d, again along a 11-day cell culture process. It can be appreciated that the proliferation of the MC3T3 cells in 
the microsystem is faster than that of the N2A cells especially at days 5 and 7 (probably due to a lower cell adhe-
sion of the N2A cells to the material), as also predicted in the simulation (see Fig. 8).

Final discussion and future research proposals.  Taking into account that cell culture materials and 
methods convey relevant cost, time and personal dedication investments, we consider that counting with simu-
lators for predicting the collective behaviors of cells within lab- and organ-on-chip devices may prove interesting 
for the further expansion of the field.

We have shown that, once the cellular automata model is adjusted with the information obtained from con-
ventional cell culture tests, the simulator helps to predict the way that cells will proliferate within the actual 
organ-on-a-chip system. Consequently, these simulations can prove useful for estimating the required materi-
als, facilities and testing conditions (i.e. days under culture), so as to validate in vitro the real performance of 

Figure 4.  Simulation results of collective cell behaviors within different microsystems. (a) Cells seeded in 
opposite inlets and growing through a single-channel fluidic microsystems. Selected representative iterations 
are shown. (b) Detailed view of another simulation within the same single-channel device, in which two 
cells types -healthy (green) and invasive (blue)- are seeded and in which the addition of a drug (pink) and its 
diffusion, interacting just with the invasive cells, is also modeled. Selected iteration when the drug is added and 
aspect after addition of the drug. (c) Different cells seeded in radially placed inlets and proliferating along the 
radial channels to meet in a central chamber. Healthy (green) and invasive (blue) cells with different growth 
rates can be appreciated and the incorporation of a drug (pink) and its diffusion is also modeled. Selected 
representative iterations are shown. In all cases, the red points represent dead cells according to the defined 
death probabilities. For each model different representative iterations are selected to illustrate the dynamic 
process. Each pixel corresponds to a single cell (typically 20 × 20 μm2). Scale bars: 2 mm.
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innovative organ-on-chip devices and related microsystems. They can be used also for analyzing if a proposed 
design is adequate for studying cell-cell and cell-material interactions, in connection with disease modelling and 
depending on the available testing facilities. For example, the simulations from Fig. 8 helped us understand that, 
if we wanted to fully exploit the multi-chamber and multi-channel features of the proposed design with the cells 
under study, then we should extend the culture beyond the mentioned 10 days, which is challenging, or redesign 
with a finer or downscaled inlet, channel and chamber network. Design optimisation on the basis of the in silico 
studies is, therefore, also possible.

Among current limitations we can mention that the simulator works in a 2D environment with boundaries 
defined in accordance with the organ-on-chip designs and without considering cell migration, just proliferation 
of different species and death probabilities step-by-step. This proves enough when using adherent cells seeded at 
very low densities and for short culture times, but needs to be updated for including the possibility of migration 
and of a real 3D environment for more precise studies. We expect to solve the issue of the third dimension in a 

Figure 5.  Simulation results of collective cell behaviors within different organs-on-a-chips. (a) 3D view of the 
interactions among different cell types along a single-channel microsystem. (b) 3D view of the interactions 
among different cell types within a blood-brain barrier chip. Selected representative iterations are shown. Scales: 
(a) Diameter of wells = 2 mm. (b) Diameter of wells = 1 mm.

Figure 6.  Summary of the development of a simulation process for a multi-chamber and multi-channel 
organ-on-a-chip device for modelling metastases: (a) Computer-aided design (NX-8.5). (b) CAD incorporated 
to Matlab. (c) Lattice with the allowed and forbidden zones. (d) Results from a dynamic proliferation and 
interaction process, which starts by seeding different cell types in the inlets (green and blue) and shows the 
effect of adding a drug (pink), whose diffusion and impact on cells is also modelled. Selected representative 
iterations are shown, including the initial state, the addition of drug and the final state after complete 
colonization. Scale bar: 4 mm.
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Figure 7.  Representative microphotographs showing the evolution of MC3T3 (A–E) and N2A (F–J) cells after 
1- (A,F), 3- (B,G), 5- (C,H), 7- (D,I) and 11-days (E,L) in culture. Images are shown as an example from the 
culture tests used to evaluate cell proliferation and cell viability dynamics. Live cells were stained with calcein 
(green) and dead cells with propidium iodide (red). Scale bar: 50 μm. Summary graphs show the cell growth (K) 
and cell viability (L) dynamics for the MC3T3 and N2A cells studied.

Figure 8.  (a) Simulation with adjusted growth rates upon microfluidic system. Dynamic growth process along 
11 days after seeding the cells through the microsystem inlets. Green: N2A (neural cells). Purple/dark blue: 
MC3T3 (osteoblast precursors). Red points indicate dead cells. (b) Actual MC3T3 and N2A cell cultures on 
the physical prototype of the microfluidic device. Cells were cultured and imaged at days 3(A), 5(B), 7(C) and 
11(D). Live cells were stained with calcein (green) and dead cells with propidium iodide (red). Scale bar 500 μm.
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quite straightforward way, by making use of common slicing software employed for additive manufacturing by 
digital light processing, which generate (layer-by-layer) black and white masks, similar as the ones used in this 
study, but starting from complex 3D CAD files without intermediate conversion to.jpeg format30. Approaches 
from other sectors may be also employed towards three-dimensional cellular automata31,32 and synergies with 
other stochastic algorithms, such as the Monte Carlo method, may prove interesting for modelling additional 
phenomena within the organ-on-chip devices33.

Finally, we expect to enhance these simulators in the near future by using the results from simulations based 
on the finite-element method (FEM) as input for dynamically adjusting proliferation rates and probabilities 
within the lattice. In this way, fluid movement and shear rates within the microsystem and their effects on certain 
proliferation rates and differentiation phenomena may be modeled. The effects of thermal treatments (i.e. hyper-
thermia) or drug use and their impacts on cell survival may be also simulated by combining FEM and cellular 
automata, as we plan to study soon.

Conclusions
Counting with simulation resources for predicting the collective behavior of cells within lab- and organ-on-a-chip 
devices may support the design optimisation of these innovative and useful biomedical devices and in the exper-
imental planning for their validation. Therefore, in this study we have focused on the establishment of a direct 
connection between the computer-aided designs of microfluidic systems, especially labs- and organs-on-chips, 
and the lattices for discrete cell modelling approaches aimed at the simulation of collective cell interactions, 
whose boundaries can be now defined directly from the CAD models. We have illustrated the proposal using a 
quite straightforward cellular automata model, applied it to simulating cells with different growth rates, within a 
selected set of microsystem designs, and validated our approach by tuning the growth rates of different cell types 
with the support of cell culture experiments and by checking the results with a real organ-on-a-chip system. 
We call the proposed procedure “game of life on a chip” and we envision that similar modelling approaches may 
support developers of these types of medical devices to optimise their engineering-design process and to support 
with experimental planning for their validation and a more straightforward regulatory compliance assessment by 
means of selected experiments and exhaustive simulations.
Received: 13 September 2018; Accepted: 2 October 2019;
Published: xx xx xxxx
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