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Abstract

The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell
differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely
unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal
biopsy samples from patients with Crohn’s disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated
with hyperosmotic medium. NF-kB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA
transcription. Hyperosmolarity increases the ability of NF-kB and Sp1 to bind to their binding sites. Knock-down of either
NF-kB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-kB, but
not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity
increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK
expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal
permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by
hyperosmolarity, plays an important role in epithelial barrier function.
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Introduction

Inflammatory bowel diseases (IBD), including ulcerative colitis

(UC) and Crohn’s disease (CD), are multi-factorial diseases

typically associated with relapsing diarrhea, which is caused by

increased paracellular permeability of the intestinal epithelial

lining and an intestinal hyperosmotic environment [1,2,3,4,5].

Intestinal epithelial cells (IECs) are exposed to the second most

extreme osmotic environment after kidney. In many forms of IBD,

including CD, neonatal necrotizing enterocolitis and UC, this

extreme hyperosmolarity contributes to the exacerbation of

intestinal inflammation via upregulation of inflammatory mole-

cules such as matrix metalloproteinase (MMP)-9 [6], epithelial

cytokine response-interleukin (IL)-8 [7,8,9,10], IL-1 [11,12,13],

and tumor necrosis factor (TNF)-a [13], downregulation of

vascular cell adhesion molecule (VCAM)-1 [14], or methylation

of protein phosphatase 2A [15]. Thus, hyperosmolarity is

recognized as a proinflammatory signal [12,16] in addition to

classic inflammatory signals including bacteria, bacterial bypro-

ducts or proinflammatory cytokines. In addition to IECs, osmotic

stress presents an important challenge to normal cell function in a

variety of other cells, including peripheral blood mononuclear cells

[7], human bronchial epithelial cells [8,9] and the corneal

epithelium [17]. Hyperosmolarity has been proposed to play a

role in intestinal inflammation in several inflammatory bowel

diseases, including CD and UC, as well as newborn and neonatal

necrotizing enterocolitis [1,2,3,4,5].

Yeast ste20 kinases, and the mammalian homologs p21-

activated kinase (PAK) and germinal center kinase (GCK),

function as mitogen-activated protein kinase kinase kinase kinases

(MAP4K) and have central and well-described roles in ‘‘cell-

volume sensing’’ and in regulating a wide variety of gene functions,

including barrier-related functions [18,19,20,21,22]. Lymphocyte-

oriented kinase (LOK, ste20-like kinase) [23] and Ste20-like kinase

(SLK) [24] can regulate actin cytoskeleton reorganization during

cell adhesion and spreading, whereas PAK increases endothelial

permeability [25,26].

The ste20-like proline/alanine-rich kinase (SPAK) belongs to

the GCK IV subfamily, members of which contain an N-terminal

series of proline and alanine repeats (PAPA box), followed by a

catalytic domain, a nuclear localization signal, a consensus

caspase-cleavage motif, and a C-terminal regulatory region [27],

with the missing PAPA box and F-alpha helix loop present in its

colonic isoform [28,29]. SPAK plays roles in cell differentiation

[27,30], cell transformation and proliferation [31], regulation of

chloride transport [32,33,34], and mediation of intestinal
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inflammation [29]. Specifically, SPAK can phosphorylate Na+-K+-

2Cl2 cotransporter 1 (NKCC1), which has an important role in

inflammation [35,36] and maintaining intracellular and extracel-

lular ion homeostasis [37]. Recently, we have demonstrated that

under inflammatory conditions, TNF-a is a key regulator of SPAK

expression [29].

The relationships among hyperosmolarity, SPAK and IBD are

unknown. A better knowledge of these relationships will further

our understanding of IBD physiopathology. The present study was

therefore undertaken to determine how SPAK expression is

regulated by hyperosmolarity and investigate its involvement in

epithelial barrier function loss, which occurs during IBD.

Results

Colonic SPAK is upregulated in patients with CD
As a preliminary step in a functional study of SPAK in IBD, it is

sensible to study its expression profile. We examined SPAK

expression in colonic biopsy samples from healthy and CD

patients. Immunofluorescence of biopsy specimens from CD

patients showed increased colonic SPAK expression, mainly in

epithelial cells, compared with specimens of healthy colon tissue

(Fig. 1A). Real-time PCR and Western-blot analyses showed that

colonic mucosa from the same CD patients contained significantly

increased SPAK expression at both the mRNA and protein levels

compared with tissue from normal subjects (Fig. 1B and 1C).

Expression of SPAK is enhanced in colon tissue from
hyperosmolarity treated mice

Next we examined the relative SPAK expression levels in colon

samples from healthy mice and mice exposed to hyperosmotic

conditions. Immunofluorescence analysis showed increased levels

of colonic SPAK expression, mainly in epithelial cells, compared

with sections from untreated colonic tissue (Fig. 2A). As shown in

Fig. 1A and 2A, hyperosmolarity induces cell-wall damage and

tissue shrinkage, and increases the space between crypts. Epithelial

damage is apparent as early as 1 day after exposure to

hyperosmolarity and progressively increases to a maximum level

at day 5. Correspondingly, SPAK mRNA (Fig. 2B) and protein

(Fig. 2C) levels in colonic tissue increase under hyperosmotic

conditions and correlate with the extent and duration of colonic

injury (Fig. 2A). The greatest increases in SPAK expression levels

were on days 3 and 5; SPAK transcripts were detected at

approximately 2.7-fold greater levels compared with untreated

mice (Fig. 2B), as shown by real-time PCR, immunohistochemistry

and Western-blot analyses. Together, these results indicate a

strong correlation between SPAK expression level and the extent

of hyperosmolarity.

Figure 1. SPAK expression profile in colon tissue from patients with ulcerative colitis. A. Immunostaining of SPAK in normal human colon
tissue and Crohn’s disease (CD) patient colon tissue from mucosal biopsies. SPAK expression (red); nuclear staining by DAPI (blue); SPAK is primarily
expressed in epithelial cells. B. The expression of SPAK mRNA in normal human and Crohn’s disease (CD) patient colon tissues from mucosal biopsies
were quantified by real-time PCR, ** p,0.01. C. 30 mg of protein from normal human colon and Crohn’s disease (CD) patient colon from mucosal
biopsies were examined by western blot with SPAK antibody, colon tissue from CD patients demonstrated significantly higher levels of SPAK
expression (upper part) vs. healthy colon, with GAPDH as the internal loading control.
doi:10.1371/journal.pone.0005049.g001

Hyperosmolarity Regulates SPAK
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Hyperosmolarity increases SPAK expression in intestinal
epithelial cell lines in vitro

Actin plays an important role in cell shape, volume and

regulation of barrier function through interaction with tight-

junction proteins; hence we examined the effects of hyperosmo-

larity on distribution of actin and expression levels of SPAK. We

found that hyperosmolarity treatment leads to increased levels of

Triton x-100-insolube F-actin and an increased ratio of F-actin

versus G-actin (Fig. 3A). The newly polymerized F-actin

predominantly localizes to the plasma membrane, where it forms

a thick ring [38,39] that persists as long as hyperosmolarity is

maintained. Furthermore, immunofluorescence showed that

hyperosmotic treatment leads to Caco2-BBE cell shrinkage and

increases the intercellular space. Importantly, hyperosmotic

conditions significantly increased SPAK expression levels and

recruitment of SPAK to the membranes of cells (Fig. 3A). SPAK

mRNA and protein levels were also increased, reaching maximum

level as early as 3 min after hyperosmotic treatment (Fig. 3B, 3C

and 3D). Here, we cannot conclude whether the high SPAK level

was due to new synthesis or recruitment of SPAK to the

membrane, or both. Under hyperosmotic conditions, SPAK levels

increase in Triton x-100-soluble and insoluble pool, indicating

SPAK recruitment to the F-actin-associated pool (Fig. 3E).

Together, these data show that, under hyperosmotic conditions,

increased SPAK is redistributed to actin-containing regions of the

plasma membrane.

Induction of SPAK is primarily at the transcriptional level
To determine whether the induction of SPAK expression under

hyperosmotic conditions was mediated by transcriptional or post-

transcriptional mechanisms, nuclear run-on assays (Fig. 4A) were

performed in Caco2-BBE cells pretreated with or without

hyperosmotic conditions. Compared with nuclei not exposed to

hyperosmotic conditions, exposure to hyperosmotic conditions

increased SPAK mRNA levels. This experiment was repeated

three times and similar results were obtained each time. These

results indicate that this increase in SPAK levels is due to increased

transcription.

The increase of SPAK transcription by hyperosmolarity is
not mediated by alteration of mRNA stability

Changes in steady-state mRNA levels may be due to changes in

the degradation rate of a transcript and/or rate of gene

transcription. Hence, it was important to investigate the relative

contribution of post-transcriptional mechanisms in the modulation

of SPAK mRNA levels by hyperosmolarity. To assess SPAK

mRNA stability, Caco2-BBE cells were treated with 5 mg/ml of

AcD to inhibit mRNA synthesis, and SPAK mRNA levels were

measured at the indicated time points in the presence and absence

of hyperosmolarity by real-time RT-PCR; 18S rRNA was used as

an internal control to normalize SPAK mRNA levels. The decay

rate of SPAK mRNA in AcD-treated Caco2-BBE cells was almost

the same as that of SPAK mRNA in cells treated with AcD plus

hyperosmolarity; no significant difference was detected (Fig. 4B).

In parallel, Northern-blot analyses were performed on 20-mg

samples of Caco2-BBE mRNA treated with or without AcD (5 mg/

ml) and/or exposed to hyperosmotic conditions (Fig. 4C). Results

showed that AcD can significantly reduce mRNA levels (Fig. 4C

lane 2) compared with untreated Caco2-BBE cells (Fig. 4C lane 1).

In addition, hyperosmolarity treatment (in the absence of AcD

treatment) markedly increased levels of SPAK mRNA transcripts.

However, if Caco2-BBE cells were pretreated with AcD for 1

hour, hyperosmolarity cannot reverse the AcD-induced mRNA

degradation. Together, these findings indicate that the observed

changes in SPAK protein level are due to increased SPAK mRNA

transcription rather than changes in mRNA stability.

Figure 2. SPAK expression profile in colon tissue from mice treated with hyperosmolarity. A. Immunostaining of SPAK in colon sections
of mice treated with hyperosmolarity at 0, 1, 3, and 5 days. SPAK (red); nuclear staining by DAPI (blue). B. Real time PCR analysis of SPAK mRNA
expression in mucosa from colon tissue of hyperosmolarity treated mice. ** p,0.01. C. Western blot analysis of SPAK (upper part) expression in
mucosa from colon tissue of hyperosmolarity treated mice, with GAPDH as the internal loading control.
doi:10.1371/journal.pone.0005049.g002
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Figure 3. SPAK expression in hyperosmolarity treated Caco2-BBE cells. A. Graph of ratio of triton x-100 insoluble actin v.s. soluble actin and
western blot. B. Immunostaining of SPAK in colonic Caco2-BBE cells treated with hyperosmolarity at 0 and 15 min. SPAK (green); actin by rhodamine
(red). (C) Real time PCR and (D) Western blot demonstrated that treatment of hyperosmolarity increases SPAK expression with GAPDH as internal
loading control, ** p,0.01, *** p,0.001. E. Western blot showed that SPAK expression is increased by hyperosmolarity and is recruited to the triton-
100 insoluble pool at 0, 1, 3, 8, 15 and 30 min.
doi:10.1371/journal.pone.0005049.g003

Figure 4. Hyperosmolarity regulates SPAK expression at the transcriptional level. A. Nuclear run-on assay indicated the increase of SPAK
mRNA transcription under the treatment of hyperosmolarity, with the mRNA transcription of GAPDH as internal control. B. Hyperosmolarity does not
change SPAK mRNA stability; the percentage of remaining SPAK mRNA is shown at the different time point. Solid circle represents the value of real
time PCR with the samples from Caco2-BBE cells without treatment, open circle represents the value of real time PCR with the samples from Caco2-
BBE treated with actinomycin D, solid triangle represents real time PCR with the samples from Caco2-BBE treated with actinomycin D and
hyperosmolarity. C. Northern blot analysis of total RNA from Caco2-BBE cells, Lane 1, no treatment, Lane 2, AcD, Lane 3, hyperosmolarity, and Lane 4,
AcD and hyperosmolarity. The lower RNA electrophesis shows equal loading of each condition.
doi:10.1371/journal.pone.0005049.g004
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Sp1- and NF-kB-binding sites have roles in SPAK
promoter activity

Having demonstrated that hyperosmolarity-induced SPAK

expression is regulated at the transcriptional level, we cloned a

,1.5-kb fragment of the 59-flanking region of the SPAK gene

from human genomic DNA to further understand the molecular

mechanisms underlying the increased expression of SPAK. To

identify the core promoter region of the SPAK gene, we generated

five partial deletion constructs fused with the luciferase reporter

gene. Caco2-BBE cells were transiently transfected with these

constructs, then stimulated by exposure to hyperosmotic condi-

tions (610 mOsm) for 30 min. Transcriptional activities were then

measured using the Dual-Luciferase Reporter Assay System

(Promega, San Luis, CA). The full-length promoter displayed

increases of ,18-fold in basal promoter activity and 74-fold in

hyperosmolarity-stimulated promoter activities, compared with

the empty pGL3 basic vector (Fig. 5A and 5B). Constructs I, II,

III, IV and V had ,16, 9, 10, 6 and 1-fold greater promoter

activities, respectively, compared with the pGL3 vector at the

basal level. Under hyperosmotic conditions, constructs I and II

showed ,70 and 53-fold increases, respectively, in promoter

activity compared with the basic vector pGL3, to give activities

that were about 95% and 72%, respectively, of the activity of the

full-length SPAK promoter. The basal and hyperosmolarity-

induced promoter activities of constructs III, IV and V were

greater than those of the pGL3 vector (,26, 20, 4-fold increases,

respectively); however, the activities were only about 35%, 27%

and 6%, respectively, of that of the full-length SPAK promoter

(Fig. 5B). To investigate and confirm the functional roles of the

relevant binding motifs in regulating SPAK promoter activity, we

generated various Sp1- and NF-kB-binding mutants (Fig. 5C).

Using the transcriptional activity assay, we found that all the Sp1

mutants had significantly reduced basal promoter activities

compared with the wild-type promoter, and the hyperosmolari-

ty-stimulated activity levels of these Sp1 mutants were also lower

than the wild-type promoter activity (Fig. 5C and 5D). By contrast,

although the NF-kB mutant basal luciferase activity was similar to

that of the wild-type promoter, there was a marked reduction in

Figure 5. Characterization of SPAK promoter. A. Schematic representation of human SPAK promoter constructs. the full-length SPAK promoter
(nt-1472 to +4); construct I (nt 21050 to +4); construct II (nt 2398 to +4); construct III (nt 2331 to +4); construct IV (nt 2149 to +4) and construct V (nt
272 to +4). Numbers are given in relation to the translational start codon (+1) and indicate 59-ends of the deletion constructs. The location of the
identified positive regulatory region is indicated by a light blue box. Positions of the putative Sp1 (Red) and NF-kB (Yellow) sites are indicated by
arrows. B. Promoter activities of the 59 deleted constructs in un-treated or hyperosmolarity-stimulated Caco2-BBE cells normalized to Renilla Luc
activities driven by the phRL-CMV control vector. Activities are expressed as fold inductions over cells transfected with the empty pGL3-basic vector.
Each value represents the mean6SD of at least 3 independent sets of transfection experiments performed in triplicate, *p,0.05; **p,0.01. C.
Schematic representation of mutated SPAK promoter constructs: the full-length SPAK promoter; I Sp1 binding site (2496); II Sp1 binding site (2303);
III Sp1 binding site (2114) and NF-kB binding site (2354). The digits are given in relation to the translational start codon (+1). The location of the
identified positive regulatory region is indicated by a light blue box. Positions of the putative Sp1 sites are indicated by arrows and NF-kB is indicated
by rectangle. The corresponding mutated transcription factor binding site is indicated by black arrow or black rectangle. D. Effects of mutations of
Sp1 or NF-kB binding sites on SPAK promoter activity. The various mutated constructs were transiently transfected into Caco2-BBE cells under the
basal (gray bar) or hyperosmolarity conditions. Promoter activity of the full-length wild-type construct was set to 100% (control). Values represent
means6SD of at least 3 independent sets of transfection experiments performed in triplicate, *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0005049.g005

Hyperosmolarity Regulates SPAK
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hyperosmolarity-stimulated promoter activity (,50% reduction)

(Fig. 5D). Taken together, these results show that the Sp1-binding

sites are important in basal and stimulated SPAK promoter

activities, and that the NF-kB-binding site has a crucial role in

hyperosmolarity-stimulation of SPAK promoter activities.

Sp1 and NF-kB are physically associated with their
corresponding binding sites

To study the association between the transcription factors and

the corresponding binding sequences, and to further confirm the

importance of Sp1 and NF-kB in activation of the SPAK gene, we

used electrophoretic mobility shift assays (EMSA) to characterize

binding of Sp1 and NF-kB to their respective binding sites: Sp1

2496 (Fig. 6A), Sp1 2303 (Fig. 6B), Sp1 2114 (Fig. 6C), and NF-

kB 2354 (Fig. 6D). EMSA revealed that incubation of the DNA–

protein complexes with anti-Sp1 or anti-p65 antibodies shifted the

migrating bands in an upward direction, indicating specificity for

Sp1 and NF-kB (p65) proteins (Fig. 6A, 6B, 6C and 6D, lane 4).

Exposure to hyperosmotic conditions for 30 min increased the

binding of Sp1 to the corresponding oligonucleotides compared

with the untreated control (Fig. 6A, 6B and 6C, lane 3). This

indicates that hyperosmolarity increases Sp1 expression or binding

of Sp1 to oligonucleotides. Similarly, as shown in Fig. 6C,

hyperosmolarity treatment increases NF-kB (p65) binding to the

corresponding oligonucleotides. To confirm the in vivo importance

of Sp1 and NF-kB (p65) binding sites in response to hyperosmo-

larity, we performed chromatin immunoprecipitation (ChIP)

analyses. As shown in Fig. 6E, under resting conditions, Sp1

binds to the I Sp1 (lane 1), II Sp1 (lane 3), and III Sp1 (lane 5)

binding sites and NF-kB (p65) binds to the NF-kB-binding site

(lane 7). Hyperosmolarity treatment increases the DNA-binding

activities of Sp1 and NF-kB (p65) to their binding sites. Together,

these results indicate that Sp1 and NF-kB binding increases under

hyperosmotic conditions. These data, together with the results of

the promoter studies, demonstrate the critical role of Sp1 and NF-

kB in the regulation of basal and hyperosmolarity-induced SPAK

expression.

Hyperosmolarity increases SPAK expression via increased
NF-kB expression in vivo

To confirm the effects of hyperosmolarity on SPAK expression,

nuclear proteins were extracted from colonic epithelial cells of

mice treated exposed to hyperosmotic conditions and subjected to

Western-blot analysis with Sp1 and NF-kB antibodies. As shown

in Fig. 7A, after different durations of hyperosmolarity exposure,

there was no significant change in the Sp1 protein level; however,

expression of NF-kB (p65) increased as early as the first day. These

in vivo data show that hyperosmolarity does not affect the overall

nuclear levels of Sp1; however, hyperosmolarity treatment induces

translocation of NF-kB (p65) to the nucleus and upregulates its

expression level. These results were confirmed with Caco2-BBE

cells exposed to hyperosmotic conditions. As shown in Fig. 7B,

hyperosmotic medium significantly increases NF-kB (p65) expres-

sion levels, but not Sp1 levels. Together, the in vivo and in vitro

studies demonstrate that hyperosmolarity regulates SPAK in a NF-

kB-dependent manner.

Figure 6. EMSA of (A) I Sp1 (2496), (B) II Sp1 (2303), (C) III Sp1 (2114), (D) NF-kB (2354). Lane 1, biotin-labeled oligonucleotide alone;
lane 2, biotin-labeled oligonucleotides incubated with 5 mg Caco2-BBE nuclear extracts; lane 3, biotin-labeled oligonucleotides incubated with 5 mg
hyperosmolarity-treated Caco2-BBE nuclear extracts; lane 4, biotin-labeled oligonucleotides incubated with 5 mg Caco2-BBE nuclear extracts in the
presence of anti-Sp1 (A–C) or NF-kB (p65) (D) antibodies; lane 5, biotin-labeled oligonucleotides incubated with 5 mg Caco2-BBE nuclear extracts in
the presence of non-specific IgG; lane 6, biotin-labeled oligonucleotides incubated with 5 mg Caco2-BBE nuclear extracts in the presence of a 50-fold
excess of cold competitor oligonucleotide; lane 7, biotin-labeled binding site-mutated oligonucleotides incubated with 5 mg Caco2-BBE nuclear
extracts. E. Chromatin immunoprecipitation (ChIP) assay: the antibodies indicated were incubated with cross-linked DNA isolated from Caco2-BBE
cells treated with (+) or without (2) hyperosmolarity, IgG antisera acts as control. Sp1 (I, II, and III) and NF-kB promoter elements in the
immunoprecipitates were detected by PCR. The lower panel shows DNA input as template for internal control.
doi:10.1371/journal.pone.0005049.g006

Hyperosmolarity Regulates SPAK
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Reduction of Sp1 or NF-kB expression differentially
regulates SPAK expression

One approach to studying the functional role of a specific protein

is to knockdown its expression. To further study SPAK regulation by

Sp1 and NF-kB, we used siRNA to prevent Sp1 and NF-kB

expression. As shown in Fig. 7C, Caco2-BBE cells transfected with

siRNA against Sp1 and NF-kB (p65) showed decreased expression

levels of Sp1 (lanes 1 and 2) and NF-kB (p65) (lanes 5 and 6)

compared with Caco2-BBE cells transfected with scrambled control

siRNA. Basal SPAK protein expression was also significantly

reduced in Caco2-BBE cells transfected with Sp1-specific siRNA

(SPAK lane 1 vs lane 4); however, there were no significant

reductions in SPAK expression in cells transfected with NF-kB (p65)-

specific siRNA (SPAK lane 5 vs lane 8). Thus, basal SPAK

expression is effectively reduced by reduced levels of Sp1. We further

investigated whether siRNA against Sp1 and/or against NF-kB

reduced the levels of hyperosmolarity-induced SPAK expression. As

shown in Fig. 7C, hyperosmolarity-induced SPAK expression levels

were significantly reduced in Caco2-BBE cells transfected with Sp1-

specific siRNA or NF-kB-specific siRNA (SPAK lanes 2 and 6,

respectively) compared with cells transfected with scrambled siRNA

(SPAK lane 3 and 7). These data demonstrate that Sp1 has an

important role in the basal expression of SPAK, and Sp1 and NF-kB

have important roles in the transcriptional regulation of SPAK

expression under hyperosmotic conditions.

SPAK expression regulates epithelial barrier function in
vitro

On the basis of our data showing that SPAK expression is

increased in colonic tissue of CD patients, we hypothesized that

SPAK may play a role in epithelial barrier function. We studied

permeability in Caco2-BBE cells stably transfected with SPAK/

pcDNA6, vector pcDNA6, SPAK siRNA or Con siRNA using a

fluorescein isothiocyanate (FITC)-labeled dextran method (Fig. 8A

Figure 7. Western blots of transcription factors Sp1 and NF-kB (p65). A. Western blots of Sp1 and NF-kB (p65) demonstrating
hyperosmolarity effect on Sp1 and NF-kB protein levels in vivo. Histone3 acts as a control. B. Western blots of Sp1 and NF-kB (p65) demonstrating
hyperosmolarity effect on Sp1 and NF-kB protein levels in vitro. Histone3 acts as a control. C. Reduction of NF-kB but not Sp1 expression reduced
SPAK protein expression in unstimulated and in hyperosmolarity-stimulated Caco2-BBE cells. Cells were harvested and subjected to western blot
analysis using Sp1, NF-kB (p65), and SPAK antibodies as described in materials and methods. GAPDH acts as a loading control.
doi:10.1371/journal.pone.0005049.g007

Figure 8. SPAK is involved in epithelial barrier function in vitro.
A. In vitro permeability assay in Caco2-BBE cells transfected with
pcDNA6, SPAK/pcDNA6, con siRNA or SPAK siRNA with 4 kDa FITC-
Dextran. Fluorescence was quantified in lower chamber at 2 hours after
the administration of FITC-dextran (l ex = 492 nm, l em = 510),
*p,0.05, **p,0.01. B. Western blot of Caco2-BBE cells protein scraped
from filter after the in vitro permeability assay.
doi:10.1371/journal.pone.0005049.g008

Hyperosmolarity Regulates SPAK
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and 8B), as described in the Materials and Methods. Fluorescence was

quantified in the lower chamber 2 hours after the administration

of FITC–dextran. As shown in Fig. 8A, vector-transfected cells

showed an FITC-dextran level of 12.162.6 ng of FITC/ml

protein/min. In comparison, there was a ,2-fold increase in

FITC-dextran levels in SPAK/pcDNA6-transfected cells

(23.864.03 ng of FITC/ml protein/min), almost no change in

FITC–dextran levels in Con-siRNA-transfected cells (13.963.2 ng

of FITC/ml protein/min), and a ,3.2-fold decrease in FITC–

dextran levels in SPAK-siRNA-transfected cells (4.361.3 ng of

FITC/ml protein/min). These results indicate that overexpression

of SPAK increases the permeability of cells and reduced SPAK

expression decreases the permeability.

SPAK expression regulates epithelial barrier function in
vivo

Transgenic mice have been widely used as a robust, dependable

animal model of human disease. To better understand the

function of SPAK in IECs, we generated transgenic mice that

expressed a constitutively active form of SPAK under the

control of the villin gene locus control region (LCR), which

can target SPAK expression only in IECs (as shown in Fig. 9A, 9B

and 9C) at the mRNA and protein levels, as described

previously [40]. Our data demonstrated that Caco2-BBE cells

stably transfected with SPAK showed increased permeability in

vitro, so it was important to study the role of SPAK in epithelial

barrier function in mice. With SPAK transgenic FVB/6 mice

harboring the villin gene, which limits SPAK overexpression in

the intestine, we studied barrier function in wild-type and

SPAK transgenic mice using the FITC-labeled dextran

method, as described in the Materials and Methods. Mice were

administered FITC–dextran by gavage, and fluorescence was

quantified in the serum 4 h after administration. As shown

in Fig. 9D, wild-type mice had a FITC–dextran level of

0.805678 mg /mg protein. By contrast, SPAK transgenic mice

showed a ,4.5-fold increase in the FITC–dextran level

(3.4696234 mg /mg protein), indicating decreased barrier

function in these mice.

Discussion

In this study, we demonstrated for the first time that colonic

SPAK expression levels are increased in mucosal biopsy samples of

patients with CD. It is known that patients with CD have

markedly higher colonic osmolarity compared with healthy

individuals [1,2,3], and this high colonic osmolarity contributes

to the activation of colonic mucosal inflammation in Crohn’s

colitis [1,4]. This high osmolarity also led to increased expression

of colonic SPAK in mice and a Caco2-BBE cell model, and the

SPAK expression level was correlated with the extent of colonic

mucosa injury. We can conclude that hyperosmolarity can

upregulate the SPAK expression. Hyperosmolarity can also

regulate the expression of other molecules; examples of such

regulation include upregulation of yeast alpha-glycerophosphate

dehydrogenase 1 (GPD1) [41], upregulation of IL-8 in bronchial

epithelial cells [8], peripheral blood mononuclear cells [7] and the

intestinal epithelial cell lines Caco2-BBE and HT29 [10],

upregulation of the taurine transporter (TauT) in ARPE-19 cells

[42], upregulation of MMP-9 in human corneal epithelial cells [6],

and downregulation of the cystic fibrosis transmembrane conduc-

tance regulator (CFTR) in HT29 and T84 cells [43].

Figure 9. SPAK is involved in epithelial barrier function in vivo. A. Schematic diagram of villin/SPAK transgene construct, full length SPAK
cDNA was cloned into villin vector by Bsiw1/Mlu1 sites; villin/SPAK was digested with Sal1 before microinjection. B. SPAK is tissue-specifically over-
expressed in intestine by real time PCR with samples from small intestine, colon and liver. C. SPAK is specifically over-expressed in intestine by
western blot with samples from small intestine, colon and liver. D. in vivo permeability assay in villin/SPAK transgenic mice, WT: wide type; TG:
transgenic mice, ** p,0.01.
doi:10.1371/journal.pone.0005049.g009
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We used the SPAK TATA-less promoter to study the

mechanisms underlying the hyperosmolarity-induced changes in

SPAK expression during intestinal inflammation. We found that

Sp1 binding sites are important both for basal and hyperosmo-

larity-induced promoter activities, whereas the NF-kB binding site

plays an important role in the hyperosmolarity-induced promoter

activity. Sp1 is known to support constitutive expression of a

variety of eukaryotic genes that lack a functional TATA box and is

thought to have key roles in regulating the expression of both

house-keeping [44,45] and non-house keeping genes [46]. NF-kB

comprises a family of proteins that form a variety of hetero- and

homodimers, the subunits of which upregulate gene transcription

induced by inflammatory stimuli such as cytokines, bacterial

products, viral expression, growth factors, and other stress stimuli

in an NF-kB-dependent manner [47,48]. Transcription of several

genes is upregulated, including those encoding the proinflamma-

tory cytokines IL-1, IL-6, IL-12, TNF-a, IFN-c and IL-8, the

chemokine MIP-1 and the adhesion molecule ICAM [49,50,51].

NFkB has also been shown to be involved in the regulation of

inflammatory responses in IBD [52,53]. NFkB is known to

function together with cooperating transcription factors and

coactivators, such as Sp1, to activate transcription [54,55,56].

For example, NF-kB can interact with Sp1 [57] to regulate HIV-1

[46], ICAM1 [58,59], and granulocyte macrophage colony-

stimulating factor 1 (GM-CSF); the interaction involves the zinc

finger region of Sp1 and the N-terminal Rel homology domain of

p65 [54]. Under certain conditions, NF-kB can also bind to the

consensus sequence of the Sp1 binding site, thereby competing

with Sp1 [60,61].

We found that hyperosmolarity does not affect the overall

nuclear levels of Sp1 in mice or Caco2-BBE cells, in agreement

with previous results [62]. However, under hyperosmotic condi-

tions the expression and translocation of NF-kB into the nucleus

were increased [10,15,63], which indicates that increased

expression of SPAK is, at least in part, due to increased expression

of NF-kB as well as increased binding of Sp1 and NF-kB to their

binding sites. Our data also show that knock-down of NF-kB (p65)

or Sp1 by siRNA can significantly decrease SPAK expression

levels, confirming their importance in the regulation of SPAK

expression and indicating their potential as a target for the

treatment of inflammatory diseases such as IBD [52,64,65,66,67].

Our results additionally demonstrate that NF-kB and Sp1

transcription factors are essential for regulation of SPAK

expression under hyperosmotic conditions. However, SPAK

expression may be regulated by multiple transcription factor

pathways because we have previously reported that TNF-a-

regulated SPAK expression is NF-kB-dependent but Sp1-inde-

pendent [29].

Nuclear run-on assays are commonly used to determine

whether an increase in mRNA level is due to an increase in

transcription, a decrease in the degradation rate, or both. For

example, mRNA levels in Drosophila [68] were found to be

regulated at a post-transcriptional level without evident transcrip-

tional regulation; however, simultaneous inhibition of both Erk

and p38 kinase pathways decreased the levels of cytokine gene

transcription (IL-6 and TNF-a) [69]. Our data show that exposure

to hyperosmotic conditions (for 60 min) significantly increases

SPAK mRNA transcription, which is in agreement with previous

reports that osmolarity does not affect mRNA stability or enzyme

degradation [70,71]. However, hyperosmolarity can regulate the

expression of target genes by several different mechanisms; for

example, the transcriptional decrease in mRNA levels of CFTR

[43] and TauT [42], and induction of IL-8 through activation of

NF-kB in a p38-kinase-dependent manner [8,10].

Hyperosmolarity has multiple and complex cellular effects. For

example, hyperosmolarity decreases Na+ transport and impairs

barrier function of sheep rumen epithelium [72]; however, it

increases the lung capillary barrier [73]. The mechanisms

underlying the various aspects of barrier function affected by

hyperosmolarity are complicated. First, hyperosmolarity activates

the p38 and JNK pathway (Figure S1), as demonstrated previously

[8,10,13,43,74,75], which in turn can lead to increased epithelial

permeability. Second, hyperosmolarity induces the production of

proinflammatory cytokines such as TNF-a, IL-1b, IL-6, IL-8

(Figure S2) that disrupt epithelial barrier function, as described

previously [10,12,13,16,76]. Third, hyperosmolarity can induce

apoptosis, resulting in the loss of barrier function [16,75,77].

However, in agreement with previous reports, in the present study

hyperosmolarity also activated the Erk1/2 pathway (Figure S1)

[75,78,79,80], which is involved in the mechanism by which

permeability is decreased [81]. Furthermore, hyperosmolarity

leads to redistribution and polymerization of cortical F-actin,

which is involved in the downregulation of cellular permeability

[82,83,84]. Hyperosmolarity can induce activation of focal

adhesion kinase and redistribution of focal adhesion protein,

which can lead to increased barrier function [85,86]. Finally, in

the present study, hyperosmolarity (610 mOsm, 30 min) did not

induce significant apoptosis in Caco2-BBE cells (Figure S3), which

eliminates the possibility that this pathway increases epithelial

permeability.

Here we showed that upregulation of SPAK expression is

directly involved in the regulation of intestinal barrier permeabil-

ity. As demonstrated using the FITC–dextran method in Caco2-

BBE cells and transgenic mice, SPAK can cause severe barrier

dysfunction. Transgenic mice harboring the SPAK gene under

control of the villin gene utilize the tissue-specific expression of

villin in the intestinal epithelium, which facilitates transgenic

SPAK expression in a tissue-specific manner [40] without causing

unexpected results in other tissues. The barrier dysfunction caused

by SPAK overexpression is important because it has a central role

in the pathogenesis of intestinal inflammation [87,88,89]. Different

mechanisms may underlie the SPAK-induced increase in trans-

epithelial permeability, including activation of the p38 pathway

[27,28], which can increase epithelial permeability. A strong link

has been established between the p38 pathway, cell volume

change and inflammation [8,10,90,91], as well as in the regulation

of cell motility and wound healing [45,92,93].

In conclusion, we report that during inflammatory diseases

(such as IBD) and hyperosmotic conditions, the SPAK expression

level was significantly upregulated at the transcriptional level due

to multiple factors, including the transcription factors NF-kB and

Sp1. Our data demonstrate that SPAK expression is upregulated

by hyperosmolarity and is an important mediator of barrier

function. SPAK expression may thus contribute to the pathogen-

esis of intestinal inflammatory diseases such as IBD.

Materials and Methods

Human material
The diagnosis of IBD was based on clinical, endoscopic, and

histological criteria. Clinical data for IBD patients were obtained

by medical record review. Infectious colitis was ruled out by stool

cultures. The collection of samples was approved by the

Institutional Review Board of Emory University. Mucosal biopsy

specimens from 4 Crohn’s disease active patients were obtained

during routine endoscopy that was performed after written

informed consent was obtained. Control biopsy samples were

collected from 6 volunteers undergoing colonoscopy for colorectal

Hyperosmolarity Regulates SPAK

PLoS ONE | www.plosone.org 9 April 2009 | Volume 4 | Issue 4 | e5049



cancer screening who had no overt pathology including polyps.

Biopsy specimens were snap frozen in Optimal Cutting Temper-

ature immediately after endoscopic resection and stored at 280uC
for histological immunostaining or homogenized to extract protein

for western immunoblotting or RNA for real time PCR.

Mouse model
C57BL/6 and FVB/6 mice (8 wk, 18–22 g) obtained from

Jackson Laboratories (Bar Harbor, ME). Mice were group housed

under a controlled temperature (25uC) and photoperiod (12:12-h

light-dark cycle) and allowed unrestricted access to standard

mouse chow and tap water. They were allowed to acclimate to

these conditions for at least 7 days before inclusion in the

experiments. All animal experiments were approved by The

Institutional Animal Care and Use Committee of Emory

University, Atlanta and were in accordance with the guide for

the Care and Use of Laboratory Animal, published by the U.S.

Public Health Service. Groups of mice (n = 6 mice/group) were

treated with hyperosmotic medium (610 mOsm) prepared by

dissolving mannitol (0.3 M) in phosphate buffered saline (PBS) for

indicated days.

Generation of transgenic mice
The full-length human colonic SPAK cDNA [28] spanning

from nucleotide 139 to 1569 was introduced into the BsiWI/MluI

site of pBS KS Villin MES SV40 polyA vector [40] harboring the

villin gene, the villin promoter can target SPAK over expression in

villin-containing intestine. The transgene SPAK digested with SalI

were injected into the pronuclei of the fertilized eggs of the FVB/6

mice in collaboration with the Transgenic Mouse and Gene

Targeting Core Facility (Emory University). Transgene-carrying

mice were identified by PCR of genomic DNA extracted from

mice tails with REDExtract-N-Amp Tissue PCR kit (Sigma-

Aldrich, ST. Louis, MO). The primers were: Prim1F (59 GGC-

TGTGATAGCACACAGGA 39) and Prim1R (59 CTGCC-

TGAACCACAGCAGTA 39) or Prim2F (59 TGGGTTTGCT-

CAGTTGAGTG 39) and Prim2R (59 AGTCGACGAATTCC-

GATTTG 39). Stable SPAK-transgenic lines were established by

backcrossing transgene-carrying founder mice with FVB/6 mice

(Jackson Laboratories, Bar Harbor, ME).

Cell culture
Human intestinal cell line Caco2-BBE was cultured according

to the standard protocol. Caco2-BBE cells were treated with

isosmolar medium or hyperosmotic mdium (610 mOsm) prepared

by adding 0.3 M mannitol (Sigma-Aldrich, ST. Louis, MO) to

regular Dulbecco’s modified Eagle’s medium DMEM (Invitrogen,

Carlsbad, CA).

Plasmids construction
SPAK promoter, its different truncates and site-directed

mutants were cloned and constructed in our lab previously [29].

Western blot
Western blot were carried out based on the standard methods

with relevant antibodies.

Immunohistochemistry
Immunostaining was performed according to the standard

protocol. Briefly, 7-mm cryostat sections of mouse colon were fixed

in buffered 4% paraformaldehyde for 30 min, blocked specimen in

5% normal rabbit serum in PBS/Triton for 1 h, and incubated

with rabbit SPAK antibody (Cell signalling technology Inc,

Danvers, MA) overnight at 4uC, washed with phosphate-buffered

saline (PBS), and subsequently incubated with fluoresceinated

secondary antibody for 1 h at room temperature. Colon sections

were stained with 49, 6-Diamidine-29-phenylindole dihydrochlo-

ride (DAPI) to visualize nuclear.

Caco2-BBE cells grown on filters were washed and fixed with

4% paraformaldehyde in PBS with calcium for 20 min. The cells

were then permeabilized with 0.1% Triton/PBS for 30 min at

room temperature. Monolayers were incubated with rabbit SPAK

antibody and then with relevant fluoresceinated secondary

antibody same as for colon cryostat sections. Subsequently,

monolayers were stained with rhodamine/phalloidin (Molecular

Probes, Carlsbad, CA) to visualize actin. Samples were mounted in

p-phenylenediamine/glycerol (1:1) and analyzed by confocal

microscopy (Zeiss dual-laser confocal microscope).

Real time PCR
total RNA from Caco2-BBE cells, mucosa of mouse colon tissue

and patients biopsy specimens were extracted with TRIzol reagent

(Invitrogen, Carlsbad, CA), reverse transcribed using the Thermo-

scriptTM RT-PCR System (Invitrogen, Carlsbad, CA) and purified

with the RNeasy Mini Kit (Qiagen, Germantown, MD). Real time

PCRs were performed using iQ SYBR Green Supermix kit (Bio-

Rad, Hercules, CA) with the iCycler sequence detection system

(Bio-Rad, Hercules, CA) with specific primers. For human SPAK:

sense 59 TGGAATTAGCAACAGGAGCAGCG 39, antisense 59

TTTCCAAAGTGGGTGGATCATTT 39, GAPDH acts as

internal control: sense 59 ACCACAGTCCATGCCATCAC 39,

antisense 59 TCCACCACCCTGTTGCTGTA 39. For mouse

SPAK: sense 59 GTAAGGCGAGTTCCTGGGTCG 39, anti-

sense 59 CCAGTCGCCGTCTTCAGTCTT 39 36B4 acts as

internal control: sense 59 TCCAGGCTTTGGGCATCA 39,

antisense 59 CTTTATCAGCTGCACATCACTCAGA.

Nuclear protein extraction
Nuclear protein was extracted from Caco2-BBE cells or

mucosa from mice colon tissue treated with hyperosmotic

medium. Cells and mucosa were washed once in ice-cold PBS,

and centrifuged at 800 rpm for 5 min. The resulting pellets were

resuspended in 5 ml of cold lysis buffer (10 mM HEPES, 10 mM

KC1, 1.5 mM MgC12, and 0.1% Nonidet P-40; pH 7.9 at 4uC)

for 10 min on ice. For the isolation of nuclei, the lysate was

vigorously mixed and centrifuged for 5 min at 12,000 g and 4uC,

and the nuclear pellet was washed once with 1 ml of Nonidet P-

40-free lysis buffer. For the extraction of nuclear proteins, the

nuclear pellet was resuspended in 1 ml of protein extraction

buffer (420 mM NaCl, 20 mM HEPES, 1.5 MgCl2, 0.2 mM

EDTA, and 25% glycerol; pH 7.9) for 10 min at 4uC. After

being vigorous mixed, the nuclear suspension was centrifuged for

5 min at 4uC. The protein content in the final supernatant

(nuclear protein extract) was measured using the Bradford

method (Bio-Rad, Hercules, CA). DTT (0.5 mM), PMSF

(0.5 mM), and leupeptin (10 pg/ml) were added to the lysis

and extraction buffers just before use. The diluting buffer

contained the same amounts of DTT and leupeptin but only 0.2

mM PMSF. Samples were stored at 270uC until use.

Transient transfection and luciferase reporter gene assay
Renilla (phRL-CMV, 5 ng) and relevant SPAK promoter

constructs (4 mg) were co-transfected into Caco2-BBE cells with

Lipofectin (Invitrogen, Carlsbad, CA). After stimulation, the

resulting luminescence was measured for 10 s in a luminometer

(Luminoskan, Thermal Labsystems, MA). Each luciferase activity

was normalized based on the control Renilla luciferase activity.
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Extracts were analyzed in triplicate, and each experiment was

performed for at least three times.

Electrophoretic Mobility Shift Assays (EMSAs)
Probes were end labeled with a Biotin 39 End DNA Labeling

Kit (Pierce, Rockford, IL). Standard EMSAs and supershift

EMSAs with relevant antibodies were performed using the

LightShift Chemiluminescent EMSA Kit (Pierce, Rockford, IL).

Probe labeling and protocol for EMSAs were as described

previously [29].

Chromatin immunoprecipitation assay
Sp1 and NF-kB chromatin immunoprecipitation (ChIP) assays of

Caco2-BBE cells treated with hyperosmolarity (610 mOsm) for 30

min were performed using the ChIP Assay Kit (Upstate Cell

Signaling Solutions, Lake Placid, NY) according to the manufac-

turer’s instructions. Briefly, Caco2-BBE cells were fixed with 1%

formaldehyde for 10 minutes at 37uC to initiate cross-linking,

scraped off the plate, washed with ice-cold PBS, and resuspended in

200 ml of sodium dodecyl sulfate lysis buffer for 10 minutes on ice.

Cells were then sonicated with three sets of 10-second pulses at 35%

power to shear the DNA into 200 1,000-bp fragments. Samples

were centrifuged, and the supernatant (used as total DNA input) was

diluted in ChIP dilution buffer and precleared with a protein A

agarose-salmon sperm DNA slurry to reduce the nonspecific

background. Samples were then immunoprecipitated with 2 mg of

mouse anti-Sp1 (Upstate Cell Signaling Solutions) or 3 mg of rabbit

anti-p65 antibody (Santa Cruz Biotechnology) overnight at 4uC.

Complexes were collected in a protein A agarose-salmon sperm

DNA slurry for 1 hour at 4uC, washed once each with the provided

low-salt, high-salt, and LiCl wash buffers, and then washed twice in

Tris-EDTA buffer [10 mmol/L Tris-HCl (pH 8.0) and 1 mmol/L

EDTA]. The immunoprecipitated chromatin was eluted from

protein A using freshly prepared elution buffer (100 mmol/L

NaHCO3 and 1% sodium dodecyl sulfate), and the protein-DNA

cross-links were reversed by treatment with NaCl (200 mmol/L) at

65uC for 4 hours. The DNA was purified by incubation with

proteinase K at 45uC for 1 hour, followed by phenol-chloroform

extraction and ethanol precipitation with glycogen. Sp1 (I, II, and

III) and NF-kB binding sites in immunoprecipitates were detected

by PCR using the following specific primers: Sp1 IF 59

GTAAATGAACTTCAGGTTCTCTTTG 39, Sp1 IR: 59

CGCCCTGCGCCTTGGCCC CAGACGA 39; Sp1 IIF 59

AGCACACACAAAGCGGCCTGACTCC 39, Sp1 IIR 59

CCCAGAGCCTAGCGCGCGCTGTTCT 39; Sp1 IIIF 59

CTGGCTTCGGCGGGGAC GGCGGCGG 39; Sp1 IIIR 59

CCATGATGCTGCGGAGGAGAGCAGGAG 39; NF-kBF 59

GGCGCAGGGCGAGCAGGGAGGGAGG 39, NF-kBR 59

TGTTCTCCGCCTCGG CGAGGGGAAC 39. The products

were resolved on a 1% agarose gel and visualized with ethidium

bromide.

Transfection of siRNA
Subconfluent (60%) Caco2-BBE cells plated on six-well plates

(Costar, Corning, NY) were transfected with siRNA duplexes

directed against Sp1 and NF-kB, and a non targeting siRNA was

used as the control for non-sequence-specific effects of siRNAs

(Ambion, Austin, TX) using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA) in serum-free medium. Serum was added after 24

h, Caco2-BBE cells underwent hyperosmolarity treatment (610

mOsm) for 30 min; cells were then collected for western blot

analysis with relevant antibodies.

Nuclear run-on assay
Nuclear run-on assay was performed following the previous

protocol [94] with little modification. Briefly; nuclei were isolated

from Caco2-BBE cells treated with or without hyperosmolarity for

1 hour. Around 56107 cells were pelleted then lysed on ice for 10

min in lysis buffer containing 0.3 M sucrose, 0.4% (v/v) NP-40, 10

mM Tris-HCl at pH 7.4, 10 mM NaCl, and 3 mM MgCl2. After

centrifugation (15 min at 500 relative centrifuge force), the nuclear

pellet was resuspended and subjected to a repeat (5 min) lysis to

remove any remaining intact cells. Following centrifugation, nuclei

were purified by centrifugation through a 2.0 M sucrose cushion.

The nuclei were resuspended in 300 ml of transcription buffer (50

mM Tris-HCl [pH 8.0], 150 mM KCl, 5 mM MgCl2, 0.5 mM

MnCl2, 1 mM dithiothreitol, 0.1 mM EDTA, 10% glycerol). After

pretreatment with 1 ml of 50 mg/ml RNase A and followed by 2.5

ml of 100 units RNasin, the in vitro elongation reaction was initiated

with the addition of ribonucleotides to a final concentration of 0.25

mM each ATP, GTP, CTP and UTP. The reaction was carried

out for 25 min at 30uC. After incubation with RNase-free DNase,

RNA was extracted with phenol-chloroform, precipitated with

ammonium acetate and isopropanol, washed with 70% ethanol,

and dissolved in water. cDNA was synthesized with The Super-

ScriptH III First-Strand Synthesis System (Invitrogen, Carlsbad,

CA) and amplified with Platinum Taq DNA polymerase

(Invitrogen, Carlsbad, CA) using SPAK HQF and SPAK HQR

as primers. GAPDH acts as internal control. The products were

resolved on a 1.5% agarose gel and visualized with ethidium

bromide.

SPAK mRNA stability assay and northern blot
For mRNA decay experiments, Caco2-BBE cells pretreated

with actinomycin D (5 mg/ml) for 1 hour to arrest transcription

were cultured in hyperosmotic medium (610 mOsm) or isoosmotic

DMEM at indicated time points. The decay of SPAK mRNA was

examined by real time PCR with specific primers SPAKHQF: 59

TGGAATTAGCAACAGGAGCAGCG 39 and SPAKHQR: 59

TTTCCAAAGTGGGTGGATCATTT 39. Levels of mRNA

were then standardized against 18s rRNA levels with primers

18SF: 59 CCCCTCGATGCTCTTAGCTGAGTGT 39 and

18SR: 59 CGCCGGTCCAAGAATTTCACCTCT 39, taking

into account a previous determination of 65 hours for 18s rRNA

half life [95], and plotted as the percentage of remaining mRNA

compared to message levels at the 0 time point (where there is a

100% maximum mRNA level). The 1-hour time point sample was

also used for Northern blot analysis with the North2South

complete biotin random prime labeling and detection kit (Pierce,

Rockford, IL) with probe generated by PCR with primers:

SPAKNorFor 59 CTGATTGAGAAGCTGCTTACAAG 39 and

SPAKNorRev 59 CAAGAAGAAGCTTCTCTGTAGTC 39.

Permeability assay
In vitro and in vivo permeability assays to determine barrier

function were performed using the FITC-Dextran method as

described previously [96,97]. For in vito permeability assays,

Caco2-BBE cells transfected with SPAK/pcDNA6, vector

pcDNA6, SPAK siRNA (Ambion, Austin, TX) and con siRNA

(same sequence with random order) were plated on transwell filters

(Costar, Corning, New York) to grow to just confluency. For

permeability assays, 100 ml of conditioned medium with FITC-

Dextran (10 mg/ml, MW 4 kDa; Sigma-Aldrich, ST. Louis, MO)

are added into the upper chamber of the transwell chamber, the

plate is incubated at 37uC in an atmosphere of 5% CO2. Samples

are taken from the lower chamber with/without treatment of

hyperosmolarity (610 mOsm) for 30 min. The permeability of the
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epithelial monolayer correlates with the fluorescence intensity in

the lower chamber (l ex = 492 nm, l em = 510 nm; Cytofluor

2300; Millipore, Waters Chromatography). Values are shown as

nanograms per milliliter per minute FITC-dextran present in the

basolateral reservoir. For in vivo permeability assay, 8-wk old wild

type and SPAK transgenic mice were used. Food and water were

withdrawn for 4 h and mice were gavaged with permeability tracer

FITC-labeled dextran (60 mg/100 g body weight MW 4 kDa;

Sigma-Aldrich, ST. Louis, MO). Serum was collected retro-

orbitally 4 h after gavage; fluorescence intensity of each sample

was measured (l ex = 492 nm, l em = 510 nm; Cytofluor 2300;

Millipore, Waters Chromatography); and FITC-dextran concen-

trations were determined from standard curves generated by serial

dilution of FITC-dextran and represented as mg FITC-dextran/mg

protein.
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