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Abstract
The interferon system provides a powerful and universal intracellular defense mechanism against viruses. Knockout mice defective in IFN

signaling quickly succumb to all kinds of viral infections. Likewise, humans with genetic defects in interferon signaling die of viral disease at

an early age. Among the known interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins belong to

the dynamin superfamily of large GTPases and have direct antiviral activity. They inhibit a wide range of viruses by blocking an early stage of

the viral replication cycle. Likewise, the protein kinase R (PKR), and the 2–5 OAS/RNaseL system represent major antiviral pathways and

have been extensively studied. Viruses, in turn, have evolved multiple strategies to escape the IFN system. They try to go undetected, suppress

IFN synthesis, bind and neutralize secreted IFN molecules, block IFN signaling, or inhibit the action of IFN-induced antiviral proteins. Here,

we summarize recent findings about the astonishing interplay of viruses with the IFN response pathway.

# 2007 Elsevier Ltd. All rights reserved.
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1. Starting point: interferon-mediated inborn
resistance to viruses in mice

Historically, mouse models of genetically determined

resistance against viruses were useful to find antiviral factors

involved in innate immunity. Some inbred mouse strains

proved to be less susceptible to infection by specific viruses

than others. In most cases, the degree of antiviral resistance

was controlled by several genes, but occasionally a single

gene was found to be responsible [1]. A good example is the

inborn resistance against influenza and influenza-like

viruses found in wild mice and some inbred mouse strains

[2–4]. Forty-five years ago, Jean Lindenmann, co-discoverer

of interferon with Alick Isaacs, described an inbred mouse

strain which was unusually resistant when infected with

doses of influenza A virus (FLUAV) that were lethal to

ordinary laboratory mice [4]. Subsequent work revealed that

this unusual resistance is brought about by a single gene,

Mx1 (for orthomyxovirus resistance gene 1), localized on

mouse chromosome 16 [5], and that the Mx1 protein has
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intrinsic antiviral activity [6,7]. Unexpectedly, the Mx1 gene

turned out to belong to the so-called interferon (IFN)

responsive genes (ISGs) and is strictly regulated by type I (a

and b) and type III (l) IFNs [8,9]. Gene expression is rapidly

induced in viral infections through the action of virus-

induced IFNs. In the absence of IFNs, the Mx gene is silent,

making Mx transcripts or protein an excellent marker for

type I IFN activity [10,11].

In influenza virus-susceptible mice, the Mx1 gene is

defective. Most inbred strains of mice carry nonfunctional

Mx1 alleles [12]. Why intact Mx1 genes are absent in most

inbred mouse strains remains unresolved. Most likely, the

reason is a founder effect, suggesting that most laboratory

mice share the distal part of chromosome 16 with a common

ancestor mouse. Genetic defects present in laboratory mice

but rarely in wild mice have been described for other gene

loci. A single autosomal dominant gene locus, designated

Flv/Wnv, is responsible for natural resistance of mice against

infection with West Nile virus (WNV) and other flaviviruses.

The gene was recently identified as Oas1b, a member of a

large IFN-regulated gene family encoding 20-50-oligoade-

nylate synthetases (2–5 OAS) known to play an important

role in antiviral defense [13,14]. The intact Oas1b gene is
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again found in wild mice and some rare inbred strains but not

in most laboratory strains which carry a nonsense mutation

in the distal part of chromosome 5. In contrast to Mx1,

comparisons of the mouse and human genomes did not

reveal a direct equivalent of the mouse Oas1b gene in

humans [15]. Additional examples of genetic resistance are

known in mice in which single genes play a major role [16].

Here, we summarize recent advances in our under-

standing of some of these IFN-regulated defense mechan-

isms and discuss how viruses manage to counteract these

restriction elements.
2. Transcriptional activation of IFN genes

Type I IFNs are produced by cells in direct response to

virus infection and comprise a large number of IFN-a

subspecies and a single IFN-b, as well as some additional

family members [17,18]. The recently discovered IFN-l1,

IFN-l2, and IFN-l3 (also termed IL-28A, IL-28B, and IL-

29) are functionally similar to the type I IFNs but use distinct

receptors to mediate their antiviral activity [19]. Conserved

molecular signatures of viruses serve as ‘‘danger signals’’

which are recognized by specialized receptors of the host

cell. These receptors are collectively called pattern

recognition receptors (PRRs) because they recognize a

diverse range of conserved pathogen-associated molecular

patterns (PAMPs) found in infectious disease agents (Fig. 1).

The main PAMP of viruses appear to be nucleic acids, such
Fig. 1. Type I IFN induction. PAMP recognition by intracellular PRRs leads

to activation of the transcription factors NF-kB, IRF-3 and AP-1 (not

shown). The cooperative action of these factors is required for full activation

of the IFN-b promoter. IRF-3 is phosphorylated by the kinases TBK-1 or

IKKe which in turn are activated by RIG-I or MDA5 via IPS-1. NF-kB is

activated by the PKR pathway as well as by IPS-1. The IFN-induced IRF-7

later enhances IFN gene transcription, but is also involved in immediate

early IFN-b transcription.
as double-stranded RNA (dsRNA) molecules [20] and

specific structures at the 50 end of certain viral ssRNA

genomes which carry a 50 triphosphate group [21,22].

dsRNA or 50 triphosphate moieties are usually not present on

host RNA species and appear to provide an ideal recognition

pattern for non-self [23].

Induction of type I IFN gene expression is transcription-

ally regulated and is best understood for IFN-b (Fig. 1). The

IFN-b promoter has binding sites for several transcription

factors which cooperate for maximal promoter activation.

There is general agreement that interferon regulatory factor

3 (IRF-3) plays a central role [24]. IRF-3 needs to be

phosphorylated to become active. The enzymes responsible

for IRF-3 phosphoryation have recently been demonstrated

to be the IKK-like kinases IKKe and TBK-1 [25,26]. These

kinases are activated by the RNA helicase RIG-1 and/or

MDA5 [27,28] and, presumably, some Toll-like receptors

(TLR) [29,30]. RIG-I and MDA5 bind dsRNA molecules

and 50 triphosphorylated ssRNAs in the cytoplasm of

infected cells. Phosphorylated IRF-3 homo-dimerizes and

moves into the nucleus where it recruits the transcriptional

coactivator, CREB-binding protein (CBP), to initiate IFN-b

mRNA synthesis [24]. In addition, NF-kB and ATF-2/cJUN

(AP-1) are activated as a more general stress response.

Together these transcription factors strongly upregulate

IFN-b expression (Fig. 1).

A second IRF family member, IRF-7, is expressed in

most cells at very low amounts. It needs to be induced by

IFN to reach sufficient levels and is then activated by virus

infection in much the same way as IRF-3 [31]. IRF-7 is part

of a positive feedback loop leading to amplification of IFN

gene expression. Activated IRF-7 cooperates with IRF-3 and

stimulates expression of the numerous IFN-a genes leading

to a broad IFN-a response [32]. In specialized IFN-a-

producing cells, e.g. plasmacytoid dendritic cells, IRF-7 is

constitutively present at high levels and is directly activated

in response to signals from certain TLRs which stimulate

immediate IFN-a synthesis [33,34].
3. Interferon-induced antiviral pathways

The various IFN-a subspecies and the single IFN-b bind

to and activate a common type I IFN receptor (IFNAR),

whereas type III (l) IFNs activate their cognate type III

receptor. Both receptors signal to the nucleus through the so-

called JAK-STAT pathway (Fig. 2). This pathway is well

characterized [35] and will not be described here in detail.

Type I and type III IFNs activate the expression of an

overlapping set of more than 300 IFN-stimulated genes

(ISGs) which have antiviral, antiproliferative, and immu-

nomodulatory functions [36,37]. Three IFN-induced

enzyme systems represent major antiviral pathways and

have been extensively studied. These include protein kinase

R (PKR) [38,39], the 2–5 OAS/RNaseL system [40] and the

Mx GTPases [41]. Mice lacking one of these components
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Fig. 2. IFN signalling. IFN-a and IFN-b bind to the type I IFN receptor

(IFNAR) and activate the expression of numerous ISGs via the JAK/STAT

pathway. IRF-7 amplifies the IFN response by inducing the expression of

several IFN-a subtypes. Mx, ISG20, OAS and PKR are examples of proteins

with antiviral activity.
show dramatically increased virus susceptibilities [42,43].

Interestingly, cells from so-called triple knock-out mice

lacking PKR, RNaseL and Mx1 are still capable of mounting

a limited IFN-induced antiviral state, indicating that

additional antiviral pathways exist [43].

Additional proteins with potentially important antiviral

activities are ISG20 [44], P56 [45,46], guanylate-binding

protein-1 (GBP-1) [47] and promyelocytic leukemia protein

(PML) [48]. ISG20 is an IFN-induced 30-50 exonuclease that

specifically degrades ssRNA in vitro. Expression of ISG20

leads to a reduction in vesicular stomatitis virus (VSV) gene

expression and blocks viral replication in cell culture [44].

P56 binds the eukaryotic initiation factor 3e (eIF3e) subunit

of the eukaryotic translation initiation factor eIF3 and is

likely to suppress viral as well as cellular RNA translation

[46,49]. GBP-1 belongs to the dynamin superfamily of large

GTPases like Mx and has antiviral activity against VSV [47].

Finally, the PML protein is a TRIM family member (also

called TRIM19) which shuttles between the cytoplasm and

the nucleus where it forms a specialized subnuclear

compartment known as nuclear domain-10 (ND10) or

PML nuclear body. Overexpression of PML has been found

to suppress replication of several viruses, including VSV,

influenza A virus (FLUAV) [50], lymphocytic choriome-

ningitis virus [51] and human foamy retrovirus (HFV) [52].

Interestingly, cells from wild-type and PML knockout mice

proved to be equally permissive for herpes simplex virus 1

(HSV-1) and FLUAV, suggesting that PML itself has no

antiviral activity against these viruses [53,54]. Rather, IFN

responsiveness of cells may be influenced by PML and PML

nuclear bodies, as suggested by recent findings [53].
4. Mx is a major player in IFN-induced host defense

All available evidence indicates that recovery from

influenza virus infection in mice requires a functional Mx1

defense system [7]. Numerous experiments using Mx1-

congenic or Mx1-transgenic mice demonstrated that the Mx1

system is indispensable for recovery from infection with

otherwise deadly influenza viruses [55]. Moreover, it became

clear that the course of disease observed in Mx1-positive mice

reflects quite well the characteristics of an uncomplicated

acute influenza virus infection in man, indicating that these

animals better mimic the innate immune system of humans

than standard laboratory mice. The human ortholog, called

MxA, has a broad antiviral activity against a range of different

viruses. MxA-sensitive viruses include members of the

bunyaviruses, orthomyxoviruses, paramyxoviruses, rhabdo-

viruses, togaviruses, picornaviruses, reoviruses and Hepatitis

B virus, a DNA virus with a genomic RNA intermediate [41].

The mechanism of action has so far been studied for a small

number of viruses only and is still incompletely understood. In

general, Mx proteins were found to bind to essential viral

components and to block their functions. For example, the

human MxA protein accumulates in the cytoplasm of IFN-

treated cells and blocks replication of the infecting virus soon

after cell entry. It has been shown to target the viral capsids by

recognizing the major capsid component, the viral ribonu-

cleoprotein of some orthomyxo- and bunyaviruses [56–58].

The protective power of the human MxA GTPase is best

demonstrated in MxA-transgenic mice. Human MxA was

sufficient to turn susceptible Mx1-negative mice into resistant

animals [59]. Moreover, even the constitutive expression

of MxA in otherwise IFN-nonresponsive IFNAR0/0 ani-

mals conferred full resistance against disease, thus high-

lighting the importance of the human Mx system for antiviral

defense [59].
5. Viral countermeasures

Viruses are known to block the IFN system at different

levels, and different approaches are used by different viruses

to accomplish this. An efficient strategy is used by vaccinia

and other poxviruses which express soluble IFN-binding

proteins to neutralize secreted IFN molecules [60–63].

Most viruses have evolved multifunctional proteins which

specifically target distinct components of the IFN signaling

cascade. A large number of viral proteins with anti-IFN

properties have been described in the past few years and

have been extensively described in a number of recent

reviews [64–66].

5.1. Viral subversion of IFN induction

To subvert innate immunity, many viruses interfere with

one or several steps in the IFN induction pathway. The NS1

protein of influenza A virus binds to both dsRNA and ssRNA
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presumably by recognizing inter- or intramolecular dsRNA

regions. Importantly, NS1 also associates with RIG-I in

infected cells and seems to impair its signaling function

[22,67]. In contrast, the V protein of paramyxovirus SV5 has

no apparent RNA-binding activity. It inhibits IFN induction

by targeting the RIG-I-related RNA sensor MDA-5 [27,68].

Next in line is the adaptor protein Cardif/IPS-1/MAVS/

VISA which connects the RNA sensors RIG-I and MDA5

with the IRF-3 kinases TBK-1/IKK-e [69–72]. It is

specifically cleaved by the NS3-4A protease of hepatitis

C virus (HCV) and additional flaviviruses [70,73,74] (see

also contribution of Michael Gale in this volume).

Activation of IRF-3 by TBK-1 is prevented by the phos-

phoprotein P of Rabies virus [75] and the G1 glycoprotein of

the hantavirus NY-1 [76]. IRF-3 itself is degraded by the

NPro proteins of pestiviruses such as classical swine fever

virus and of bovine viral diarrhea virus [77–79] via the

proteasomal pathway [80,81]. Also, the E6 protein of human

papilloma virus 16 binds and inactivates IRF-3 [82], and the

proteins ORF 3b, ORF 6 and N of SARS-coronavirus

directly target IRF-3 [83] to inhibit IFN induction [84]. A

sophisticated strategy to block IRF-3 is used by certain

herpesviruses. Human herpes virus 8 (HHV-8), the causative

agent of Kaposi sarcoma, expresses several IRF homo-

logues, termed vIRFs, which exert a dominant-negative

effect [85–91].

Many viruses which lytically infect the host cell simply

prevent IFN synthesis by imposing a general block on

host cell transcription. For example, the nonstructural

NSs proteins of the Rift Valley Fever virus and Bunyam-

wera virus interfere with the basic transcription machinery

[92–95].

5.2. Targeting the effector proteins of the antiviral state

An efficient way to escape the IFN response is to directly

inhibit the proteins that mediate the antiviral state. IFN-

regulated PKR and 2–5 OAS are expressed in a latent,

inactive form in uninfected cells. Both enzymes need to be

activated by viral dsRNA. This requirement makes them

vulnerable to IFN antagonists found in many viruses. Some

viruses express RNA-binding proteins which are able to

prevent the activation of PKR or the 2–5 OAS/RNaseL

system by sequestering dsRNA molecules [96–103]. An

alternative strategy used by viruses is to encode small RNAs

which compete with dsRNA for binding to PKR, thereby

preventing activation. This is the case for adenoviruses

[104], HCV [105], Epstein-Barr virus (EBV) [106], and

HIV-1 [107]. Several viruses express proteins which either

directly bind to or otherwise inactivate PKR. For example,

the g34.5 protein of HSV-1 triggers the dephosphorylation

of eIF-2a, thus reverting the translational block established

by PKR [108]. The E2 protein of HCV acts as pseudosub-

strate for PKR [109], as does the Tat protein of HIV-1 [110]

or the K3L protein of vaccinia virus [111]. Interestingly,

FLUAV exploits a cellular pathway to block PKR in that it
activates p58IPK, a cellular inhibitor of PKR [102] and NS1

to block PKR as well as the 2–5 OAS/RNaseL system

[112,113]. Poliovirus induces the degradation of PKR [114].

Many viruses also block the RNaseL pathway, either by

expressing dsRNA-binding proteins (see above), or by other,

more direct means. Encephalomyocarditis virus as well as

HIV-1 induce the synthesis of RLI, a cellular RNaseL

inhibitor [115,116]. Infection with HSV-1 and HSV-2

activates the synthesis of 20-50-oligoadenylate derivatives

which bind and prevent RNaseL activation [117]. The

Poliovirus genome contains a conserved RNA structure

which inhibits RNaseL [118]. The antiviral effect of IFN

is inhibited in cells infected with RSV [119,120], an effect

most probably mediated by the viral NS1 and the NS2

proteins [121–123].

Certain viruses induce the disruption of PML nuclear

bodies (also called ND10) by proteasome-dependent

degradation of PML and Sp100 [124]. In HSV-1 infected

cells, viral ICP0 accumulates in ND10 and induces the

degradation of PML and Sp100, an activity which requires

the E3 ligase activity of ICP0 [125,126]. Similar disruptions

of ND10 were observed in cells infected with CMV, EBV,

HPV and adenoviruses [127]. It is conceivable that viruses

disassemble these nuclear structures to get rid of antiviral

components but sufficient data supporting this view are not

yet available.

There is no evidence for a specific viral inhibitor of Mx

proteins so far. Mx proteins are not posttranslationally

modified and their activity is not modulated by dsRNA.

Nevertheless, viruses have found means to subvert the Mx

system.
6. Viral escape from the Mx response

The mouse Mx1 protein inhibits a very early step of the

influenza virus multiplication cycle. It blocks primary

transcription of the incoming viral genome, a process which

is performed by the associated viral polymerase. Since the

virus can not transcribe and replicate its genome in the

presence of Mx, generation of Mx escape mutants is virtually

impossible. Therefore, a prime strategy of Mx-sensitive

orthomyxoviruses is to suppress IFN production in the

vertebrate host, thereby avoiding Mx expression in potential

target cells. The influenza-like Thogoto virus (THOV) was

recently shown to have an accessory protein with IFN-

antagonistic activity. The sixth genomic segment of THOV

encodes two transcripts: a spliced mRNA that codes for the

matrix (M) protein and an unspliced mRNA that encodes a C-

terminally extended M protein, named ML [128]. Recombi-

nant mutant viruses were generated that lacked ML. These

ML-deficient viruses were strong IFN inducers but showed

otherwise no obvious growth deficits in IFN-defective cells or

animals [129]. In IFN-competent Mx1-positive mice, how-

ever, the mutant virus devoid of ML was highly attenuated. In

contrast, wild-type virus expressing ML were able to grow in
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such animals because ML was blocking IFN production

[130]. Interestingly, ML inhibits the transcriptional activity of

IRF-3 which is required for IFN gene expression. Recent data

show that the ML protein of THOV interferes with IRF-3

dimerization and recruitment of the transcriptional coacti-

vator CBP by activated IRF-3 [132]. The IFN-specific

transcription factor IRF-3 is known to be a central player in

IFN gene expression and, not surprisingly, is affected by viral

proteins from many unrelated viruses (see above).

Another strategy of orthomyxoviruses is to escape from

Mx by fast growth. In collaboration with Adolfo Garcia-

Sastre at the Mount Sinai School of Medicine in New

York, our group recently studied an exceptional influenza

A virus strain that is highly pathogenic for Mx1-positive

mice [131]. This virus acquired a number of virulence-

enhancing mutations during passage in Mx1 mice.

Interestingly, the highly virulent virus was still susceptible

to the antiviral action of mouse Mx1 protein. Mx1-positive

mice, but not Mx1-deficient mice were highly resistant to

the virus if pretreated with IFN shortly before infection

(Fig. 3). Also, the highly virulent virus was not a better

inhibitor of IFN production than an ordinary influenza

virus, indicating that the IFN antagonistic function of its

NS1 protein did not make the difference. A series of

experiments demonstrated that the highly virulent virus

was able to replicate much faster in mouse lung than a

normal mouse-adapted virus. It grew to about 1000 fold

higher titers within the first 24 h post infection, as
Fig. 3. IFN protects Mx1-positive but not Mx1-negative mice from lethal influenz

C57BL/6 genetic background were treated with either buffer or 5 � 105 units of IF

LD50) of highly virulent influenza A virus and their health status was recorded
compared to standard virus. We concluded that the virus

had a head start due to an unusually high virus

multiplication speed and could outrun the establishment

of the IFN-mediated antiviral Mx response. In other

words, inducible host defense mechanisms can be over-

come if the pathogen multiplies extremely fast. It is

conceivable that highly pathogenic viruses may often

profit from the fact that the IFN system requires time to

become active. It remains to be seen whether a similar

evasion strategy is used by other successful influenza A

viruses such as the Asian H5N1 viruses or the pandemic

strain of 1918.
7. Concluding remarks

The interplay between viruses and the IFN system is an

interesting facet of the virus–host relationship and reflects an

ongoing evolutionary race between the two genetic systems.

Emerging viruses have to constantly adapt to guarantee

successful trans-species transmission in new hosts. Pan-

demic influenza A viruses presumably display a number of

evasion mechanisms, including the surprisingly simple

measure of fast growth. Our present knowledge of the IFN

system and viral escape strategies is still limited. Future

research should provide a better insight into the intricate

interplay between viruses and the innate immune defenses of

the host.
a. Mx1-positive (Mx1+/+) and Mx1-negative mice (Mx1�/�) on a congenic

N. Ten hours later the mice were infected with 1000 pfu (equivalent to 100

for up to 14 days (for details see Ref. [131])
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