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In recent decades, artificial intelligence has been successively employed in the fields of
finance, commerce, and other industries. However, imitating high-level brain functions,
such as imagination and inference, pose several challenges as they are relevant to
a particular type of noise in a biological neuron network. Probabilistic computing
algorithms based on restricted Boltzmann machine and Bayesian inference that use
silicon electronics have progressed significantly in terms of mimicking probabilistic
inference. However, the quasi-random noise generated from additional circuits or
algorithms presents a major challenge for silicon electronics to realize the true
stochasticity of biological neuron systems. Artificial neurons based on emerging devices,
such as memristors and ferroelectric field-effect transistors with inherent stochasticity
can produce uncertain non-linear output spikes, which may be the key to make machine
learning closer to the human brain. In this article, we present a comprehensive review
of the recent advances in the emerging stochastic artificial neurons (SANs) in terms of
probabilistic computing. We briefly introduce the biological neurons, neuron models, and
silicon neurons before presenting the detailed working mechanisms of various SANs.
Finally, the merits and demerits of silicon-based and emerging neurons are discussed,
and the outlook for SANs is presented.

Keywords: brain-inspired computing, artificial neurons, stochastic neurons, memristive devices, stochastic
electronics

INTRODUCTION

Chaos is generally undesirable for artificial intelligence architectures, long-term chaotic fluctuations
in human brain waves exhibit significant functions in biological neural networks. High-level
brain functions, such as memory recall and inference rely on the presence of certain types of
noises, which are the functions desired to be mimicked in artificial neural networks (ANNs).
Microscopically, the noise is generated by stochastic neuronal dynamics. Several complex
phenomena, such as ionic conductance noise, chaotic motion of charge carriers caused by
thermal noise, interneuron morphological variabilities, and synaptic background input noise (Faisal
et al., 2008) have been considered as the source of stochastic neuronal behavior. Probabilistic
computing based on stochastic neural networks is considered a feasible method of mimicking
the inference function. This is because the response variability of cortical neurons observed in
electrophysiological recordings has been well-explained in terms of probabilistic computation
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(Shadlen and Newsome, 1998). To date, stochastic computing
algorithms based on restricted Boltzmann machine (Jordan et al.,
2019) and Bayesian inference (Sountsov and Miller, 2015) have
exhibited remarkable advantages in edge detection (Joe and
Kim, 2019), traffic prediction (Sun X. et al., 2020), and the
complex prediction of protein functions (Zou et al., 2017).
However, the existing stochastic neural networks remain at quasi-
stochastic states and are accelerated by the central processing unit
or graphic processing unit. Moreover, the dedicated stochastic
electronic circuits are in the early stages of development
(Hamilton et al., 2014) and require more electric components.
To sufficiently imitate the noise observed in brains, the hardware
implementation for probabilistic computing should rely on the
true stochastic sources of noise, particularly in terms of the
inherent random nature to reduce the complexity of circuits.
Additionally, mimicking the physical structure of biological
neural systems can improve the operability and transplantability
of computations (Pickett and Stanley Williams, 2013; Thalmeier
et al., 2016; Kumar et al., 2017a).

Owing to the similarity in architectures based on synapses
and neurons of biological neural systems, spiking neural
networks (SNNs) are considered suitable for adding intrinsic
noise for probabilistic computing on hardware level. Hardware
implementation using non-von Neumann architecture of SNN-
based complementary metal–oxide–semiconductor (CMOS)
technology is proved to be energy-efficient and scalable with high
computing speed (Merolla et al., 2014), owing to the mature
manufacturing technology of metal–oxide–semiconductor field-
effect transistors (MOSFETs). However, both the size and energy
scaling of Si-based MOSFETs confront new challenges owing
to the limitations imposed by the quantum mechanics of
materials (Frank et al., 2001). Therefore, novel materials and
devices are required to satisfy the rapidly growing demand of
energy efficiency and feature size. Emerging electronic devices,
such as memristors, CMOS compatible ferroelectric field-effect
transistors (FeFETs), and electrolyte-gated transistors, have
proved their capability of mimicking the synaptic plasticity
based on the controllable conductance under electrical stimulus
(Wang and Zhuge, 2019; Choi et al., 2020; Zhu et al., 2020).
Although researchers attempted to control the random nature
of these emerging devices in certain deterministic fields, such
as non-volatile memory, the unpredictable random dynamics
have been proved its contribution to sever as the true random
number generators (Mulaosmanovic et al., 2018c; Carboni
and Ielmini, 2019) and stochastic artificial neurons (SANs)
(Parihar et al., 2018; Dang et al., 2019; Deng et al., 2020).
In comparison with the CMOS-based neurons, the emerging
artificial neurons for probabilistic computing present three
advantages, namely circuit simplicity, intrinsic and unpredictable
randomness, and reduced feature size. In other words, the
dynamically neuronal behavior can be implemented using
a simple circuit with several components rather than tens
of transistors. Furthermore, the intrinsic and unpredictable
randomness renders additional digital circuits unnecessary for
generating quasi-stochastic noise. Finally, two-terminal devices
can achieve reduced feature size rather than three-terminal
transistors using the same CMOS process.

The remainder of this review article is organized as follows.
Section “Biological Neuron and Its Conventional Counterpart”
introduces the basic microstructure, dynamics of ion exchange,
mathematical models, and integrated circuits that represent
the dynamics of output spike in biological neurons. Section
“Emerging SAN Devices” comprehensively reviews the emerging
devices with inherent stochastic features, such as random
formation and rupture of conductive filament (CF), random
nucleation of domains, casual phase changes in terms of physical
mechanisms, and hardware primitives of SANs. In section
“Discussion,” we compare and discuss the performances of the
traditional silicic and emerging SANs. Finally, section “Summary
and Outlook” presents the existing challenges and active trends
of stochastic neuromorphic computing algorithms based on
emerging devices.

BIOLOGICAL NEURON AND ITS
CONVENTIONAL COUNTERPART

Biological Neuron and Its Physical
Models
Most biological neurons comprise dendrites, soma, axon, and
a cell membrane separating the inner and outer regions of a
neuron, as illustrated in the top panel of Figure 1A. Dendrites
connect with the axon of a pre-neuron and receive encoding
spikes through a gap, referred to as a synapse, by collecting
the chemical neurotransmitters released by the pre-neuron. The
potential between the inner and outer regions of the membrane
can be tuned and transferred to soma by regulating the Na+
and K+ concentrations through ion channels. The signals are
subsequently summed in the soma. If the local graded potential
(LGP) reaches the threshold, an output spike is generated and
transferred to a post-neuron through the axon. The bottom panel
of Figure 1A illustrates the equivalent schematic of an artificial
neuron, which can be divided into three functional components,
namely the summator for input spikes, activation function, and
output spike generator.

Despite an insufficient understanding of neuron network
functions, several models have been proposed, including
Hodgkin–Huxley (HH), Morris Lecar (ML), FitzHugh–Nagumo
(FHN), integrate-and-fire (IF), and leaky integrate-and-fire (LIF)
models, to describe the operation of neurons. The HH model
physically describes the dynamics of ion channels in the neuron
membrane when an output spike is triggered. Figure 1B depicts
the graph of membrane potential vs. time, which can be
divided into three identifiable parts, namely the resting period,
depolarization, and hyperpolarization. When input spikes from
the pre-synapses cause the depolarization of the membrane
(LGP) by opening the Na+ permeable channels, Na+ ions
encounter the cell and increase the LGP to a positive potential.
If the LGP attains a threshold, K+ channels open and allow K+
ions to flow out through the cell membrane, resulting in the
confinement for continuous rising membrane potential. As the
membrane potential increases, a higher number of Na+ channels
are closed until the maximum potential is attained, whereas
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FIGURE 1 | (A) Schematic of a biological neuron and an equivalent artificial neuron (Yi et al., 2018). (B) Diagram of membrane potential in the Hodgkin–Huxley (HH)
model. (C) Schematic of the leaky integrate-and-fire (LIF) model (Stoliar et al., 2017).

the ejected K+ ions deplete the potential. Once the membrane
potential reaches a certain state, K+ channels are consecutively
closed to generate the hyperpolarization before returning to the
primary state. The ML model is another biophysical neuron
model, although certain properties, such as spike-frequency
adaptation, are absent.

Although the HH and ML models are biophysically
meaningful and measurable, it is difficult to code and analyze
data using these models during neuromorphic computing.
Hence, several biologically plausible neuron models, such as
the FHN, IF, and LIF models were proposed. Although the
FHN model does not exhibit the bursting property or chaotic
dynamics owing to the lack of refractory time, it is commonly
used for neuromorphic computing owing to its simplicity and
ability to reproduce various biological behaviors. Additionally,
the IF and LIF neuron models use linear equations with a
single variable, rendering them the most popular models in
computational neuroscience. Figure 1C illustrates the schematic
of the membrane potential vs. the input impulses in the LIF
artificial neurons. Herein, the input spikes are temporally and
spatially integrated to induce the neuron membrane potential
increase. When LGP attains the threshold, an action potential
is triggered transferring the potential to the post-neuron.
Otherwise, LGP leaks and returns to the resting period.

Conventional Silicon Artificial Neurons
Conventional silicon circuits have been widely used to construct
the synapses and neurons in ANNs owing to their mature
production technology. Figure 2A illustrates a typical
implementation of an artificial neuron with neuromorphic
LIF behavior (Indiveri et al., 2011). Herein, the LIF circuit is
composed of an input low-pass filter model (yellow), a spike
event generator (red), reset block (blue), and spike integration

block for spike-frequency adaptation (green). The circuitry
is complex with 21 transistors and several capacitors that
renders the manufacturing difficult and generates chip-level heat
dissipation issues. To reduce the components used in the silicon
neuron, an IF neuron circuit using a p-n-p-n diode (Park et al.,
2021) was proposed (Figure 2B). Herein, the neuron circuit
features temporal integration, refractory period, and tunable
output spike frequency. Despite the low energy consumption and
reduced number of components (three transistors, one diode,
and one capacitor), advanced functionalities, such as frequency
adaptation and sub-threshold oscillation are absent.

Typically, the aforementioned silicon neurons are used in
deterministic neural networks. To achieve inherent stochastic
characteristics in the ANN circuits, additional circuits are
required to produce quasi-stochastic noises. To further simplify
the artificial neuron circuitry, an LIF circuitry (Lim et al.,
2015) with threshold switching (TS) components was proposed,
which required only three resistors, two capacitors, and two TS
memristors to simulate the complete LIF behavior. Moreover,
the inherent stochasticity of the emerging devices can form
the basis of a new method for constructing true probabilistic
neural networks.

EMERGING SAN DEVICES

The advancements in non-linear electronic devices resulted in
the construction of stochastic neuromorphic computing systems
with lower energy consumption and limited circuit area. Herein,
we systematically introduce certain representative progressed
features of artificial neurons with inherent stochasticity,
which demonstrate device-to-device (D2D) and cycle-to-
cycle (C2C) variations in nature. The discussion includes: (i)
filament-based neuron, (ii) ferroelectric neuron, (iii) spintronic

Frontiers in Neuroscience | www.frontiersin.org 3 August 2021 | Volume 15 | Article 717947

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-717947 August 2, 2021 Time: 13:34 # 4

Li et al. Emerging Stochastic Artificial Neurons

FIGURE 2 | (A) Leaky integrate-and-fire (LIF) neuron circuit based on complementary metal–oxide–semiconductor (CMOS) technology (Indiveri et al., 2011).
(B) Integrate-and-fire (IF) neuron circuit using a p-n-p-n diode (Park et al., 2021).

neuron, (iv) phase-change neuron, and (v) metal-to-insulator
transition (MIT) neuron.

Filament-Based Neuron
After the memristor was initially proposed (Chua, 1971; Chua
and Sung Mo, 1976) and verified (Strukov et al., 2008), it has
been increasingly considered for emerging non-volatile random-
access memory and brain-inspired neuromorphic computing
owing to its simple structure, fast write and read speed, excellent
retention time, compatibility with CMOS procedure, and gradual
conductance. Various physical mechanisms, such as the valence
change mechanism (VCM), electrochemical metallization
(ECM), charge trapping/detrapping, and thermochemical
reactions in semiconducting metal oxides were introduced to
explain the resistive switching phenomenon. Several researchers
presented detailed explanations of these mechanisms (Pan
et al., 2014; Lee J. S. et al., 2015). Among them, both VCM
and ECM are based on ion migration and corresponding redox
reactions. Herein, a CF is formed between the electrodes, and its
formation and rupture result in the resistive switching between
high-resistance state (HRS) and low-resistance state (LRS).
Hence, they can be classified as filament-based memristors.
However, ECM and VCM differ in terms of the migrating ions,
wherein oxygen vacancy migration results in VCM-type resistive
switching, whereas ECM is induced by active metals, such as Ag,
Cu, and Ni. Typically, filament-based memristors demonstrate
the disordered distribution of SET and RESET voltages owing
to the random formation and rupture of CFs. Although the
disordered parameters of filament-based memristors have been
optimized using several feasible approaches (Shi et al., 2011;
Li H. Y. et al., 2020; Sun Y. et al., 2020), CF-based memristors
face numerous challenges in terms of commercial applications.
Nevertheless, this type of natural randomness in CF-based
memristors is highly suitable for constructing stochastic
neural networks.

A typical filament-based memristor comprises a metal–
electrolyte–metal sandwich structure. Generally, compliance
current is used to manipulate the filament strength. In the case of
strong filaments, non-volatile switching behavior is obtained and

the state can be maintained for years. By contrast, weak filaments
evoke volatile TS. Furthermore, the conductance of memristors
can be tuned to a quantum degree under a proper stimulus.
This disorder and gradual conductance render the filament-based
memristors inherently appropriate for constructing SANs.

An effective approach to construct artificial neurons is using
the non-volatile memory switching to fulfill the accumulation
process of biological neurons, which corresponds to the
summator function. This necessitates additional circuits to
implement the assessment of threshold membrane potential,
spike generator, and a feedback path to reset the memristor
to its primary state. A study reported the implementation
using a non-volatile memory cell with an Au/Ni/HfO2/Ni
structure (Wang J. J. et al., 2018). Figure 3A depicts the bipolar
resistive switching behavior, wherein the inset illustrates the
device structure obtained using a scanning electron microscope.
Figure 3B schematically depicts the coupling of memristor with
the simplified CMOS circuit. Herein, the memristor integrates
the input spikes from pre-synapse, the comparator chip estimates
whether the membrane potential exceeds the threshold, and the
spike generator chip triggers an output spike after the threshold is
attained. Subsequently, the reset chip generates a pulse to achieve
the primary state of the LIF neuron. Additionally, a hybrid
artificial neuron randomly generates spikes owing to the random
resetting event of the memristor under a certain stimulus beyond
the threshold voltage. Thus, a stochastic LIF artificial neuron
was implemented. Furthermore, the frequency of the output
spikes can be tuned by changing the threshold voltage. The
maximum output frequency reaches up to 100 kHz, as illustrated
in Figure 3C. Figure 3D depicts another implementation of
an LIF neuron based on non-volatile memory, wherein the
inset represents the SET process and schematic structure. The
probability of firing can be tuned based on the interval of
input impulses. Figures 3E,F depict the output spikes under
excitatory input current pulses (4 mA). Herein, we observed that
smaller the interval, lesser is the number of pulses required to
trigger output spikes.

Another appealing approach of constructing artificial neurons
is to use the TS device, which can mimic the summator
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FIGURE 3 | (A) Bipolar resistive switching characteristics of a non-volatile memristor. Inset shows the scanning electron microscope images of a cross-section of the
memristor. (B) Circuitry of artificial neuron equipped with complementary metal–oxide–semiconductor (CMOS) circuit. (C) The stochastic output behavior under a
certain stimulus. Based on the impulse neuron characteristics of hafnium oxide (HfO2) memristor, the neuron response is obtained for an input of Vth = 0.7 V at
100 Hz (Wang J. J. et al., 2018). (D) An abrupt SET process in I/V sweeps of SiOx resistive random-access memory (RRAM) cells during non-volatile memory
switching. Device output in the leaky integrate-and-fire neuronal model with the voltage response measured based on an inductive current pulse of 1 mA
immediately after excitation of a 4 mA current pulse at an interval of (E) 640 ms and (F) 215 ms (Mehonic and Kenyon, 2016).

behavior of a biological neuron. Moreover, the volatile nature of
TS renders the reset and spike generator circuits unnecessary.
Previously, a simple hardware implementation of SNN using
VCM devices was accomplished (Woo et al., 2017). Herein,
a non-volatile memory based on TiN/HfO2/Ti/TiN was used
as a synapse, whereas the dynamic neuron behavior was
fulfilled by a TS device (Figure 4A). Figure 4B illustrates
the schematic of the SNN. The TS device was coupled with
a transistor in series and a capacitor in parallel. No output
current spike was initially detected until the capacitor, which
serves as the summator, was completely charged (Figure 4C).
The TS device determines whether the output voltage spike
converted from the current spike must be transmitted via an
operational amplifier. Moreover, the leaky behavior was achieved
only before the first output spike and the refractory period
was absent. Another study reported an ECM-based TS neuron
implemented using an Ag/SiO2/Pt structure (Zhang et al., 2018;
Figure 4D). Figure 4E depicts the completely functional LIF
artificial neuron obtained by connecting a load resistor. As the
value of neuron membrane potential was estimated using the
threshold voltage, additional threshold sensing circuits based
on capacitor are not required. The single TS-based artificial
neuron can trigger output spikes automatically. The firing rate
can be tuned by the interval and width of input pulses, whereas
the refractory time relies on the input voltage. Furthermore,

the inherent random formation and rupture of Ag CF affected
the output spike rate. As depicted in Figure 4F, tuning the
input pulse width can generate stochastic outputs with different
firing rates. Another implementation of a Cu filament-based
TS device (Wang et al., 2021) presented LIF neuron behavior
by coupling the device with two resistors in series and a
capacitor in parallel (Figure 4G). The capacitor imitates the
membrane potential, whereas the resistors limit the total current
intensity and divide the input voltage. Figure 4H depicts
the measured stochastic spike events of the CuS/GeSe-based
neuronal circuit. Based on the firing probability, an uncertain
stochastic artificial network with probabilistic inference was
finally implemented. After unsupervised deep learning of breast
cancer data, the results revealed that the recognition accuracy
rating of stochastic neurons is substantially better than that of
conventional deterministic neurons, particularly at the overlap
area of benign and malignant cancers (Figure 4I). However,
the generation of sneak current is an issue in the cross-
bar architecture of memristors. To address this, memristors
with self-rectified behavior is one of the solutions. A artificial
neuron based schottky barrier was implemented (Dang et al.,
2019). Herein, the formation and diffusion of Cu-based
CF dominate the stochastic output spikes. Additionally, the
firing rate of the stochastic neuron relies on the amplitudes
of input pulses.
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FIGURE 4 | (A) Threshold switching (TS) characteristics of the valence change mechanism (VCM) cell at a compliance current of 10 µA. (B) Schematic of the
neuromorphic system comprising neurons and synapse elements. (C) Output dynamics of VCM-based artificial neuron (Woo et al., 2017). (D) Volatile-switching
behavior of Pt/FeO3/Ag device. Inset shows multiple cells with cross-bar structure and the cross-section view of one device under high-resolution transmission
electron microscopy inspection. (E) Dependence of integrate-and-fire on the input pulse interval. (F) Raster plot of firing patterns with respect to time for a
memristive neuron with 10 M� in series on a dedicated circuit board (Zhang et al., 2018). (G) Schematic of a neuronal circuit with the input voltage pulses originating
from the signal generator. (H) Measured stochastic spike events of the CuS/GeSe-based neuronal circuit. (I) Comparison of the output probability of deterministic
and stochastic neurons (Wang et al., 2021).

The emerging two-dimensional (2D) materials, such as
graphene oxide (Wang et al., 2017), WS2 (Kumar et al., 2019), and
MoS2 (Li et al., 2018), are promising candidates for constructing
energy-efficient memristors owing to their advantages in terms
of thickness and high metal ion mobility. A study implemented
(Hao et al., 2020) a planar memristive device with the structure
of Ag/monolayer MoS2/TiW (Figure 5A). The distance between
the two electrodes is essential for tuning the property of a
memristor because the device exhibits volatility only when
the distance is greater than 500 nm. Figure 5B illustrates the
realization of the LIF behavior of an MoS2-based memristive
device under a continuous pulse train without an auxiliary circuit.

The obtained simple neuron network implemented the image
classification function by connecting four memristive synapses.
The images are encoded into the pulse train, input into the
synapses, and the firing event reveals the classification result
(Figure 5C). Another approach (Dev et al., 2020) of obtaining an
energy-efficient device is to construct a vertical structure using
monolayer MoS2. The stochastic LIF behavior can be achieved by
operating the TS device at 0.3 V and maintaining an endurance
of up to 5 × 106 cycles. Moreover, graphene is used as the
inert electrode to further reduce the thickness of the TS device
(Kalita et al., 2019). Figure 5D depicts the optical image of
the memristor device. Based on the formation and rupture of
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FIGURE 5 | (A) Schematic of a planar artificial neuron with an Ag/MoS2/TiW structure. (B) Realization of leaky integrate-and-fire behavior of MoS2-based memristive
device under a continuous pulse train. (C) The classification result based on the presence and absence of neuron firing (Hao et al., 2020). (D) Optical image of the
MoS2/graphene threshold switching (TS) device. Output spikes under an impulse train with amplitude modulation at (E) 8 V and (F) 8.5 V. The integration time,
refractory period, and stochastic output behavior are obtained (Kalita et al., 2019).

Ni-based CF, this graphene/MoS2/Ni neuron can stochastically
generate output spikes with LIF dynamics. Figures 5E,F illustrate
the pulse amplitude-modulated frequency response. As indicated
in the figures, increasing the input pulse amplitude can effectively
increase the firing probability. Interestingly, the refractory period
was obtained owing to the diffusion of CF.

Although unidirectional TS devices can mimic the dynamic
neuron behavior only under the excitatory stimulus, the
inhibitory stimulus is essential in the human brain neuron
system. Therefore, ovonic TS devices were developed, which
initiated an unprecedented path of using both stimuli
simultaneously (Kim T. et al., 2020). Figure 6A illustrates
the electrical property of a prototypical LIF neuron based on
the Ag/HfOx/Ag device. After optimized annealing using N2,
a high on/off ratio of approximately 6 × 107, low threshold
voltage of 0.19 V, low variability of 0.014, and endurance of over
106 cycles were achieved. The LIF neuron behavior under both
polarity of applied voltage, namely the excitatory and inhibitory
stimuli, was obtained by connecting a capacitor in parallel.
Figure 6B illustrates the schematic impulse stimulus train.
The firing rate can be modulated based on the inhibitory pulse
amplitude in the opposite direction, as depicted in Figure 6C.
This progress verified the role of the inhibitory postsynaptic
potential property in a single artificial neuron and the feasibility
of the synaptic weight change through the bipolar TS device.
Figure 6D depicts another implementation of an artificial
neuron based on an ovonic TS device. As indicated in the

figure, connecting a capacitor in series and a MOSFET on the
gate renders the artificial neuron capable of handling spatial
and temporal pre-synaptic spikes. Figure 6E illustrates the
dynamics of the neuro-transistor IF process. Regardless of the
deterministic output spikes obtained from the aforementioned
studies, stochastic computing based on ovonic TS neurons
remains a suitable choice owing to its ability of simultaneously
withstanding excitatory and inhibitory stimuli in a single neuron.

Ferroelectric Neuron
Ferroelectric materials were discovered nearly a century ago
(Valasek, 1921) and used to develop ferroelectric RAM (FeRAM)
owing to their spontaneous polarization (Scott and Paz de Araujo,
1989). In the late twentieth century, the development of thin-
film growth technology confined the thickness of the ferroelectric
films to 100 nm. Consequently, the progression of ferroelectric-
based devices was delayed for nearly 30 years. In recent years,
the development of thin-film deposition technology and the
discovery of new ferroelectric materials with CMOS process
compatibility led to the fabrication of nanoscale thin films with
high crystal quality on a large scale, reviving the investigations on
ferroelectric memory devices.

Hafnium oxide (HfO2) is one of the most popular materials
with CMOS compatibility as they exhibit ferroelectric property
at a thickness of less than 10 nm (Böscke et al., 2011).
Moreover, stochastic nucleation of the ferroelectric domain was
discovered in HfO2-based FeFET (Mulaosmanovic et al., 2017;
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FIGURE 6 | (A) Ovonic threshold switching (TS) behavior in Ag/HfO2/Ag device. (B) Schematic of the input pulse program to verify the property of inhibitory
postsynaptic potential (IPSP). (C) Firing rate modulation based on the inhibitory pulse amplitude in the opposite direction (Kim T. et al., 2020). (D) Scanning electron
micrograph of the plane view of the integrated dynamic pseudo-memcapacitor and a transmission electron micrograph of the cross-section. (E) Dynamics of the
neuro-transistor integrate-and-fire process, which exhibits the input pulse train (top panel), membrane potential (middle panel), and output spike sequence of axon
membrane current (bottom panel) (Wang Z. et al., 2018).

Alessandri et al., 2018). Typically, the stochastic domain
nucleation occurs in the proximity of its coercive electric field
(Shin et al., 2007), whereas that in HfO2 can occur in sub-coercive
electric field regions, indicating the potential multilevel resistance
states for inference neuromorphic computing. Furthermore,
impulse dependence measurement was implemented on
the FeFET device with a polysilicon/TiN (8 nm)/Si:HfO2
(10 nm)/SiON (1.2 nm) gate stack (Mulaosmanovic et al.,
2018b). Figures 7A,B depict the schematic structure and
transmission electron microscopy image of a nanoscale
ferroelectric transistor, respectively. Typically, the domain
in ferroelectric devices can be reversed using a single pulse.
Additionally, the FeFET demonstrates binary storage owing to
the ferroelectric polarization switching (polarization-up and
polarization-down). In this case, sharp switching from HRS
to LRS occurs only after several identical pulse stimuli with a
pulse amplitude of 2.2 V and pulse width of 1 µs are generated,
as shown in Figure 7C. Ferroelectric domains near the grain
boundary are considered to have a lower coercive field than that
within the grain. Initially, domains close to the grain boundary
reverse under impulse stimulus, and the polarization orientation
inside the grain subsequently undergoes reversal owing to
the continuous application of impulses. This is similar to the
integration behavior in neurons. When the polarization reversal
accumulates to a certain extent, the polarization orientation
reverses on a macroscale, increasing the channel current. If the

current attains the threshold when a CMOS auxiliary circuit
is connected, the firing of impulses is initiated (Figure 7D).
Subsequently, the HfO2-based FeFET cell resets to the original
state using a reset circuit and awaits the firing of the next
impulse. The aforementioned process is the typical LIF behavior
in artificial neurons. Figure 7E illustrates the pulsing scheme for
implementing an LIF cycle and Figure 7F depicts the repeated
impulses of IF cycles with different pulse amplitudes. The
probability of firing can be manipulated using the amplitude of
the applied pulse. The implementation of FeFET-based artificial
neurons depletes the traditional CMOS neuron components.
However, a comparator circuit can reduce energy consumption.
Huang‘s group (Chen et al., 2019) successfully implemented a
completely functional LIF neuron using a partially crystallized
Hf0.5Zr0.5O2 (HZO) layer-based FeFET and a resistor rather
than the large capacitor and six transistors in CMOS neurons.
Furthermore, they implemented the spike-frequency adaptation
function. Owing to the dominant accumulation effect of the
ferroelectric layer, the time interval of firing spikes increased
during the firing of the initial few spikes until the polarization
degradation reduced the accumulation effect. Both excitatory
and inhibitory inputs were connected to the HZO-based LIF
neuron by connecting a resistor and FET in series to obtain
stochastic output signals (Luo et al., 2019). Additionally, SNNs
completely based on HZO were accomplished recently (Dutta
et al., 2020). Manipulating the cumulative effect of polarization
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FIGURE 7 | (A) Structure of a nanoscale ferroelectric transistor. (B) Transmission electron microscopy (TEM) image of a ferroelectric transistor device.
(C) Accumulative polarization reversal in ferroelectric transistors. The inset depicts the sharp switching from OFF to ON after receiving several identical impulses.
(D) Schematic of an axon-hillock complementary metal–oxide–semiconductor (CMOS) neuron. (E) Pulsing scheme for implementing an integrate-and-fire (IF) cycle
and an arbitrary refractory period, after which a new IF cycle begins (Mulaosmanovic et al., 2018a). (F) Consecutively repeated IF cycles for different values of VP.
(G) Circuit implementation of a ferroelectric field-effect transistor (FeFET)-based spiking neuron. The leaky integrate-and-fire (LIF) neuron is implemented using one
FeFET and three transistors (M1–M3). Biologically inspired homeostatic plasticity is implemented using additional transistors (M4–M6). (H) The decreasing output
spike frequency exhibiting spike-frequency adaptation. (I) Comparison of test accuracies for different bit precisions of weights with and without noise (Dutta et al.,
2020).

renders the HZO-based FeFET as artificial synapses and LIF
neurons. Figure 7G depicts the circuitry of the FeFET-based
SAN. Herein, the output spike frequency decreases under a
continuous pulse train, indicating the frequency adaptation
behavior (Figure 7H). Furthermore, supervised learning on
an Modified National Institute of Standards and Technology
(MNIST) dataset was performed using a three-layered SNN.
The final image recognition accuracy was approximately
95.4%, which was equivalent to that obtained from software
simulation. Using the Bayesian hyperparameter optimization
approach, stochastic noise induced by the random nucleation
of ferroelectric devices was employed to impact the recognition
accuracy. Figure 7I illustrates the comparison of test accuracies
with and without noise. As indicated in the figure, a stochastic

SNN with inference can aid in improving the classification
accuracy, particularly at the 4-bit weight.

Spintronic Neuron
The prediction of the spin-transfer torque effect (Berger,
1996; Slonczewski, 1996) led to the manipulation of the
magnetization state of ferromagnetic materials with electrical
current and systematic investigations of spintronic devices.
Magne tic tunneling junction (MTJ) composed of two metallic
ferromagnetic layers and a tunnel oxide layer is a basic cell
of spintronic devices. The thicker ferromagnetic layer with
pinned spin polarization is referred to as the pinned layer (PL)
or reference layer, whereas the thinner ferromagnetic layer is
called the free layer (FL) as its magnetization direction can be
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FIGURE 8 | (A) Resistance vs. voltage curve in the STT–MTJ device. (B) Repeated integration characteristic of the STT–MTJ. (C) Neuron circuit and
integrate-and-fire behavior (Kim D. W. et al., 2020). (D) Functioning of the artificial neuron and synapse based on antiferromagnetic SOT–MTJ. (E) Dependence of
switching probability on the frequency of incoming pulse trains (Kurenkov et al., 2019).

altered by the injection of current. When the magnetization
direction of the FL is parallel to that of the PL, electrons with
the corresponding spin orientation conveniently pass through
the tunnel layer, and the device exhibits LRS. Conversely, when
the FL is anti-parallel to the PL, the device exhibits HRS. This
phenomenon is referred to as the tunnel magnetoresistance
effect (Fong et al., 2016). Typically, the spin directions of
electrons in ferromagnets are spin-up and spin-down. While
the spin electrons matching the direction of the magnetic
field can pass through the ferromagnet efficiently, other spin
electrons are reflected owing to the momentum conservation.
This phenomenon is called the spin filter effect (SFE). When
the injected electrons flow from PL to FL, the direction of the
magnetic polarization in FL adjusts itself to be identical to that of
the PL owing to the corresponding spin electrons. Consequently,
the MTJ cell exhibits LRS. By contrast, when the external electric
field drives spin electrons from FL to PL, the matched spin
electrons pass through the PL and unmatched spin electrons
bounce back to the FL owing to the SFE, resulting in the opposite
magnetic field orientation of FL and PL. This phenomenon is
referred to as spin-transfer torque (STT). Subsequently, the
resistance of the MTJ cell changes from LRS to HRS. Hence,
the MTJ device is considered to possess bipolar binary memory.
Additionally, the irregular magnetic domain and thermal noise
result in the stochastic domain reversal (Devolder et al., 2008),
rendering the device suitable for probabilistic computing. An
artificial neuron was developed with a structure of (W/TiN)

electrode/Ta/Pt/(Co/Pt)6/Co/Ru/(Co/Pt)3/Co/W/Co2Fe6B2
PL/MgO tunnel layer/Fe(Co2Fe6B2) FL/W/Co2Fe6B2 FL/MgO
capping/W/(Ta/Ru) electrode (Kondo et al., 2018). The IF
function was successfully mimicked using an auxiliary reset
circuit, wherein the pulse width was 400 µs and amplitude
was 1.15 V at an assistant magnetic field of 750 Oe. Initially,
the magnetic domain at the grain boundary reversed owing
to the energy barrier at the grain boundary of the MgO layer
being lower than that observed inside the grain. Subsequently,
continuous impulse stimulus reversed the magnetic domain
within the grain achieving the integration behavior. When all
domains in FL were anti-parallel to PL, the MTJ cell realized
the firing function. Figure 8A depicts the resistance vs. voltage
curve of another implementation of an STT–MTJ neuron
(Kim D. W. et al., 2020). Herein, the integration and reset
processes of membrane potential exhibit excellent endurance,
as illustrated in Figure 8B. Figure 8C depicts the basic
neuronal IF behavior achieved after coupling the device with
appropriate CMOS circuits to reset the MTJ cell. Additionally,
the dependence of the integration behavior on the input spike
number and amplitude were investigated further. When the
amplitude of the input stimulus increased from -0.5 to -0.7
V, no integration behavior was observed. Furthermore, the
pattern recognition accuracy of a neural network constructed
using an IGZO-based artificial synapse was approximately 76%
owing to the lack of proper learning algorithms to train the
MTJ-based neural network.
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Another approach to construct a magnetic neuron device
involves using a spin–orbit torque (SOT)-cell, which is
composed of one non-magnet (antiferromagnet) layer, one
ferromagnet layer with in-plane magnetization, and a heavy
metal electrode. Owing to the spin Hall effect and Rashba
effect (Mihai Miron et al., 2010; Shim et al., 2017), the SOT-
cell exhibits stochastic magnetization switching. This method
has been theoretically proposed to be applied to probabilistic
neural computing (Biswas et al., 2015; Sengupta et al.,
2015, 2016, 2018) and experimentally proved to be feasible
(Ostwal et al., 2018). The probability of domain switching
increases with the increasing SOT current amplitude but
independent of its polarity. Artificial synapse and neuron have
been implemented with a stack of Ta (3 nm)/Pt (2.5 nm)/
Pt38Mn62 (9.5 nm)/Pt (0.6 nm)/[Co(0.3 nm)/Ni(0.6 nm)]2/Co
(0.3 nm)/MgO (1 nm)/Ru (1 nm) and hall channel of Ta/Pt/PtMn
layer for SOT switching (Kurenkov et al., 2019), which equipped
the antiferromagnet for the construction of SOT–MTJ. Figure 8D
depicts the dynamics of artificial MTJ-based synapse and neuron.
Initially, multilevel states were achieved by adjusting the width
of impulses from 1 s to 1 ns, and the spike-timing-dependent
plasticity function of the artificial synapse was repeatedly
measured. A CMOS circuit was used to compare the threshold
and trigger the firing action owing to the non-volatile property
of the device. Additionally, a pulse train with a width of 100 ns
was used to stimulate the SOT–MTJ-based neuron. Figure 8E
illustrates the firing (domain reversal) probability as a function
of the input frequency. The response frequency of the input pulse
reached up to 80 MHz.

In comparison with binary memory devices, memory devices
with multiple states are more important for neural computing.
Ideally, current-induced domain wall motion in the direction
of electron flow is expected to address the bottleneck of MTJ-
based neurons (Sharad et al., 2012, 2013). Additionally, multilevel
resistance states have been experimentally achieved in an STT–
MTJ device (Lequeux et al., 2016), which was realized using
pinned domains caused by continuous domain switching. This
type of artificial synapse can be naturally coupled to either
CMOS neurons or other artificial neurons to implement the firing
behavior. Furthermore, other simulation approaches have been
utilized to control the wall motion (Hassan et al., 2018; Azam
et al., 2020). Although manipulating the nanosized skyrmion
can yield multilevel states in ferromagnets (Azam et al., 2018;
Chen et al., 2018; Liang et al., 2020), artificial synapses or neural
components based on skyrmion have not been reported thus far.

Phase-Change Neuron
Phase-change materials are a series of alloys that can reversibly
transform between amorphous and crystalline states with
different optical and electrical transport properties. Typically, the
composition includes a ternary alloy of Ge, Sb, and Te, such
as Ge2Sb2Te5 (GST). Initially, the incubation of crystal growth
occurs inside the amorphous region owing to the application
of a low yet wide voltage pulse and Joule heat. Subsequently,
the nanocrystals gradually grow until the entire amorphous
region transforms into a polycrystalline region. During this
process, the resistance of a phase-change memory (PCM) cell

changes from HRS to LRS. Conversely, when a short yet high
voltage pulse is applied, certain sections in the polycrystalline
region melt and cool down rapidly, resulting in an amorphous
region. The resistance of the PCM cell transforms from LRS to
HRS, indicating the reset process. Additionally, C2C and D2D
variations resulting from the random crystal nucleation and
the position of Poole–Frenkel sites for carrier transport in the
amorphous region render the PCM a key enabling technology for
stochastic neural computing.

Figure 9A depicts a typical PCM cell comprising a top
electrode, a pillar-shaped bottom electrode, confined Joule
heating induced by current, and a phase-change material
with a hemispherical amorphous region (Wright et al., 2012).
Figure 9B illustrates the corresponding typical resistive switching
characteristics. Figure 9C depicts a simple firing circuit that
aids in realizing the LIF behavior (Tuma et al., 2016). This
circuit can mimic the generation of output spikes for the
postsynaptic neuron. However, the PCM cell remains in the LRS
owing to the non-volatile storage. Based on this phenomenon,
a spiking neuron auxiliary circuit with a self-resetting function
was proposed (Cobley et al., 2018). Herein, automatic post-
spiking resetting was achieved by adding a feedback reset path.
After attaining a conductance threshold, output spikes were fired
and the phase-change device automatically reset to the initial
state, awaiting the next firing. Both the hardware implementation
and corresponding algorithms of a PCM-based neural network
are equally important. Two PCM neurons were proposed to
implement a backpropagation algorithm for hardware neural
networks (Li C. et al., 2020). Herein, the forward propagation
and backpropagation signals are stored in one PCM cell each,
eliminating the requirement of additional memory units. The
experiment verified that the total computing area can be reduced
to increase energy consumption efficiency.

Owing to the highly contrasting optical properties in the
amorphous and crystalline states, PCM is generally used for
optical devices. A recent report (Stegmaier et al., 2017) indicated
that PCM cells exhibit sub-ns “write” speeds under photonic
laser pulse stimuli. Typically, the PCM cell can be heated using
the applied laser pulses and transform from an amorphous state
with low optical transmission to a crystalline state with high
optical transmission. Figure 9D depicts a microring resonator
that can be added to obtain an all-photonic phase-change spiking
neuron (Chakraborty et al., 2018). The phase-change material
can partially absorb the laser wave passing through the microring
resonator and its temperature increases owing to the low thermal
conductivity (Lyeo et al., 2006). Therefore, when the temperature
in the corresponding region attains the melting point (Sebastian
et al., 2014), the crystal nucleation occurs in the amorphous
region. Subsequently, the optical transmission of the GST cell
gradually changes (Figure 9E), which is equivalent to the electric
conductance evolution in traditional neural systems. Figure 9F
depicts the IF action in the simulated SNN. These simulation
results predict that the writing time can be as low as 200
ps with an average energy of 4 pJ in a “write” step. Further
research on optical spiking neural networks (Feldmann et al.,
2019) determined that increasing the input optical energy at a
fixed wavelength initiates the activation function in the output

Frontiers in Neuroscience | www.frontiersin.org 11 August 2021 | Volume 15 | Article 717947

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-717947 August 2, 2021 Time: 13:34 # 12

Li et al. Emerging Stochastic Artificial Neurons

FIGURE 9 | (A) Schematic of the phase-change memory (PCM) mushroom-type cell. (B) Experimental I–V curve exhibiting a threshold switching voltage from
amorphous to crystalline state. (C) Phase-change integrate-and-fire (IF) neuron circuit based on a single phase-change cell (Wright et al., 2012). (D) An optical
neuron based on a GST cell. (E) Gradual change of transmission owing to different degrees of amorphization of GST ranging from 0% (crystalline) to 100%
(amorphous). (F) Behavior of the proposed IF neuron in the spiking neural network (SNN) exhibiting the variation of the membrane potential under the action of
incident pulses, thus resulting in the IF action (Chakraborty et al., 2018).

transmission, which can be used to define the firing action.
A feedback path was introduced to reset the GST cell to its
primary state. Owing to the high bandwidth and fast data transfer
rates intrinsic to light, the developed all-photonic neural network
can operate several orders of magnitude faster than electrical
brain-inspired neural networks, handling large amounts of data
in a short time.

Metal–Insulator Transition Neuron
Unlike the phase-change material, wherein the transition occurs
between amorphous and crystalline states, materials based on
metal–insulator transition (MIT) can reversibly alter from a
crystalline metal to an insulator phase. Both electrons and heat
can evoke the transition, and the randomness in nucleation leads
to the C2C and D2D difference.

Various materials, such as VO2 (Choi et al., 1996), TiOx (Lee
D. et al., 2015), NbOx (Kumar et al., 2017b), SmNiO3 (Ha et al.,
2011), and compounds such as AM4Q8 (A = Ga, Ge; M = V, Nb,
Ta, Mo; Q = S, Se) (Abd-Elmeguid et al., 2004; Pocha et al., 2005)
exhibit MIT characteristics. Among these, VO2 and NbOx are the
most popular materials used for neuromorphic computing. The
typical structure of an MIT device is electrode–MIT material–
electrode, and the electrical transport exhibits typical volatile
behavior (Figure 10A). Figure 10B depicts the simplest neuron
circuit, wherein a resistor and a capacitor are connected in series
and parallel, respectively, to obtain an oscillator. Typically, the

value of resistance of the load resistor exists in between that
of the LRS and HRS. When the external voltage is applied,
the MIT device is initially set to LRS, which decreases the
divided voltage across the MIT device. Once the divided voltage
decreases below the hold voltage, the resistance of the MIT
device is reset to HRS. By contrast, when the divided voltage
surpasses the threshold, the device is set to LRS again. Figure 10C
indicates that the output voltage oscillates owing to the repetition
of the set and reset process, during which the frequency can
be varied by the load resistor (Gao et al., 2017; Woo et al.,
2019). Further research indicated that the applied voltage can
regulate the output frequency (Zhang et al., 2020), as depicted
in Figure 10D. Additionally, a microwave oscillator circuit was
proposed (Zhao and Ravichandran, 2019) to generate output
oscillation frequencies as high as 3 GHz with energy consumption
as low as 15 fJ/spike. Furthermore, the output voltage frequency
can be adjusted based on the external pressure by coupling the
device with an afferent sensor, such as a piezoelectric device
(Figure 10E). Figure 10F illustrates the protective inhibition
behavior exhibited by the device when the applied pressure is
extremely high. The result indicates the potential applicability of
MIT devices in neurorobotics.

A completely functional HH neuron circuit (top panel in
Figure 11A) was initially proposed using two NbOx oscillating
circuits (Pickett et al., 2013) and the extended version included
two VO2-based memristors (Yi et al., 2018). Herein, each
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FIGURE 10 | (A) Measured I–V threshold switching characteristics of the Pt/NbOx/Pt device. Inset depicts the schematic of the fabricated Pt/NbOx/Pt device.
(B) Circuit configuration of an oscillating neuron node with the Pt/NbOx/Pt device and a load tunable resistor as a synapse. (C) Oscillation characteristics when the
load resistor is 3.6 k� and output frequency is 2 MHz (Gao et al., 2017). (D) Dependence of the output frequency on the input voltage amplitude. (E) Schematic of
the artificial spiking mechanoreceptor system. (F) Dependence of the output spike frequency on the pressure. When the pressure is extremely high, frequency
adaptation action protects the device (Zhang et al., 2020).

memristor emulates the dynamics of the Na+ and K+ channels
of a biological neuron membrane. When a sub-threshold input
is applied, the output membrane potential fluctuates and returns
to the initial state, indicating the implementation of the leaky
behavior in the HH model. If a super-threshold input voltage is
applied, an all-or-nothing spike with a refractory period produces
the hyperpolarization potential. A single VO2-based active
memristor neuron can exhibit the spiking behavior equivalent
to that of 23 biological neurons spiking behaviors, which is
substantially better than that of the contemporary software deep
learning (Izhikevich, 2004). Owing to the random transition
between metal and insulator states, the output spikes exhibit
stochastic behavior under a certain input impulse (Figure 11B),
which is important for the construction of SNN with inference.
The left panel in Figure 11C illustrates an FHN neuron circuit
with a VO2 memristor in series and a tunable resistance (Parihar
et al., 2018). Replacing the tunable resistance with a transistor
and adding a thermal noise voltage source [η(t)] (right panel of
Figure 11C) renders this neuron circuit sufficiently competent to
manipulate the random distribution of threshold voltage of the
VO2-based memristor from both thermal and electrical aspects
and control the stochastic firing rate rather than the integration
rate (Tuma et al., 2016). Figure 11D illustrates the random
output spiking waves obtained from various input voltages.
The maximum firing rate can reach up to 30 kHz and energy
consumption is 196 pJ/spike owing to the fast transition speed of
MIT materials. Figure 11E depicts the firing rate as a function of

vgs based on the introduction of the thermal noise voltage source
[η(t)]. The experimental results concur with those obtained from
the analytical model for Gaussian distribution, validating that the
output spikes of VO2 neurons demonstrate true stochasticity.

Additionally, chip-level thermal management may face
severe challenges if pure VO2-based neuron is introduced to
the integrated circuit owing to the low Mott transition at
approximately 67◦C (Chen et al., 2016). This can be mitigated
by introducing a dopant that can increase the MIT critical
temperature (TC) to approximately 96◦C (Krammer et al., 2017).
In comparison with VO2, NbOx is considered a more suitable
option for applications at chip level owing to its higher TC
(810◦C) (Páez Fajardo et al., 2021).

DISCUSSION

Table 1 presents a detailed comparison of the hardware
implementations of various artificial neurons in terms of
the implemented neuron model, support circuit complexity,
energy consumption, firing frequency, on/off ratio indicating
the capability of synaptic weight accumulation, and advanced
functionality. As indicated in the table, traditional CMOS-based
artificial neuron is advantageous in terms of energy efficiency
owing to the mature processing technology. Conversely, MIT-
based artificial neurons can achieve most types of output spike
models. Additionally, the complex HH model can be mimicked
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FIGURE 11 | (A) Top panel depicts a circuit diagram of a Hodgkin–Huxley (HH) neuron based on two VO2 memristors. The bottom panel denotes the device
structure. (B) Stochastic output spikes under a constant voltage (Yi et al., 2018). (C) The left panel represents the VO2-based neuron circuit with the VO2 device in
series with a tunable resistor. The right panel indicates the MIT neuron with the thermal and threshold noises. (D) Instantaneous firing under multiple values of vgs.
(E) Firing rate plotted against vgs using the analytical and experimental results for different vh distributions (Parihar et al., 2018).

TABLE 1 | Comparison between various hardware implementations of artificial neurons.

Type CMOS Filament Ferroelectric MTJ PCM MIT

Neuron model ML LIF LIF LIF LIF HH

Material Silicon Pt/HfAlOx/TiN/Ag/Pt HfO2 Antiferromagnetic
SOT1

GST VO2

Complexity 5T1C 2R1C 6T Digital circuit Digital circuit 1R1C

Energy/spike 2 fJ 16 fJ 1–10 pJ N/A 5 pJ 5.6 fJ

Firing rate 15.6 kHz N/A 50 kHz Tens of kHz 35–40 kHz 3 GHz

On/off Ratio N/A 106 102 <10 ≈102 102

Stochasticity N/A Yes Yes Yes Yes Yes

Other functionalities Stochastic
resonance

Tunable frequency Frequency
adaptation

Excitatory and
inhibitory stimuli

Ultrahigh frequency
response

Tunable frequency 23 spiking
behaviors

Danneville et al.,
2019

Lu et al., 2020 Dutta et al., 2020 Kurenkov et al.,
2019

Tuma et al., 2016 Yi et al., 2018

T, R, and C denote transistor, resistor, and capacitor, respectively. aDetails of the material: Ta (3 nm)/Pt (2.5)/Pt38Mn62 (9.5)/Pt (0.6)/[Co (0.3)/Ni (0.6)]2/Co (0.3)/MgO (1)/
Ru (1)/Ta/Pt/ PtMn.

using only a resistor and a capacitor. Most implementations
are bio-mimetic neurons aiming to emulate the basic behavior
of biological neurons and require additional hardware, such
as resistors and capacitors. However, in comparison with
the CMOS-based neurons, the cost of additional hardware
in emerging neurons is negligible, aiding the scaling of the

overall chip energy, size, and complexity. Moreover, most of
the emerging bio-mimetic neurons are two-terminal devices
and compatible with CMOS technology, which renders them
applicable in different fields.

Although the aforementioned artificial neurons exhibit
stochastic neuronal functions, the unique advantages and
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disadvantages of each emerging stochastic neuron must be
addressed. For instance, the endurance of over 1015 of an MTJ
cell is outstanding. However, the major challenge for MTJ-
based neurons is constructing ultrahigh-density networks using
complex processing units (Grollier et al., 2016). Additionally, the
tunneling magnetoresistance ratio of MTJ cells is experimentally
determined to be 600% to date (Ikeda et al., 2008), which implies
that a higher number of neuron cells are required to integrate the
pre-synaptic input spikes. Conversely, filament-based neurons
exhibit on/off ratios, accessible endurance cycles, low operating
voltage, and adequate energy efficiency. However, the volatile
memory in most cases can respond only in one direction of
the input stimulus, such as the excitatory postsynaptic potential.
Additionally, further optimizations of fabrication processes are
inevitable for ovonic TS. As the electrical field required for
the oxygen ions to escape the lattice is 10 MV/cm (Wong
et al., 2012) and that of Ag+ to diffuse in SiO2 is less than
1 MV/cm (Waser and Aono, 2007; Yang et al., 2013), ECM-
based devices are suitable for constructing artificial neurons with
low power dissipation. Moreover, the inherent mechanism of TS
relaxation caused by the dissolution of metal particles renders
the relaxation time of an ECM cell large and restricts the output
spike frequency (Lee et al., 2019). Although the TS in MIT devices
is ultrafast (up to several nanoseconds) in terms of switching
speed, the on/off ratio is generally less than 102. Moreover,
the range of the synaptic weighted sum can be restrictive,
resulting in the requirement of numerous neurons to integrate
the input spikes. Nevertheless, MIT-based neurons can mimic
most biological spiking models (Yi et al., 2018). Similar to MIT-
based neurons, PCM neurons demonstrate ultrafast switching
speed, excellent endurance, high energy efficiency, and scaling
down characteristics. However, additional spike generator and
feedback circuits are required to trigger the output spikes and
reset the device to the initial state, respectively, after the non-
volatile inherence causes the firing action. Furthermore, the
complexity and size of auxiliary circuits should be scaled down.
FeFET-based neuron demonstrates adequate energy efficiency,
high output spike frequency, and responds to both excitatory and
inhibitory stimuli in a single cell. However, FeFET-based artificial
neurons are three-terminal devices that need to be scaled down
further. Moreover, the reported FeFET-based neuron with self-
resetting and automatic firing functions was equipped with a
partially crystalline ferroelectric thin film, rendering it difficult to
establish a standard fabrication procedure of ferroelectric films.

Based on the aforementioned discussion and taking
predictions about technology scaling of the next decade into
account, one can collect a number of requirements for SANs:
(i) Stochastic output. The frequency distribution of the output
(spiking) should be random and unpredictable. (ii) Endurance.
The emerging neurons must exhibit a high endurance over 106

cycles as the spiking algorithms rely on a continuous operation
procedure. (iii) On/off resistance ratio. To reduce the quantity of
SANs used in SNN and decrease the total energy consumption,
a high on/off resistance ratio (103) can improve the capacity of
summing the weights from potentiated and depressed synapses.
(iv) Energetic efficiency. Though the accuracy of SNN is not
extremely high comparing to the ANN, SNN may take an

important role in sensors or embedded systems, thus requiring
low-power consumption. Energy consumption per spike should
be as low as possible to maintain the functionality for long times
even in battery-operated devices. (v) Automatic reset. Stochastic
neurons need to automatically reset to their primary states after
each IF cycle. Hence, the accessory circuit to reset the neurons is
needless, which is beneficial to the chip size and energy efficiency.

SUMMARY AND OUTLOOK

SANs that can effectively mimic the sources of background
noise with true stochasticity are essential components in
SNNs when used for probabilistic computing. Although the
emerging artificial neurons can imitate the basic functionalities,
such as the all-or-nothing firing, refractory period, tunable
output frequency, and frequency adaptation, they cannot mimic
advanced functionalities of an actual biological neuron, such as
lateral inhibition, variable spiking modes, and chaos. Further
analyses are required to ensure that the artificial neurons are
more bio-mimetic, which warrants dedicated investigations on
device dynamics.

Although the hardware primitives of SANs are at the early
stages of development, the corresponding training algorithms
should be developed considering the future applications of
randomness in computation. Appropriate algorithms can exploit
the potential of unique characteristics in the emerging SANs to
attain high computational efficiency, low power consumption,
and maintain dynamic artificial neurons.

Comprehensive simulation of the inference functionality
in SNN requires a close collaboration of different fields, such
as biological neuroscience, material science, microelectronics
engineering, and computational neuroscience. Biological
scientists must reveal the operation and functionality of a
human brain for the benefit of researchers in other fields
and lay the foundation for constructing multi-functional and
universal artificial intelligence systems. This close collaboration
of scientists from various fields can significantly enhance the
accuracy of SNNs.
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