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Abstract: Semiliquidambar cathayensis Chang was a traditional medicinal plant and used to treat
rheumatism arthritis and rheumatic arthritis for centuries in China with no scientific validation,
while only 15 components were reported. Thus, a rapid, efficient, and precise method based on
ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem
mass spectrometry (UHPLC-Q-TOF-MS/MS) was applied in both positive- and negative-ion modes
to rapidly analysis the main chemical compositions in S. cathayensis for the first time. Finally, a total
of 85 chemical compositions, including 35 alkaloids, 12 flavonoids, 7 terpenoids, 5 phenylpropanoids,
9 fatty acids, 7 cyclic peptides, and 10 others were identified or tentatively characterized in the roots
of S. cathayensis based on the accurate mass within 5 ppm error. Moreover, alkaloid, flavonoid,
phenylpropanoid, and cyclic peptide were reported from S. cathayensis for the first time. This rapid
and sensitive method was highly useful to comprehend the chemical compositions and will
provide scientific basis for further study on the material basis, mechanism and clinical application
of S. cathayensis roots.

Keywords: Semiliquidambar cathayensis roots; UHPLC-Q-TOF-MS/MS; chemical profiling; rapid
identification; chemical compositions

1. Introduction

Semiliquidambar cathayensis Chang, is an epiphyllum tree belonging to the Hamamelidaceae family,
native only to China, and grows in Jiangxi, Guangxi, Guangdong, Hainan and Guizhou [1]. Chinese
people call the roots of S. cathayensis as Ban feng he (Chinese name 半枫荷), which have long been
used in traditional Chinese medicine (TCM) for the treatment of rheumatism arthritis and rheumatic
arthritis [2]. Modern pharmacological experiments have demonstrated that the crude extracts and/or
fractions obtained from the roots of S. cathayensis have the effects of analgesia, anti-inflammatory,
anti-hepatitis B virus, promoting blood circulation, and removing blood stasis [3–6]. Unfortunately,
only 15 chemical compositions—including 7 terpenoids, 3 steroids, 3 tannins, and 2 fatty acids—were
reported from the roots of S. cathayensis [7,8], which was a significant barrier for further pharmacological,
metabolic and pharmacokinetic studies of this medicinal plant. Moreover, due to the indeterminate
relationship between pharmacological activities, chemical components, the clinical application and
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quality control of S. cathayensis roots still faced big challenges. Therefore, a rapid and sensitive method
to figure out the chemical components in the roots of S. cathayensis was urgently needed.

Conventional separation and identification processes were time and plant material consuming [9–13],
whereas the use of a rapid, efficient, and prescise method focused on identification chemical components
was very important for TCMs. Over the past decade, UHPLC coupled with high-resolution mass
spectrometry (HRMS) has become the prime tool for investigating the chemical profiling of TCMs, because
of its advantages on the peak capacity, resolution, separation time, and detection sensitivity, all of which are
suitable for addressing the complicated characteristics of the constituents in TCMs [14–17]. Furthermore,
quadrupole time-of-flight Q-TOF-MS/MS with powerful structural characterization can provide more
specific and accurate mass measurements for both precursor and fragment ions. These features can greatly
facilitate prediction of elemental compositions and fragmentation pathways [18–20].

In this study, a rapid, sensitive, and reliable approach based on UHPLC-Q-TOF-MS/MS method
was established to determine the main chemical components in the roots of S. cathayensis for the first
time, which will provide a basis for further study in vivo of S. cathayensis roots and the information
of potential new drug structure for treating rheumatism arthritis and rheumatic arthritis.

2. Results and Discussion

2.1. Optimization of Chromatographic Separation

A series of parameters, including stationary and mobile phases, flow rate, and column temperature
were investigated in order to obtain optimal chromatographic separation and analytical sensitivity for
multiple constituents in the roots of S. cathayensis. A comparative study based on chromatographic
selectivity and detection sensitivity revealed that the best performance was achieved with the BEH
C18 column as the stationary phase and acetonitrile as the organic part of the mobile phase. Since
alkaloid compounds generally exhibits better mass spectrometric responses in positive ionization
mode, the addition of 0.1% formic acid into the aqueous part of the mobile phase was found to be
beneficial to the subsequent positive electrospray ionization (ESI+) analysis. In addition to the
optimization of the stationary and mobile phases, control of column temperature and flow rate were
also optimized to improve selectivity and resolution. Finally, column temperature of 35 ◦C and the flow
rate of 0.3 mL/min were suitable for the separation. The total ion chromatogram (TIC) of S. cathayensis
roots extract in positive- and negative-ion modes were shown in Figure 1. Moreover, the tandem mass
spectra of the main components were available in Supplementary Materials.
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Figure 1. The total ion chromatograms of the S. cathayensis roots extract by UHPLC-Q-TOF-MS/MS
in positive- and negative-ion modes.

2.2. Identification of Main Constituents in S. Cathayensis Extract

A total of 85 chemical compositions, including 35 alkaloids, 12 flavonoids, 7 terpenoids,
5 phenylpropanoids, 9 fatty acids, 7 cyclic peptides, and 10 others were identified. The molecular
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formula was accurately assigned within mass error of 5 ppm. Then the fragment ions were used
to further confirm the chemical structure. Information including compound name, retention time,
formula, precursor ion, and fragment ions of the rest of these compositions can be found in Table 1;
Table 2. The chemical structures of the main components in S. cathayensis roots extract are showed
in Figures 2–9. All the components were identified based on the existing literatures, which includes
the database of Chinese medicine ingredients and the free chemical structure database, including
ChemSpider, Massbank, and mzCloud. Furthermore, the fragmentation pathways of some compounds
were proposed in order to facilitate structural identification.

Table 1. Compounds identified from the roots of S. cathayensis by UHPLC–Q-TOF-MS/MS in positive
ion mode.

No. tR (min) Compounds Molecular
Formula

Molecular
Weight

Measured
Mass [M + H]

Error
(ppm) MS2 Ref.

Alkaloids

4 1.74 stachydrine C7H13NO2 143.0946 144.1020 0.8 144.1004 a, 128.0647,
102.0585 [21]

6 4.06 gentianin C10H9NO2 175.0633 176.0706 −0.2

176.0714 a, 148.0763,
133.0524, 130.0660,
103.0560, 120.0820,

117.0350

[22]

7 4.10 kalacolidine C22H35NO5 393.2515 394.2593 1.4 394.2588, 376.2485 a [23]

10 5.49 mesaconine C24H39NO9 485.2625 486.2702 1.0 486.2697 a, 436.2332,
404.2070 [23]

11 5.54
16-β

-hydroxycar
diopetaline

C21H33NO4 363.2410 364.2486 1.0 364.2488 a, 346.2382,
328.2275 [24]

13 5.84 senbusine A C23H37NO6 423.2621 424.2699 1.3 424.2701 a, 406.2591,
388.2487 [23]

16 6.05 carmichaeline C22H35NO4 377.2566 378.2645 1.6 378.2640, 360.2532 a,
328.2271 [23]

18 6.10 isotalatizidine C23H37NO5 407.2672 408.2749 1.2 390.2642 a, 358.2378 [23]

19 6.46 aconine C25H41NO9 499.2781 500.2861 1.3 500.2863 a, 450.2495 [15]

20 6.56 songorine C22H31NO3 357.2304 358.2381 1.2 358.2375, 340.2270 a [23]

21 6.6 napelline C22H33NO3 359.2460 360.2536 0.7 360.2536, 342.2430 a [15]

22 6.74 hetisine C20H27NO3 329.1991 330.2069 1.6 330.2062 a, 312.1954 [23]

25 7.38 hypaconine C24H39NO8 469.2676 470.2751 0.6 470.2764 a, 438.2498,
406.2216 [24]

26 7.44 senbusine C C24H39NO7 453.2727 454.2805 1.3 454.2786 a, 404.2427 [23]

28 7.91 neoline C24H39NO6 437.2777 438.2854 0.8
438.2841 a, 420.2738,
388.2480, 356.2222,

154.1223
[23]

29 8.08 14-acetyl-
karakoline C24H37NO5 419.2672 420.2749 1.0 420.2757 a, 402.2653 [24]

35 9.18 talatisamine C24H39NO5 421.2828 422.2906 1.2 390.2642 a, 358.2379 [24]

37 9.41 denudatine C22H33NO2 343.2511 344.2589 1.4 344.2587 a, 326.2480 [23]

42 10.76 bullatine C C26H41NO7 479.2883 480.2962 1.2 480.2980 a, 462.2858,
430.2587, 398.2295 [23]

43 11.22 chasmanine C25H41NO6 451.2934 452.3012 1.2 452.3016 a, 420.2755,
388.2490 [23]

44 13.41 14-acetyl-
talatisamine C26H41NO6 463.2934 464.3011 1.0 464.3011 a, 432.2746 [23]

50 20.28 benzoylme
saconine C31H43NO10 589.2887 590.2966 1.1 590.2941 a, 540.2579,

508.2323, 105.0341 [15]

54 21.85 benzoylaconine C32H45NO10 603.3044 604.3122 0.9 604.3110 a, 554.2748 [15]

55 22.91 benzoylhy
paconine C31H43NO9 573.2938 574.3015 0.8 574.3017 a, 542.2755,

510.2495 [15]
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Table 1. Cont.

No. tR (min) Compounds Molecular
Formula

Molecular
Weight

Measured
Mass [M + H]

Error
(ppm) MS2 Ref.

58 24.20 benzoyl-3,13-
deoxymesaconine C31H43NO8 557.2989 558.3068 1.1 558.3055 a, 540.2955,

508.2697 [15]

59 24.25 10-hydroxy-
mesaconitine C33H45NO12 647.2942 648.3024 1.4 648.3002 a, 588.2791,

556.2540, 370.1653 [23]

60 24.27 benzoyldeox
yaconine C32H45NO9 587.3094 588.3172 0.8 588.3174 a, 556.2918 [15]

61 25.21 pyrohypaconitine C31H41NO8 555.2832 556.2910 0.9

556.2915 a, 524.2647,
492.2414, 452.2072,
402.2285, 238.1807,

192.1383

[15]

63 25.87 mesaconitine C33H45NO11 631.2993 632.3070 0.7

632.3032 a, 572.2826,
540.2566, 512.2622,
508.2315, 354.1685,

105.0342

[15]

64 26.12 10-hydroxy-
aconitine C34H47NO12 661.3098 662.3180 1.4 662.3168 a, 602.2957,

570.2702, 384.1809 [15]

67 27.49 hypaconitine C33H45NO10 615.3044 616.3125 1.5

616.3089 a, 556.2876,
524.2618, 496.2638,
342.2055, 338.1739,

105.0340

[15]

68 27.58 aconitine C34H47NO11 645.3149 646.3232 1.5

646.3199 a, 586.2985,
554.2735, 526.2783,
522.2487, 368.1850,

105.0342

[23]

70 28.60 deoxyaconitine C34H47NO10 629.3200 630.3281 1.3

630.3256 a, 570.3047,
538.2787, 510.2830,
478.2575, 356.2219,

352.1905

[15]

71 28.98 yunaconitine C35H49NO11 659.3306 660.3386 1.2 660.3396 a, 572.2866,
540.2591, 354.1735 [24]

72 29.38 3,13-dideoxy
aconitine C34H47NO9 613.3251 614.3326 0.4

614.3302 a, 554.3091,
522.2835, 494.2880,
462.2620, 105.0345

[23]

Terpenoids

14 5.94 oxypaeoniflorin C23H28O12 496.1581 497.1657 0.7
497.2676, 349.1575,
197.0831, 133.0687,

121.0297 a
[25]

31 8.56 paeoniflorin C23H28O11 480.1632 481.1711 1.4
319.1245, 197.0808,
179.0691,151.0750,

133.0650, 105.0342 a
[26]

65 26.21 benzoyl
paeoniflorin C30H32O12 584.1894 585.1970 0.5

585.3271, 319.1195,
267.0885, 249.0785,
197.0807, 179.0705,
121.0666,105.0349 a

[26]

73 30.98 atractylenolide-1 C15H18O2 230.1307 231.1380 0.0

213.1257, 163.0778,
155.0848, 143.0931,
128.0610, 115.0541,

105.0712 a

[27]

79 36.18 3-oxo-olean-12-
en-28-oic acid C30H46O3 454.3447 455.3516 −0.8

455.3539, 437.3426,
247.1668, 233.1531,
229.1584, 197.1332,

189.1615 a

[28,29]

a base peak.
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Table 2. Compounds identified from the roots of S. cathayensis by UHPLC–Q-TOF-MS/MS in negative
ion mode

No. tR
(min) Compounds Molecular

Formula
Molecular

Weight
Measured Mass

[M − H]−
Error
(ppm) MS2 Ref.

Flavonoids

24 7.33 puerarin C21H20O9 416.1107 415.1015 −4.6 415.0970, 295.0614,
277.0490, 267.0653 a [30]

33 8.85 scoparin C22H22O11 462.1162 461.1069 −4.4 415.0991 a, 252.0361 [30]

34 9.17 isorhamnetin-3-O
-neohespeidoside C28H32O16 624.1690 623.1602 −2.5

623.1609, 461.1022 a,
417.1203, 315.0710,
153.0226, 145.0338

[31]

36 9.38 kaempferol-3-O
-glucorhamnoside C27H30O15 594.1585 593.1485 −4.6

593.1010, 547.1243,
430.0954,

275.0347,112.9889 a
[32]

39 9.44 methyl
hesperidin C29H36O15 624.2054 623.1963 −2.9

623.0455, 577.0923,
534.0988, 461.1451,
410.0366, 315.1067,

145.0319 a

[33]

17 6.06 catechin C15H14O6 290.0790 289.0715 −1.1

221.0899, 205.0532,
203.0700 a, 187.0372,
159.0452, 125.0280,

123.0486

[34]

46 17.01 naringin C27H32O14 580.1792 579.1716 −0.6
579.1721, 459.1144,

313.0736, 271.0617 a,
177.0209, 151.0048

[33]

48 19.58 hesperidin C28H34O15 610.1898 609.1815 −1.6 609.1826, 301.0706 a,
286.0481, 242.0583 [35]

56 23.57 5,8-dihydroxy-6,7
-dimethoxyflavone C17H14O6 314.0790 313.0709 −2.9

297.0313, 283.0226,
266.0197, 255.0309 a,
227.0318, 211.0393,
185.0235, 183.0456

[33]

57 24.10 juglanin C20H18O10 418.0900 417.0814 −3.1 161.0578, 135.0527,
129.0226 a [20]

62 25.32 naringenin C15H12O5 272.0685 271.0609 −1.1 151.0030, 119.0509 a,
117.0421 [33]

66 26.53 hesperetin C16H14O6 302.0790 301.0713 −1.7 258.0578 a, 134.0383 [33]

Terpenoids

76 33.74
2α,3β-dihydrox
yolean-12-en-28-

oic-acid
C30H48O4 472.3553 471.3466 −3.0

471.3494 a, 451.0162,
411.0302, 389.2158,
330.9965, 264.9917

[28,29]

81 36.45 oleanic acid C30H48O3 456.3604 455.3512 −4.2
455.3495 a, 409.2443,
391.2341, 373.2227,

355.2079
[28,29]

Phenylpropanoids

15 6.01 ferulic acid C10H10O4 194.0579 193.0510 2.0 134.0379 a [36]

22 7.10 fraxin C16H18O10 370.0900 369.0814 −3.5 223.0462 a, 205.0350,
129.0210, 125.0241 [32]

32 8.76
3-(3,4-dihydroxy
phenyl)-2-hydroxy
-propanoic acid

C9H10O5 198.0528 197.0456 0.2 162.8375 a, 160.8401,
138.0358, 123.0085 [37]

38 9.44 acteoside C29H36O15 624.2054 623.1963 −2.9
623.0455, 577.0923,
461.1451, 315.1067,

145.0319 a
[30]

52 21.42 bergaptol C11H6O4 202.0266 201.0192 −0.8 228.9172 a, 166.8855,
147.8874, 117.0436 [38]

Fatty Acids

5 2.05 citric acid C6H8O7 192.0270 191.0199 0.7 146.9074, 111.0110 a [36]

69 28.24
trihydroxy-

octadecaenoic
acid

C18H34O5 330.2406 329.2326 −1.5
329.2354, 229.1443,
211.1346, 183.1371,

171.1026 a, 139.1137
[27]
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Table 2. Cont.

No. tR
(min) Compounds Molecular

Formula
Molecular

Weight
Measured Mass

[M − H]−
Error
(ppm) MS2 Ref.

74 32.9
dihydroxy-

octadecatrienoic
acid

C18H30O4 310.2144 309.2069 −0.9 291.1995 a, 199.8548,
179.1442, 110.0373 [27]

77 34.13
hydroxy-

octadecatrienoic
acid

C18H30O3 294.2195 293.2121 −0.4 293.2080 a, 199.8526,
149.0939, 125.1018 [28]

78 36.16 linolenic acid C18H30O2 278.2246 277.2171 −0.7 134.8951 a [28]

80 36.22 stearic acid C18H36O2 284.2715 283.2640 −0.9 283.2633, 199.8512 a [28]

83 37.05 linoleic acid C18H32O2 280.2402 279.2329 −0.2 279.2319 a, 261.2194 [28]

84 38.09 palmitic acid C16H32O2 256.2402 255.2332 0.9 256.2333, 255.2327 a,
114.9333 [28]

85 38.20 oleic acid C18H34O2 282.2559 281.2484 −0.9 281.2489 a [28]

Cyclic Peptides

27 7.59 cyclo trileucyl
(or isoleucyl) C18H33N3O3 339.2522 384.2488 b −1.3 135.0456 a [28]

40 10.07 cyclo tetraleucyl
(or isoleucyl) C24H44N4O4 452.3363 497.3328 b −1.1

497.1555, 451.3294 a,
433.3159, 337.2669,
224.1758, 137.0247

[28]

45 13.48
cyclo

pentaleucyl
(or isoleucyl)

C30H55N5O5 565.4203 610.4168 b −1.0 564.4112 a, 546.4021,
225.1592 [28]

47 17.66 cyclo hexaleucyl
(or isoleucyl) C36H66N6O6 678.5044 723.5020 b 0.7 677.4961 a [28]

49 19.86 cyclo hetaleucyl
(or isoleucyl) C42H77N7O7 791.5885 836.5862 b 0.8 790.5791 a [28]

51 21.0 cyclo octaleucyl
(or isoleucyl) C48H88N8O8 904.6725 949.6704 b 0.9 946.6691, 903.6636 a [28]

53 21.78 cyclo nonaleucyl
(or isoleucyl) C54H99N9O9 1017.7566 1062.7546 b 0.9 1062.7547, 1016.7472 a [28]

Others

1 0.35 glucogallin C13H16O10 332.0744 331.0662 −2.7 169.0124, 125.0257 a [39]

2 0.69 gallic acid C7H6O5 170.0215 169.0149 3.6 124.0178 a [40]

3 1.46 sucrose C12H22O11 342.1162 341.1078 −3.5
221.0641, 179.0592,
161.0419, 119.0379,

113.0253 a
[41]

8 4.29 piscidic acid C11H12O7 256.0583 255.0508 −0.7 218.8641, 180.9830,
165.0550 a, 118.9815 [42]

9 5.37 vanillin C8H8O3 152.0473 151.0410 4.1 105.0368 a [43]

12 5.59 protocatechuic
acid pentoside C12H14O8 286.0689 285.0611 −1.6 152.0117, 108.0243 a [44]

30 8.37 vanillic acid C8H8O4 168.0423 167.0354 2.2 108.0206 a [36]

41 10.65 paeonol C9H10O3 166.0630 165.0564 3.8
147.0476, 119.0505,

117.0379 a, 103.0575,
101.0392

[31]

75 33.10 dibutyl
phthalate C16H22O4 278.1518 277.1444 −0.3 147.0072 a [45]

82 36.52 dimethisterone C23H32O2 340.2402 339.2326 −1.1 339.2317, 163.1140 a [45]
a base peak, b measured mass [M + HCOO]−.
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2.2.1. Alkaloids

A total of 35 alkaloids (Figure 2) in the roots of S. cathayensis extract were indentified in positive
ion mode, all ones except compounds 4 and 6 were diterpenoid alkaloids, which can be classified
into C18-, C19-, and C20- diterpenoid alkaloids according to skeleton carbons [46]. In this study,
compounds 7, 20, 21, 22, and 37 were C20-diterpenoid alkaloids, while others were C19-diterpenoid
alkaloids, which were belonging to aconitum alkaloids. Moreover, aconitum alkaloids include
diester-diterpenoid, monoester-diterpenoid, amine-diterpenoid, and other alkaloids [25]. In tandem
mass spectrum of aconitum alkaloids commonly observe the neutral losses of H2O, MeOH, AcOH,
or BzOH. In diester-diterpenoid alkaloids, the hydroxyl groups of C8 and C14 in these compounds
are combined with acetic acid and benzoic acid to form esters, respectively. The neutral loss of 28 Da
corresponding to eliminate one molecule of CO or C2H4 was the feature loss. Meanwhile, the order
of eliminations of benzyl, acetyl, carboxyl, ethyl, or methyl and methoxy was also investigated.
In monoester-diterpenoid alkaloids, only hydroxyl group of C14 binds with benzoic acid to form esters.
Then, hydroxyl at C1 position was the most active site. Unlike them, hydroxyl at C15 position could
not be eliminated even at a high fragment or voltage in amine diterpenoid alkaloids [15].

Compounds 59, 63, 64, 67, 68, 70, 71, and 72 were diester-diterpenoid alkaloids. Among them,
63, 67, and 68 showed [M + H]+ ion at m/z 632.3032, 616.3089 and 646.3199. They have similar
fragmentation pathways, including [M + H −HAc]+, [M + H −HAc − CH3OH]+, [M + H −HAc −
CH3OH − CO]+, [M + H − HAc − 2CH3OH − CO]+, [M + H − HAc − 2CH3OH]+, and [M + H −
HAc − 3CH3OH − C6H5COOH]+, which were identified as mesaconitine, hypaconitine, and aconitine,
respectively. The possible fragmentation mechanism of mesaconitine is depicted in Figure 3.
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Moreover, compounds 59 and 64 gave [M + H]+ ion at m/z 648.3002 and 662.3168, 16 Da greater
than that of mesaconitine and aconitine, respectively. As C10 position was commonly substitued by
hydroxyl in aconitum alkaloids, they were presumed as 10-OH mesaconitine and 10-OH aconitine,
respectively. However, compounds 70 and 72 gave [M + H]+ ion at m/z 630.3256 and 614.3302, 16 Da
and 32 Da less than aconitine, respectively. Their tandem mass spectra were smililar to aconitine,
and some fragment ions of compounds 70 and 72 were 16 Da and 32 Da less than the fragment
ions of aconitine, respectively. They were reported as deoxyaconitine and 3,13-dideoxyaconitine,
respectively. Compound 71 showed [M + H]+ ion at m/z 660.3396, 14 Da greater than that of aconitine.
Moreover, as C14 position was commonly substitued by methoxybenzoyl in aconitum alkaloids, 71 was
presumed as yunaconitine [24,47].

Compounds 29, 42, 44, 50, 54, 55, 58, 60, and 61 are monoester-diterpenoid alkaloids. Compound
29 gave fragment ions at m/z 420.2757 and 402.2653 were corresponding to [M + H]+ and [M + H −
H2O]+, respectively, and it was identified as 14-acetyl-karakoline by comparing with the literature [25].
Compound 42 gave fragment ions at m/z 480.2980, 462.2858, 430.2587, and 398.2295 in the positive mode
were corresponding to [M + H]+, [M + H − H2O]+, [M + H − H2O − CH3OH]+, and [M + H
− H2O − 2CH3OH]+, respectively, and it was tentatively identified as bullatine C (Figure 4).
The [M + H]+ ion at m/z 464.3011 of compound 44 also gave the fragment ion at m/z 432.2746
[M + H − CH3OH]+, and identified as 14-acetyl-talatisamine. Compounds 50, 54, 55, and 60 were
42 Da less than mesaconitine, aconitine, hypaconitine, and deoxyaconitine, respectively. As C8
position was substitued by hydroxyl group instead of acetyl group. Therefore, they could be
considered as benzoylmesaconine, benzoylaconine, benzoylhypaconine, and benzoyldeoxyaconine,
respectively. Moreover, compound 58 was 32 Da less than that of benzoylmesaconine, and was
identified as benzoyl-3,13-deoxymesaconine. Meanwhile, compound 61 was 60 Da less than that
of hypaconitine, and was presumed as pyrohypaconitine, attributing to one molecule of acetic acid
eliminated from hypaconitine.

Compounds 10, 11, 13, 16, 18, 19, 25, 26, 28, 35, and 43 are amine diterpenoid alkaloids.
Among them, 10, 16, 19, 25, and 35 were 104 Da less than benzoylmesaconine, 14-acetyl-karakoline,
benzoylaconine, benzoylhypaconine, and 14-acetyl-talatisamine; and considered as mesaconine,
karacoline, aconine, hypaconine, and talatisamine, respectively, because C14 position was substitued
by hydroxyl group instead of benzoyl group. Moveover, 11, 13, 18, 26, 28, and 43 could be considered
as 16-β-hydroxycardiopetaline, senbusine A, isotalatizidine, senbusine C, neoline, and chasmanine,
respectively, based on their molecular weight and tandem fragment patterns.

Compounds 7, 20, 21, 22 and 37 were C20-diterpenoid alkaloids, which gave [M + H]+ ions at
m/z 394.2588, 358.2375, 360.2536, 330.2062 and 344.2587, respectively. Thus, they were respectively
identified as kalacolidine, songorine, napelline, hetisine, and denudatine by comparing with the
literatures [15,48].

The [M + H]+ ion of compound 4 was shown at m/z 144.1004. Its MS2 fragment ions at m/z
128.0647 and 102.0585 exhibited the loss of CH4 and continuous loss of two CH4, and it was presumed
as stachydrine [22]. For compound 6, the positive mode MS spectrum showed the parent ion at m/z
176.0714 [M + H]+, and MS2 spectrum showed the fragment ions at m/z 148.0763 [M + H − C2H4]+,
130.0660 [M + H − COOH]+, and 120.0820 [M + H − C2H4 − CO]+. Compared with literature data,
compound 6 was identified as gentianin [23].

2.2.2. Flavonoids

Flavonoids were a kind of basic 2-phenyl chromogenic ketones, which exist widely in nature and
were important natural organic compounds. Two flavonoids (17 and 56) and 10 flavonoid glycosides
in the roots of S. cathayensis extract were indentified in negative ion mode (Figure 5). For flavonoids,
small molecules and radicals like CH3 (15 Da), H2O (18 Da) and CO (28 Da) were feature loss. The main
MS/MS behavior of aglycones described previously was retro Diels-Alder (RDA) fragmentation
pathway. RDA fragments of m/z 135 and 119 were the feature fragments in negative ion mode [20,49].
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Taking compound 17 as an example, it had [M − H]− ion at m/z 289.0715. It yielded fragments at
m/z 205.0532, 203.0700, 187.0372, and 125.0280 by loss of 2(C2H2O), 2(C2H3O), 2(C2H2O)-H2O, and
C9H8O3 moieties. It was consistent with literature and identified as catechin [35].

Moreover, the loss of a glucuronic acid (176 Da) and hexose residue (glucose 162 Da, rhamnose 146 Da)
were often seen in flavonoid glycosides. Compounds 24, 33, 34, 36, 39, 46, 48, 56, 57, 62, and 66 were
considered as puerarin, scoparin, isorhamnetin-3-O-neohespeidoside, kaempferol-3-O-glucorhamnoside,
methyl hesperidin, naringin, hesperidin, 5,8-dihydroxy-6,7-dimethoxyflavone, juglanin, naringenin,
and hesperetin, respectively [31–34,36]. Take compound 46 as an example (Figure 6), it had [M − H]−

ion at m/z 579.17156 in the spectrum. Four main fragment ions at m/z 459.1144, 271.0617, 177.0209,
and 151.0048 were obviously observed. Among them, the most abundant fragment ion m/z 271.0617
was suggested by the loss of rutinose residue [M −H − 146 − 162]−. Fragment ions at m/z 459.1144 and
151.0048 were glycoside and aglycone by RDA. The fragment information at m/z 177.0209 was detected
as aglycone without C ring. Compared to the MS spectra data and references [34,36] compound 46
was tentatively identified as naringin.

2.2.3. Terpenoids

Terpenoids were a class of structures derived from methylglutaric acid (MVA) and have two or
more isoprene units (C5) on the basic carbon shelf. Seven terpenoids were identified in this study,
including three monoterpenes (14, 31, and 65), one sesquiterpene (73) and three triterpenes (76, 79,
and 81) (Figure 7). Monoterpenes usually detected the neutral losses of a benzoic acid at m/z 121
or glucosyl group at m/z 165, and aglycone ions at m/z 195 or 197, or their fragmentations of losing
H2O and CO [15]. In that case, fragmentation behaviors showed that compound 14, 31, and 65 were
oxypaeoniflorin, paeoniflorin, and benzoylpaeoniflorin, respectively [26,27].

Compound 73 had [M + H]+ ion at m/z 231.13795, and its fragments were at m/z 163.0778 [M + H
− C5H8]+, 155.0848 [M + H − HCOOH − C2H6]+, 143.0931 [M + H − HCOOH − C3H6]+, and 105.0712
[M + H −HCOOH − C3H6 − C4H2]+. Its fragmentation process was the same as the literature [28] and
identified as atractylenolide-1.

It was reported that triterpenes (76, 79, and 81) had similar tandem fragment patterns [29,30].
Taking compound 81 as an example, it had [M − H]− ion at m/z 455.3495, and its fragments were at m/z
409.2443 [M −H − CH2O2]− and 391.2341 [M −H − CH2O2 −H2O]−. Its fragmentation process was
the same as the literature [29,30], and identified as oleanolic acid (Figure 8).

2.2.4. Phenylpropanoids

Phenylpropanoids were structures containing one or more C6-C3 units, which were widely
distributed in medicinal plants. A total of five phenylpropanoids in the roots of S. cathayensis extract
were indentified in negative ion mode (Figure 9). Compounds 15, 22, 32, 38, and 52 were considered
as ferulic acid, fraxin, 3-(3,4-dihydroxyphenyl)-2-hydroxy-propanoic acid, acteoside, and bergaptol,
respectively [31,33,37–39].

Taking compound 38 as an example, it had [M − H]− ion at m/z 623.0455, and its fragments were
at m/z 461.1451 [M −H − C9H6O3]– and 315.1067 [M −H − C9H6O3 − C6H10O4]−. Its fragmentation
process was the same as the literature [31] and identified as acteoside.

2.2.5. Fatty Acids

Fatty acids found in medicinal plants vary in length chains from 12 to 22 carbon atoms, of which
16–20 carbon atoms are the most common fatty acids in nature. It was reported that these compositions
have a wide range of biological activities, including stabilizing cell membranes, maintaining the balance
of cytokines and lipoproteins, and fighting cardiovascular diseases. In this study, nine fatty acids with
long aliphatic hydrocarbon chains and a carboxyl group at one end (compounds 5, 69, 74, 77, 78, 80, 83,
84, and 85) were identified based on the existing literatures [37,45,46,50], and in the relevant databases,
such as ChemSpider, Massbank, and mzCloud.
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2.2.6. Cyclic Peptides

Compounds 27, 40, 45, 47, 49, 51, and 53 had similar fragmentation behaviors, and showed
[M + HCOO]− ions at m/z 384.2488, 497.3328, 610.4168, 723.5020, 836.5862, 949.6704, and 1062.7547,
respectively. According to reference mass spectra and fragmentation spectra reported in the
literatures [46,51,52], a total of seven cyclic peptides were identified with 3–9 leucyl (or isoleucyl)
groups in the roots of S. cathayensis.

2.2.7. Others

Other 10 compounds 1–3, 8, 9, 12, 30, 41, 75, and 82 were considered as glucogallin, gallic acid,
sucrose, piscidic acid, vanillin, protocatechuic acid pentoside, vanillic acid, paeonol, dibutyl phthalate,
and dimethisterone, respectively [32,37,40–46].

3. Experimental Section

3.1. Chemicals and Reagents

Acetonitrile and formic acid (LC-MS grade) were purchased from Fisher Scientific (Pittsburgh, PA,
USA). Deionized water was purified by a Milli-Q ultrapure water system (Merck Millipore, Milford,
MA, USA). All other regents used of at least analytical grade.

3.2. Plant Material and Extraction

The roots of S. cathayensis were collected in the town of Longsheng, Guilin City, Guangxi, China,
in October 2016. A botanical voucher specimen of this plant (no. SC20161022) was deposited at
authors’ laboratory and was identified by one of the authors Ronghua Liu. 1.0 g aliquots of the
roots of S. cathayensis powders were weighed and transferred into a 100-mL conical flask. 50 mL
of 50% aqueous ethanol solution was added, and then extracted with a reflux twice for 60 min. Then,
the fluid was filtrated and concentrated under reduced pressure in a rotary evaporator. Subsequently,
the concentrated extract was lyophilized and dissolved in ACN. The solution was filtered through
a 0.22-µm PTFE membrane before submitting for instrumental analysis.

3.3. UHPLC-Q-TOF-MS/MS

The UHPLC analysis were carried out on a Shimadzu System (Kyoto, Japan), equipped with
a LC-3AD solvent delivery system, a SIL-30ACXR auto-sampler, a CTO-30AC column oven, a DGU-20A3
degasser and a CBM-20A controller. Chromatographic separation was conducted on a ACQUITY
UPLC®BEH C18 (100 × 2.1 mm, 1.7 µm) keeping at 35 ◦C. 0.1% aqueous formic acid (v/v, A) and
acetonitrile (B) were used as the mobile phase. The gradient elution with the flow rate of 0.3 mL/min
was performed as follows: 0–5 min 5–15% B; 5–15 min 15–18% B; 15–25 min 18–35% B; 25–35 min
35–95% B; 35–37 min 95–95% B; 37–37.1 min 95–5% B; 37.1–40.0 min 5–5% B. The sample inject volume
was 3 µL.

UHPLC-Q-TOF-MS/MS detection was conducted on a Triple TOFTM 5600+ system with a Duo
Spray source in both positive and negative electrospray ion mode (AB SCIEX, Foster City, CA,
USA). The MS analysis was carried out by the ESI source in both positive- and negative-ion modes.
The parameters were set as follows: ion spray voltage, −5500 V; ion source temperature, 500 ◦C;
curtain gas, 40 psi; nebulizer gas (GS1), 50 psi; heater gas (GS2), 50 psi; and decluster potential (DP),
-100 V. Mass ranges were set at 100–1500 Da for the TOF-MS scan and 100–1500 Da for the TOF MS/MS
experiments. In the IDA-MS/MS experiment, the collision energy (CE) was set at 45 eV, and the collision
energy spread (CES) was (±) 15 eV for the UHPLC-Q-TOF-MS/MS detection. The most intensive five
ions from each TOF-MS scan were selected as MS/MS fragmentation. LC-MS/MS data were analyzed
using PeakView®1.2 software (AB SCIEX, Foster City, CA, USA).
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4. Conclusions

In this study, a rapid, efficient, and precise UHPLC-Q-TOF-MS/MS approach was developed
for the separation and identification of the main compositions in the roots of S. cathayensis for the
first time. By the virtue of high resolution and high separation speed of UHPLC, and accurate MS
data of Q-TOF-MS, a total of 85 components, including 35 alkaloids, 12 flavonoids, 7 terpenoids,
5 phenylpropanoids, 9 fatty acids, 7 cyclic peptides, and 10 others were identified by comparisons
of their retention times, accurate masses, fragment ions, related literatures. Moreover, alkaloid,
flavonoid, phenylpropanoid, and cyclic peptide were reported from S. cathayensis for the first time.
This rapid and sensitive method was highly useful to comprehend the chemical compositions and will
provide a scientific basis for further study on the material basis, mechanism and clinical application
of S. cathayensis roots.
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