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Abstract

Studying on subclonal evolution of cancer stem cells can help illustrate how the immune system 

recognizes tumor cells, leading to subclonal treatment by immune-based therapies. Here, we 

discuss that cancer subclones derived from the patient’s head and neck squamous cell carcinoma 

tumor stem cells can be used for the screening of personalized antitumor immunotherapy and 

chemotherapy, to maximize benefits and to minimize the adversary effects, toward personalized or 

precision medicine. We propose a “wait-and-watch” scheme for monitoring a lifetime cancer stem 

cell subclonal development evolved with local environments to cancer.
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INTRODUCTION

The US National Cancer Institute (NCI) and the National Human Genome Research Institute 

(NHGRI) created the Cancer Genome Atlas (TCGA) Project in 2006 with bulk tumor of 

cellular heterogeneity with one-time point [1]. However, it is essential to track down 

subclonal evolution of cancer stem cells (CSCs) evolving with treatment, such as 

Temodar®-driven mutations [2,3]. Indeed, Darwinian pressures arising from systemic 

therapy, result in the clonal selection of initially rare subclone variants within a tumor. Novel 
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technologies such as single cell circulating tumor cell sequencing would allow real-time 

monitoring of clonal heterogeneity, including Loss of heterozygosity (LOH) assays at 

genetic DNA level, at primary and metastatic sites, as well as for improved targeted early 

intervention, better care, prognosis, tumor subclonal recognition with immunotherapy [4]. 

This approach is of particular interest in highly lethal cancers like glioblastomas and 

colorectal adenocarcinomas, which express high intratumoral heterogeneity when a single 

signaling network is observed [5,6]. Therefore, advances in transcriptome analysis at single-

cell resolutions have become increasingly sought out tools to investigate causative signal 

pathways alterations in cancer, as they can specifically address the shortcomings of studying 

bulk lysates for heterogeneous tumor biopsies [7]. Single cell stem cells were very tough to 

extract from heterogeneous populations of tumour, however; recent innovative single-cell 

sequencing to profile the gene-expression landscapes of more than 20,000 cells in the motor 

cortex of brain [8], makes it possible for complex tumors to track the subclonal evolution 

through phylogenetic analysis [9].

Subclonal evolution of cancer as tackled by immunotherapy is recognized by the 2018 Nobel 

prize in Physiology or Medicine, awarded jointly to James P. Allison and Tasuku Honjo [10] 

for his discoveries of how the immune system recognizes tumor cells – they have created a 

change in thinking in subclonal treatment by immune-based therapies. Immunotherapies, 

which boost the body’s own immune system to eliminate cancerous cells, could be an 

alternative approach to target CSCs [11]. Targeting an interlinked network that connects 

pluripotency factors and key cell cycle genes of CSCs may improve efficacy [12]. Thus, 

Immunotherapy using autologous CD19 based modified T-cells (CAR-T cells) for cancer 

raises hope for cancer patients [13]. A highly competent and educated reservoir of immune 

cells may exist within the spleen, in which a specialized environment exists for splenic 

CD11b(+)Gr-1(int)Ly6C(hi) cells, mostly comprising proliferating CCR2(+)-inflammatory 

monocytes in the marginal zone of the spleen [14]. These cells, closely associated with 

memory CD8(+) T cells, cross-presenting tumor antigens can result in tipping the balance 

toward recognition or tolerance but these same cells may also be significantly depleted or 

completely abrogated during treatment cycles with chemotherapy, leading to lack of tumor-

specific immunity [15]. Ability to fight infection and tumor by these immune cells is 

abolished by chemotherapy due to the destruction of established memory achieved by 

previous antigen recognition. All these immune approaches need to target CSCs or TICs 

subclones, therefore; isolation of patient CSCs is essential for the determination of such 

targeting strategies [7]. We use HNSCC as an example to illustrate such an approach step-

by-step.

First, it is essential to define the Head and Neck Squamous Cell Cancer (HNSCC) stem cells 

by the biomarkers. The aldehyde dehydrogenase (ALDH) is a polymorphic enzyme 

responsible for the oxidation of aldehydes to carboxylic acids. ALDH can be used in the 

identification of CSCs [16] in HNSCC. It has been shown that stem cells express elevated 

levels of ALDH. Chemoresistant cancer cells express high levels of ALDHs, particularly in 

HNSCC. The ALDH family of enzymes detoxifies both exogenous and endogenous 

aldehydes. Since many chemotherapeutic agents, such as cisplatin, result in the generation of 

cytotoxic aldehydes and oxidative stress, we hypothesized that cells expressing elevated 

levels of ALDH may be more chemoresistant due to their increased detoxifying capacity and 
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that inhibitors of ALDH may sensitize them to these drugs. In another word, HNSCC-CSCs 

can be identified by high cell-surface expression of CD44 and high intracellular activity of 

ALDH, termed ALDHhighCD44high [17]. Microarray analysis of cisplatin-resistant 

ALDHhighCD44high cells indicates that their signaling pathways have significant 

implications for the pathobiology of cancer (e.g. TNFα, IFN, IL6/STAT, NF-κB, FGF2) 

[17]. The activation of ALDH3A1 by a small molecule activator (Alda-89) increased 

survival of ALDHhigh HNSCC cells treated with cisplatin while treatment with a novel 

small molecule ALDH inhibitor (Aldi-6) resulted in a marked decrease in cell viability, 

suggesting a promising strategy [18].

Second, HNSCC cells that are resistant to chemotherapy, lead to tumor recurrent or 

metastatic that has the poor prognosis with less than 1 year median survival and [17]. 

Autologous CSCs for the screening of personalized treatment (precision medicine) can be 

derived from HNSCC pateint specimens. Studies in our lab have revealed that both CSC and 

its related tumor microenvironment can be used for therapeutic detection before 

administration to patients. We think that tumor surveillance and response by these patient’s 

autologous CSC screening help determine how patient’s CSC react and evolve with 

therapeutics, i.e., co-evolution of CSCs with therapeutics. Reports from brain tumor stem 

cells in glioma patients [7] and in primitive neuroectodermal tumor [19,20] with single-cell 

transcriptome for relapse prognosis [21] and in situ hybridization [22] prompted us to realize 

that patient’s HNSCC CSCs (HNCSC) possess a capacity for tumor evolution of 

therapeutics as such development shows prognostic value for patients. With upregulation of 

vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) of highly 

angiogenic phenotypes, tumor endothelial cells (TECs) exhibit higher proliferative and 

migratory capacity, compared with those of normal endothelial cells (NECs). Such TECs 

show ALDHhigh cell populations by fluorescence-activated cell sorting (FACS) [23]. Sheng 

et al. [24] demonstrated that with decreased ALDH activity, the expression levels of 

stemness-associated markers, CD133+, octamer-binding transcription facto 4 (Oct4) and sex 

determining region Y box 2 also reduced. They also showed, “an increased number of mice 

developed tumors in the ALDHhigh group 16 weeks following the injection of 500 cells, 

whereas tumors appeared at eight weeks in the ALDHlow group”. The mice in the 

ALDHneg group exhibited less tumor formation under these conditions.” They conclude that 

“ALDHhigh cells had characteristics of self-renewal ability, in a relative resting stage; while 

the ALDHlow cells had characteristics of GCPCs with limited self-renewal ability, but were 

in a rapid proliferation stage” [24]. Thus, HNCSC cells can be identified with drugs 

sensitive to ALDH(high)+ cells and isolated with their resistance to fluorouracil (5-FU) in 
vitro and in vivo, while tumor endothelial cells (TEC) can be identified with high ALDH 

activity (ALDHhigh), along with upregulation of stem-related genes such as multidrug 

resistance 1, CD90, ALP, Oct-4, Platelet-derived growth factor (PDGF)-A [25].

Third, as well documented in glioblastomas [26], medulloblastoma [27], leukemia [28] and 

germ cell tumors [29]: all of these cancer types evolve with treatment (radiation and 

chemotherapy) surviving by coming up with new mutations in subclonal evolution, which 

can be defined by single-cell transcriptome technology (Figure 1). For example, “Although 

well-tolerated, the efficacy of bevacizumab was somewhat disappointing, possibly due to the 

high rate of secondary high-grade gliomas in the studied patient cohort and the late use of 
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bevacizumab in the course of the disease” [30]. Following analysis of tumor specimens, 

distinct molecular pathogenesis of secondary tumor arising after radiation therapy was 

determined by cancer genome-scale technology for genomic mutation signatures, 

particularly, discovered in secondary neoplasms after cranial or craniospinal radiation in 

high-grade astrocytomas that prognoses for poor clinical outcomes [31]. Surprisingly, this 

cohort had “a high frequency of TP53 mutations, CDK4 amplification or CDKN2A 

homozygous deletion and amplification or rearrangements involving receptor tyrosine kinase 

and Ras-Raf-MAP kinase pathway genes including PDGFRA, MET, BRAF and RRAS2,” 

but, “lacked alterations in IDH1, IDH2, H3F3A, HIST1H3B, HIST1H3C, TERT (including 

promoter region) and PTEN, which genetically define the major subtypes of diffuse gliomas 

in children and adults.” Such subclonal changes can be tracked down using single-cell RNA 

sequencing, as shown in 3321 single-cells from six primary H3K27M-glioma and matched 

models, for the discovery of “oncogenic and developmental programs in H3K27M-glioma at 

single-cell resolution and across genetic subclones.” This subclonal tracking surfaces a 

therapeutic window [32] on potential therapeutic targets.

To identify a therapeutic window [32] on potential therapeutic targets, we need to define 

spatiotemporal expression patterns of new biomarkers from HNSCC to significantly improve 

the efficacy of therapies. As such a new biomarker, known a molecular mechanism, AF4/

FMR2 family member 4 (AFF4), the core component of Super elongation complex (SEC), is 

upregulated dramatically in HNSCC, which is a potential target of therapies for patients with 

HNSCC [33]. Besides, Disulfiram (DS) has been reported as an inhibitor of ALDH and 

increasing studies showed it has anti-cancer effects in a copper (Cu)-dependent manner [34]. 

As “DS/Cu inhibited the expression of stem cell transcription factors NANOG and OCT4, 

and abolished the clonogenicity of multiple myeloma,” we postulate that DS may regulate 

HNSCC stem cells. Another line of evidence that “HNSCC contains cancer stem cells 

(CSCs) that have greater radioresistance and capacity to change replication dynamics in 

response to irradiation compared to non-clonogenic cells [35],” can help characterize the 

effects of radiotherapy on “CD44+/ALDH+” HNSCC stem cells derived from patients, 

providing screening for responsible patients, as “CD44+/ALDH+” HNSCC stem cells are of 

radioresistance. Hyaluronan (HA), an important glycosaminoglycan component of the 

extracellular matrix (ECM) and its major cell surface receptor, CD44, Nanog/Oct4/Sox2, 

have been suggested to be important cellular mediators influencing tumor progression and 

treatment resistance in head and neck cancer [36]. Personalized medicine-based approach 

can model the patterns of chemoresistance and tumor recurrence using ovarian cancer stem 

cell spheroids [37]. Gene set enrichment analysis and iPathway analysis identified signaling 

pathways with major implications to the pathobiology of cancer (e.g. TNFα, IFN, IL6/STAT, 

NF-κB) that are enriched in cisplatin-resistant ALDHhighCD44high cells when compared to 

control cells. Such pathway analysis establishes the relationship between CD44high/

CD133high/CD117high cancer stem cells phenotypes and Cetuximab and Paclitaxel treatment 

responses in head and neck cancer cell lines [38].

Fourth, a new concept of “living with cancer subclones” or “co-habit with cancer subclones” 

[39] sounds odd and against the decades-long dominant trend of “targeted molecular 

destruction of cancer,” however; its focus on modifying the tumor microenvironment [40] 

gains attention with clinically proven case reports. When the treatment benefits and the side 
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effects sound odd, can the patients risk their lives for such an intervention? That is 

particularly promising given the effect of epigenetics [41], immunotherapy [42] and 

microbiome [43] on cáncer; all lead to a wait-and-watch approach to disease, due to the fact 

that we can monitor the relapse pathway [44].

CONCLUSION

In Summary, to achieve above benefits for a patient, we need to isolate the patient’s CSCs 

(Which is the REAL CHALLENGE still!), and to determine the mechanism by which 

subclones of ALDHhighCD44high HNCSCs resist to drugs via single-cell transcriptome, as 

we show with breast cancer, with specified tissue-relevant tumor microenvironment [45]. 

Measuring survival of HNCSC CSC lines in presence of cisplatin (or other FDA approved 

drugs) in cellular models for cancer subclonal evolution [39] can help develop therapeutics 

to drive cancer cells to dormancy, which is a lifetime subclonal evolution process 

developmentally evolved with local environments to cancer. All the procedures are still 

ongoing and under way - They need long-term monitoring and confirmation if they indeed 

work.
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Figure 1. 
Sequential perturbations of cell-cycle-phase-specific genes derived from single-cell 

transcriptomes of patient tumors are applied to treatment. A: After organizing single-cell 

transcriptomes by similarity into a sequential order (center-clustering), expression levels of 

various cell-cycle-phase-specific genes were plotted to visualize the sequential perturbation 

of individual genes during the cell cycle, a virtual time series. Expression levels were scaled 

from 0 (undetectable) to 1 (maximum expression). Cell cycle phases were defined and 

colored. As expected, G0/G1-specific genes had higher expression levels in the G0/G1 phase 

and an S-specific gene was mainly expressed within the S phase. G2/M-specific genes had 

high expression levels in G2/M phase and early G0/G1 phase. The sequential expression 

order suggests that mRNAs of many G2/M-specific genes are not degraded until early in 

G0/G1 phase after cell division. B, C: Cancer subclones are defined by single-cell 

transcriptome-clustered cell cycle gene clustering, which is used to guide treatment. 

(Adopted from Li, S.C., et al. 2018 [2])
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