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ABSTRACT

Circadian rhythms play a fundamental role at all
levels of biological organization. Understanding the
mechanisms and implications of circadian oscil-
lations continues to be the focus of intense re-
search. However, there has been no comprehen-
sive and integrated way for accessing and min-
ing all circadian omic datasets. The latest release
of CircadiOmics (http://circadiomics.ics.uci.edu) fills
this gap for providing the most comprehensive web
server for studying circadian data. The newly up-
dated version contains high-throughput 227 omic
datasets corresponding to over 74 million measure-
ments sampled over 24 h cycles. Users can visualize
and compare oscillatory trajectories across species,
tissues and conditions. Periodicity statistics (e.g.
period, amplitude, phase, P-value, q-value etc.) ob-
tained from BIO CYCLE and other methods are pro-
vided for all samples in the repository and can eas-
ily be downloaded in the form of publication-ready
figures and tables. New features and substantial im-
provements in performance and data volume make
CircadiOmics a powerful web portal for integrated
analysis of circadian omic data.

INTRODUCTION

Circadian rhythms are a ubiquitous phenomenon in biol-
ogy that is deeply rooted in evolution (1,2). Circadian oscil-
lations of molecular species maintain homeostatic balance
by regulating a variety of physiological and metabolic pro-
cesses. These processes include sleep/wake cycle, hormone
secretion, diet related metabolism and neural function (3–
6). Disruption in circadian rhythms can lead to a wide range
of health problems such as diabetes, obesity and premature
aging (7–11).

It is well known that circadian oscillations at the tran-
scriptomic level are pervasive and well coordinated (4,12,2).
Oscillation in transcription is strongly regulated by a
number of key transcription factors, such as CLOCK,
BMAL1, PERs and CRYs that comprise the core clock (13).
These transcript level oscillations form regulatory feedback
loops that oscillate throughout the transcriptome (14–15,2).
Moreover, a large number of metabolites and proteins in
cells exhibit circadian oscillations and may play a key role
within the organization of genetic circadian regulation (16–
19). Strikingly, the circadian landscape in a cell can be
drastically different depending on genetic and epigenetic
conditions (17,12,2,20). The process by which these circa-
dian landscapes evolve is understood as circadian repro-
gramming. Reprogramming can be induced by external per-
turbations such as inflammation or dietary challenge (21–
24). The large repository of omic data provided in Circa-
diOmics, together with several comparative analysis tools,
provide a foundational platform that can be used to ana-
lyze these complex mechanisms and their implications.

MATERIALS AND METHODS

Dataset collection

The omic datasets available on CircadiOmics are compiled
from project collaborations, automated discovery and man-
ual curation. Over 6400 individual time points spanning 227
separate circadian experiments are available for search and
visualization. In aggregate, these datasets form the largest
single repository of circadian data available, including all
datasets from other repositories including CircaDB (25).
Table 1 shows a break down of the number of datasets avail-
able on several other sources. Eight species are currently
available on CircadiOmics. The majority are collected from
Mus musculus and Papio anibus.

Over 62 tissues grouped into 18 categories are represented
in the database. Within these categories, liver and brain ex-
periments comprise the majority. Diverse experimental con-
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Table 1. Data volumes of publicly available circadian omic databases

Source Experiments Tissues Species Total data pts. (est.)

CircadiOmics 227 23 8 ≈74 600 000
CircaDB 30 15 2 <1 800 000
DIURNAL 11 3 3 ≈3 009 600
BIOCLOCK 2 2 2 ≈3 600 000
CirGRDB 50 <20 2 ≈9 000 000

Comparison of CircadiOmics with other circadian repositories. Experiments refers to the total number of experimental level datasets from each source. An
experimental level dataset should contain at least two time points, more than one replicate at each time point, and time series data for a substantial number
of molecular species–at least 1000 for transcriptome and acetylome, and at least 100 for metabolome and proteome–and each replicate. Total data points
provide an estimate of the total number of individual measurements taken across different time points, replicates and molecular species. Numbers are
collected from internal statistics for CircadiOmics and from publications, or official websites, for the other sources. Details are provided in Supplementary
Material.

ditions grouped into nine broad categories are available for
comparison. Unique conditions include chronic and acute
ethanol consumption, high-fat diet, traumatic brain injury,
fibroblast undergoing myogenic reprogramming and several
cancer-specific datasets (26,27). At last, CircadiOmics is the
only tool that includes transcriptome, metabolome, acety-
lome and proteome experiments. Figure 1 summarizes the
number of available datasets by detailed categories. The full
table of datasets is available, with a short description and
experimental details such as number of replicates, on the
CircadiOmics web portal.

Increased interest in circadian rhythms is driving a con-
tinuous increase in publicly available omic datasets. Auto-
mated discovery of datasets has become necessary to main-
tain the most current and comprehensive repository. A
Python framework built with scholarly and geotools Python
packages is used to continuously search the literature for
new circadian omic studies and datasets. Automated dis-
covery based on keyword searches in published abstracts
is filtered using several features including publishing jour-
nal, author and provided supplementary materials. A logis-
tic regression step is used to classify datasets that are good
candidates for inclusion in CircadiOmics. Results produced
by this automated pipeline are then manually inspected for
quality, based primarily on the time point resolution of the
dataset. The minimum sampling density for any dataset in
the repository is every eight hours over a 24-h cycle. Ad-
ditionally, the CircadiOmics team and collaborating biolo-
gists periodically search recent publications for new datasets
that qualify for inclusion in CircadiOmics.

Statistics

All datasets are processed with both BIO CYCLE and
JTK CYCLE to provide oscillation statistics (e.g. period,
amplitude, phase) for each set of samples (28,29). Pri-
mary identification of oscillatory species is made using p-
values and accompanying q-values at a selected threshold.
Technical details for calculating P-values and q-values are
provided in the cited articles for the respective methods.
BIO CYCLE results have consistently shown to be an im-
provement in determining periodicity over older methods
(28). The BIO CYCLE portal within CircadiOmics at http:
//circadiomics.ics.uci.edu/biocycle allows users to upload an
unpublished dataset for processing with BIO CYCLE. For
each experiment and each molecular species, individual P-
value, q-value, period, amplitude and phase can be ob-

tained. Additionally, summary figures are generated for the
distribution of each statistic in the user provided dataset.
Trends for individual trajectories in user-provided data are
available for search and visualization through the supplied
set of molecular IDs. An example dataset is provided to give
the user a sample of portal features and provide a template
for desired data format. The main CircadiOmics documen-
tation page provides additional guidance. The BIO CYCLE
R package is also available for download through the main
portal.

Implementation

CircadiOmics is available as a pubic domain website at
http://circadiomics.ics.uci.edu. The CircadiOmics web ap-
plication is constructed as a three-tier Model View Con-
troller architecture. The web server is implemented with the
Flask Python library. The interface is generated dynami-
cally with Twitter Bootstrap and Google Charts. Fast query
response times are accomplished by caching JSON serial-
ized datasets on disk as the server is started. Figure 2 de-
scribes the web application architecture and correspond-
ing technology. The interface loads with an example search
of ARNTL (CLOCK-BMAL) in a sample liver control
dataset. Dynamic filtering of the available datasets is pro-
vided based on tissue and experimental perturbations. Ex-
amples of filtering options are provided in the documenta-
tion on the main web server in the context of various sample
workflows. Downloadable results for each search include
high resolution images in PNG or SVG format, and an ex-
cel table of BIO CYCLE reported statistics. Dataset docu-
mentation includes a short technical description as well as a
link to the corresponding article in PubMed. At last, addi-
tional help information on the features of CircadiOmics is
provided through a link on the main page of the web server.

RESULTS

Features

The main functionality of CircadiOmics is the search, com-
parison and visualization of oscillation trends. The user can
search any molecular species in the omic datasets within the
repository and overlay multiple searches together to initi-
ate a comparative study. A typical work flow may consist of
comparing a set of specific transcripts, metabolites or pro-
teins among several datasets. Intelligent auto-completion

http://circadiomics.ics.uci.edu/biocycle
http://circadiomics.ics.uci.edu


Nucleic Acids Research, 2018, Vol. 46, Web Server issue W159

Figure 1. Dataset collection by species, tissues, experimental conditions and omic categories.

facilitates user queries within the currently selected dataset.
Searches can be performed individually or in batch on a se-
lected dataset. When datasets do not have the same time
course, results are displayed from the minimum to the max-
imum time point over all selected datasets. Query result for
a set of example searches is shown in Figure 3. Documenta-
tion available on the web server illustrates common query
tasks and results. Datasets with large difference in inten-
sity values at each time point can be dynamically scaled
for easy visual comparison. Minimum and maximum val-
ues are normalized to zero and one, respectively.

A table of statistics is compiled and displayed beneath
the main search window after each query. Statistics can
be updated dynamically to reflect results obtained with
BIO CYCLE. The table can be downloaded in several for-
mats compatible with Excel. Individual searches can be re-
moved from both the search view and the statistics table.
Figure 3 shows an example result obtained from searches
for ARNTL, PER1 and CRY1 in an example dataset.

With a rapidly expanding dataset collection, filtering can-
didate dataset within the interface has become necessary.
The filtering menu allows the user to limit the scope of
datasets displayed under drop-down menus for each dataset
type. Filtering can be done by species, tissues and experi-
mental conditions. Similar experimental conditions are cat-
egorically grouped together in the filtering menu. These

include knock-downs, knock-outs, diet changes and drug
treatments. The full set of available conditions for filtering
is summarized in Figure 1. The search interface uses an ab-
breviated dataset identification. Upon selection of a dataset,
the user can quickly verify the source of the data through
a corresponding literature citation. Additional details for
each dataset can be found in tabular form under the dataset
tab. These details include a brief description of the experi-
mental protocol.

The Metabolic Atlas web portal (http://circadiomics.ics.
uci.edu/metabolicatlas) is also available under the Circa-
diOmics umbrella. In addition to metabolite time series, in-
teractive metabolic networks can be generated and visual-
ized. These networks are derived in part from the KEGG
database (30) and can be filtered using BIO CYCLE statis-
tics.

Improvements

The new version of CircadiOmics considerably increases the
amount of data available to the user. In particular, the num-
ber of experiment-level datasets increased from 50 to 227,
the number of species increased from 1 to 8, the number of
transcriptomic datasets increased from 40 to 169, the num-
ber of proteomic datasets increased from 1 to 8, the number

http://circadiomics.ics.uci.edu/metabolicatlas
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Figure 2. Three-tier Model-View-Controller architecture of the Circa-
diOmics web portal. Intelligent data discovery supplies candidate datasets
for inclusion in the repository using a machine learning filter applied to key
word features derived from web crawling published abstracts. BIO CYCLE
results are obtained and stored for all datasets. The user interface sends
requests and displays results from the web server allowing for interactive
hypothesis generation and scientific discovery.

Figure 3. Visualization of queries for ARNTL, PER1 and CRY1 in a con-
trol mouse dataset. Any number of queries, across any number of datasets,
can be displayed simultaneously.

of acetylome datasets increased from 1 to 8 and the number
of metabolomic datasets increased from 5 to 32.

Beyond the multi-fold increase in the underlying data
repository, the new version of CircadiOmics comes with sev-
eral other significant improvements, including a new, more
robust, architecture and software infrastructure. In addi-
tion, all circadian statistics are computed using the lat-
est version of BIO CYCLE with the capability to system-

atically apply any updates on the fly, as new versions of
BIO CYCLE are created and released. Thus, together with
intelligent data discovery, CircadiOmics provides state-of-
the-art statistical tools for integrating and analyzing cir-
cadian data. The server-side code has improved security
through encrypted HTTPS connection and enabled user-
specific content visibility for unpublished data.

In combination, the new features enable CircadiOmics
users to conduct end-to-end circadian analyses, starting
from the generation of new hypotheses all the way to the
generation of results suitable for publication.

DISCUSSION

Central to the study of circadian rhythms are large-scale
reprogramming events. Understanding these events at the
molecular level critically depends on being able to access
and compare significant amounts of high-throughput circa-
dian omic data. CircadiOmics, with its advanced search fea-
tures and unprecedented amount of high quality circadian
data, is a primary enabling tool for such studies. In a cir-
cadian reprogramming event, changes in oscillation of one
molecular species can often be related to changes in other
molecular species (31,2). One of the main qualities of Cir-
cadiOmics is the flexibility of the comparative analyses it
enables. For instance, a user can compare transcripts across
species, or relate metabolites to proteins and transcripts and
identify underlying oscillatory trends. An important exam-
ple can be seen in the loss of oscillation in the metabolite
NAD+ as a response to changes in the transcriptomic oscil-
latory landscape (17). As a result, CircadiOmics has proven
to be highly effective for hypothesis generation in new stud-
ies. To date, the web server has contributed to multiple stud-
ies that have been published in high impact journals. The
server has been accessed more than 250 000 times in total
traffic in 2017 alone.

Figure 4 details some examples of the impact of Circa-
diOmics. For instance, Eckel-Mahan et al. utilized Circa-
diOmics to analyze three related omic datasets in mouse
liver (17). They found that core clock genes regulate the
acetylation of the enzyme AceCS1. AceCS1 is responsi-
ble for changes in the oscillation of the metabolite acetyl-
CoA, a key metabolite involved in fatty acid synthesis
(Figure 4 A). Similarly, Masri et al. compared liver tran-
scriptomic data with metabolomic data in mice afflicted
with cancer using CircadiOmics (Figure 4 B). They dis-
covered that a distal tumor-bearing lung can reprogram
the liver circadian transcriptome through inflammatory
pathways and insulin related metabolic pathways (27).
More recently, CircadiOmics has been used to examine
the role of circadian regulation in myogenic reprogram-
ming of fibroblast (https://www.biorxiv.org/content/early/
2017/06/18/151555). It was observed that the core clock is
completely disrupted during this process. However, exoge-
nous MYOD1 gains rhythmicity during transition to mus-
cle cell. As a result, MYOG and a majority of critical tran-
scription factors related to muscle development known to
be regulated by MYOD1 synchronize oscillation. This be-
havior was identified in CircadiOmics through visualiza-
tion and confirmed by BIO CYCLE reported phase lag
(Figure 4 C). At last, aggregating all mouse transcriptomic

https://www.biorxiv.org/content/early/2017/06/18/151555
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Figure 4. Selected examples of the impact of CircadiOmics. (A) CircadiOmics was used to link a multitude of circadian metabolites with functionally related
circadian transcripts. Figure taken from Figure 5A of (17). (B) CircadiOmics was used to discover reprogrammed circadian transcripts and metabolites
related to inflammatory and energy pathways. Figure taken from Figures 2E, 4B and 5D of (27). (C) Exogenous MYOD1, during MEF myogenic repro-
gramming, entrains oscillation in MYOG and related targets in absence of oscillation of the core clock (https://www.biorxiv.org/content/early/2017/06/18/
151555). (D) Bar heights show the ordered number of oscillating protein coding transcripts with a P ≤ 0.05 in each mouse transcriptomic experiment in
the repository. The trend is the cumulative union of oscillating transcripts. Over 93% of possible protein coding transcripts are found to oscillate in at least
one tissue or condition across all mouse datasets.

datasets confirms and amplifies the notion that circadian
oscillations are pervasiveness: 93.5% of all possible protein
coding transcripts exhibit circadian oscillations in at least
one tissue or experiment (up from about 67% in (2)) (Fig-
ure 4 D). The large number of datasets in CircadiOmics fa-
cilitates these kinds of integrative analyses. Additional anal-
ysis of the 1275 protein coding transcripts that are not found
to oscillate in any condition or tissue is provided in Supple-
mentary Table S2.

The latest release of CircadiOmics is the largest sin-
gle repository of circadian omic data available. Updates
in server architecture and data mining ensure that Circa-
diOmics will continue to maintain and grow as new data
is published. Improvement in features for search and vi-
sualization expand the possibilities for study of circadian
rhythms in omic datasets. These possibilities include gen-
erating specific hypothesis for individual experiments and

answering larger questions about the organization of oscil-
lation within a cell.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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