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Abstract. Multiple microRNA (miRNA) variants, known 
as isomiRs, are extensively distributed in miRNA loci 
and predominantly derive from the alternative cleavage 
of Drosha/Dicer and 3'addition events. The present study 
aimed to investigate the expression patterns of multiple 
isomiRs in typical miRNA and Dicer‑independent miRNA 
loci by conducting evolutionary and expression analysis 
using public datasets. Although different miRNA maturation 
processes exist, multiple isomiRs can be detected by similar 
expression distributions. However, isomiR expression in 
Dicer‑independent miRNA loci tends to be at a moderate level, 
particularly for random distribution in the ends that are split by 
Dicer in the typical miRNA loci. Compared with the mature 
miRNA locus (dominant miRNA locus), the non‑dominant 
miRNA locus indicates an expression distribution similar to 
that of the Dicer‑independent miRNA locus. These results 
increase the understanding of multiple isomiRs in the progres-
sion of diseases.

Introduction

MicroRNAs (miRNAs) are a class of small non‑coding 
RNAs that have been extensively studied as crucial nega-
tive regulatory molecules. Canonical miRNA is first 
processed from a primary miRNA (pri‑miRNA) transcript 
via the Drosha‑dependent microprocessor complex (1), and 
the process generates a precursor miRNA (pre‑miRNA) 
with a stem‑loop hairpin structure. Then, it is recognized 
and cut by Dicer into miRNA‑miRNA* duplexes  (2) and 

subsequently pre‑miRNA is transported to the cytoplasm 
by exportin‑5 (3). The Dicer protein is widely distributed in 
plants, metazoans and fungi (4,5), and it is also involved in 
the processing of other small RNA species, including small 
nuclear RNAs (6). Recurrent somatic mutations in Drosha can 
induce changes in miRNA expression (7), and somatic muta-
tions in Drosha and Dicer1 can impair miRNA biogenesis (8). 
Simultaneously, alternative pathways of miRNA biogenesis 
have been reported (9), and some miRNAs are generated by 
a novel processing pathway independent of Dicer  (10‑13). 
For example, mirtrons can be processed by splicing from 
precursor hairpins (14,15), and their precursor sequences are 
shorter than canonical pri‑miRNAs because these comprise 
miRNA‑miRNA* duplexes alone. Pre‑miRNA hairpins of 
miRNAs from mirtron‑like sources are generated via splicing 
of short introns and exosome‑mediated trimming (16,17).

Typical miRNA biogenesis indicates that mature miRNAs 
can be incorporated into the RNA‑induced silencing complex 
that then binds to the 3'‑untranslated region of the target 
mRNA to degrade mRNAs or to repress translation (18), while 
another strand, termed miRNA star (miRNA*), is degraded to 
an inactive strand. However, accumulating evidence suggests 
that degraded miRNA* may also serve an important role in 
gene regulation at the post‑transcriptional levels, as well as in 
the mature miRNA sequence (19‑23), and miRNA‑miRNA* 
duplexes are also termed miRNA (miR)‑#‑5p‑miR‑#‑3p 
duplexes. In the miRNA locus, a series of miRNA vari-
ants, called isomiRs, have been widely detected based 
on high‑throughput sequencing datasets  (24‑30). These 
multiple isomiRs are predominantly derived from the alter-
native and imprecise cleavage of Drosha and Dicer during 
pri‑miRNA/pre‑miRNA processing, and 3' addition events 
in miRNA maturation processes (27). In the specific miRNA 
locus, isomiR profiles are always stable across different 
samples and different species (26,30), indicating a relatively 
stable miRNA maturation process.

Drosha and Dicer have important roles in the miRNA 
maturation process, and their imprecise and alternative 
cleavage processes largely contribute to the generation of 
multiple isomiRs. It is known that the isomiR profiles are 
always stable because of Drosha and Dicer, even across 
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different animal species, however fewer studies have focused 
on isomiR expression profiles between typical miRNA 
loci and Dicer‑independent miRNA loci. Generally, several 
dominant isomiRs (typically one to three) can be identified 
in the canonical miRNA locus, and others always possess 
lower expression rates  (26,29,31). Therefore, according to 
characteristics of cleavage and expression patterns of multiple 
isomiRs, the current study attempted to explore the potential 
associations between isomiR profiles in different miRNA loci 
with diversity in the maturation processes, and simultaneously 
discuss evolutionary patterns of Drosha/Dicer. According to 
miRNA expression profiles, abundantly expressed miR‑451 
has been identified as an miRNA that is Dicer‑independent, 
and based on previous studies focusing on isomiR expres-
sion (32‑34), relevant expression and evolutionary analysis 
were performed using public datasets. The present study may 
provide additional information regarding miRNA/isomiR 
biogenesis.

Materials and methods

Source data. Both Drosha and Dicer nucleotide and protein 
sequences of eight vertebrates, including Amphibia (Xenopus 
tropicalis), Aves (Gallus gallus; Taeniopygia guttata), 
Mammalia (Homo sapiens; Sus scrofa; Mus musculus), Pisces 
(Danio rerio) and Sauria (Anolis carolinensis) were collected 
from GenBank (Table I). Simultaneously, available expression 
data of miRNA/isomiR in breast cancer (BC) samples (n=683) 
and normal samples (n=87) were acquired from the Cancer 
Genome Atlas pilot project (http://cancergenome.nih.gov). 
Then, due to the fact that the selected BC samples were derived 
from female patients, samples from other human diseases from 
the Cancer Genome Atlas pilot project (http://cancergenome.
nih.gov) were selected: Thyroid carcinoma (tumor, n=507; 
normal, n=59) and prostate adenocarcinoma (tumor, n=498; 
normal, n=52). The selection generated more information 
about isomiR expression with potential gender differences.

Sequence and expression analyses. The amino acid 
sequences of Drosha and Dicer were aligned using Clustal 
X 2.0 (http://www.clustal.org/clustal2)  (35), and phyloge-
netic associations were reconstructed using the MEGA 5.10 
software (http://www.megasoftware.net)  (36) based on the 
neighbor‑joining method. Genetic distance was simultaneously 
estimated using MEGA. Functional domains of Drosha and 
Dicer were identified using the Pfam database (http://pfam.
xfam.org) (37), and inferred domains were predicted using 
SMART (http://smart.embl‑heidelberg.de) (38).

According to biological characteristics of isomiRs, the 
relative expression rate of each isomiR was estimated based 
on all the isomiRs in the miRNA locus, and then the average 
expression rate was calculated across different individuals. 
Herein, due to the larger differences in sample sizes between 
tumor and normal samples, expression patterns were first esti-
mated using different sample sizes, and then were estimated 
using equal sample sizes by randomly selecting 87  tumor 
samples in BC. Simultaneously, relevant analysis was further 
performed using other samples. According to miRNA/isomiR 
expression profiles and typical isomiR expression patterns, the 
simultaneously dominantly expressed miR‑#‑5p and miR‑#‑3p 

from hsa‑miR‑21, ‑30a and ‑30e were collected, and another 
miRNA that was Dicer‑independent (miR‑451) was selected 
for further analysis.

Statistical analysis. The expression levels of the isomiRs in 
multiple individuals, particularly those of dominant isomiRs, 
were expressed as the mean ± standard deviation. Differences 
in genetic distance were estimated using the t‑test between 
Drosha and Dicer, and P<0.05 was considered to indicate a 
statistically significant difference. Simultaneously, the 95% 
confidence interval was also estimated. The degree of varia-
tion of relative expression of isomiRs was presented using 
a box plot. Relevant statistical description or analysis was 
conducted using Stata software, version 11 (StataCorp LP, 
College Station, TX, USA).

Results and discussion

The typical miRNA maturation process depends on Drosha 
and Dicer, and the miRNA‑#‑5p:miRNA‑#‑3p duplex is 
generated through cleavage of pri‑miRNA and pre‑miRNA 
(Fig.  1A). Although single miRNA sequences have been 
widely studied, the miRNA locus generates a series of isomiRs 
with diverse sequences and expression levels that are predomi-
nantly derived from the imprecise and alternative cleavage 
of Drosha/Dicer and 3' addition events (24‑30). As a specific 
sequence in multiple isomiRs, the canonical miRNA sequence 
is not always the most dominantly expressed sequence (such 
as hsa‑miR‑30a‑5p in the miRNA locus; Fig. 1) (29). Although 
sample sizes differed between tumor and normal samples, 
similar expression patterns were obtained using equally 
sized samples (Fig. 1). The isomiR expression profiles were 
always stable across different samples, and this feature was 
also observed in different cells, tissues and animal species, 
although abnormal isomiR expression patterns were also 
detected, particularly in certain diseased samples. The current 
study attempted to compare isomiR expression profiles 
between typical miRNA loci and miRNA loci with indepen-
dent of Dicer using public sequencing datasets. Compared 
with recent studies on the expression and evolutionary patterns 
of isomiRs (29,39‑41), the present study examined the expres-
sion profile of a specific miRNA gene (hsa‑miR‑30a), that 
can generate two kinds of mature miRNAs, and a dominantly 
expressed miRNA independent of Dicer (hsa‑miR‑451), which 
has been updated as miR‑451a, and was selected due to the 
fact that fewer miRNAs independent of Dicer are dominantly 
expressed.

As crucial factors that lead to multiple isomiRs in miRNA 
maturation, Drosha and Dicer are well‑conserved and have 
similar evolutionary rates across different vertebrates (Fig. 2 
and Table  II). These similar evolutionary patterns may 
contribute to recognition and cleavage of Drosha and Dicer 
in the miRNA maturation process, and further contribute to 
stable isomiR expression profiles, particularly for the majority 
of isomiRs that are 3' isomiRs with the same 5' ends. In 
pre‑miRNA with a stem‑loop structure, dominantly expressed 
miRNA may be located in the 5p or 3p arm, however all 
the miRNA loci generate dominant 3' isomiRs and rare 
5' isomiRs. Notably, more pre‑miRNAs have been identified 
to generate mature and functional miR‑#‑5p and miR‑#‑3p. 



MOLECULAR MEDICINE REPORTS  15:  1071-1078,  2017 1073

These observations suggest the relative precise cleavage of 
Drosha and Dicer on the 5' ends during miRNA maturation 
process, although they serve important roles in different 
regions in cells. Divergence of 3' ends among isomiRs from a 
given miRNA locus and among miRNAs in different species 
may be predominantly derived from the imprecise cleavage of 
Drosha and Dicer on 3' ends, in addition to modification events 
following miRNA maturation.

However, compared with typical miRNAs that are gener-
ated by cleavage of Drosha and Dicer, certain miRNAs are 
generated by alternative pathways during miRNA biogen-
esis (9), including a novel processing pathway independent 
of Dicer (10‑12). For example, miR‑451 is generated via the 
Dicer‑independent pathway, and then contributes to the regula-
tory network as a functional miRNA (13). Although different 

maturation processes occur in miR‑451 and canonical 
miRNA loci (including miR‑21, 30a and 30e), multiple isomiR 
sequences are also present in the Dicer‑independent miRNA 
locus (Figs. 3‑5 and Table  III). Similar to typical miRNA 
loci  (26,29,42), several dominant isomiRs are dominantly 
expressed, and the majority of isomiRs are 3' isomiRs. The 
highly conserved 5' ends ensure the consistency of the function 
between different isomiR sequences, which in turn facilitate the 
co‑regulation of target mRNAs. However, the most dominant 
isomiR only possesses moderate expression (approximately 
45% of the total expression), and other dominant isomiRs have 
similar expression levels (Fig. 3A). The moderate expression 
patterns differ from the most typical miRNAs that are prone to 
have predominant isomiRs with absolute abundant expression 
(such as isomiRs from the miR‑30a‑5p locus).

Table I. Drosha and Dicer in eight vertebrates.

Species	 Abbreviation	 Gene	 Accession number	 Length (AA)

Amphibia: Xenopus tropicalis	 xtr	 Drosha	 NP_001107152.1	 1,325
Aves: Gallus gallus	 gga	 Drosha	 NP_001006379.1	 1,336
Aves: Taeniopygia guttata	 tgu	 Drosha	 XP_002199233	 1,338
Mammalia: Homo sapiens	 hsa	 Drosha	 Q9NRR4	 1,374
Mammalia: Sus scrofa	 ssc	 Drosha	 XP_005672458	 1,373
Mammalia: Mus musculus	 mmu	 Drosha	 Q5HZJ0	 1,373
Pisces: Danio rerio	 dre	 Drosha	 NP_001103942	 1,289
Sauria: Anolis carolinensis	 aca	 Drosha	 XP_003226799	 1,339
Amphibia: Xenopus tropicalis	 xtr	 Dicer	 NP_001123390.2	 1,893
Aves: Gallus gallus	 gga	 Dicer	 NP_001035555.1	 1,921
Aves: Taeniopygia guttata	 tgu	 Dicer	 NP_001156875	 1,921
Mammalia: Homo sapiens	 hsa	 Dicer	 NP_001278557.1	 1,922a

Mammalia: Sus scrofa	 ssc	 Dicer	 NP_001184123.1	 1,915
Mammalia: Mus musculus	 mmu	 Dicer	 NP_683750.2	 1,906
Pisces: Danio rerio	 dre	 Dicer	 NP_001154925.1	 1,865
Sauria: Anolis carolinensis	 aca	 Dicer	 XP_003214365	 1,918

aIndicates that Dicer isoforms have been reported in humans, and in the present study only the longer Dicer gene is analyzed.

Table II. Evolutionary distance between Drosha and Dicer.

	 hsa	 ssc	 mmu	 gga	 tgu	 aca	 xtr	 dre

hsa	‑	  0.048	 0.055	 0.066	 0.068	 0.091	 0.150	 0.200
ssc	 0.012	‑	  0.071	 0.089	 0.088	 0.106	 0.162	 0.201
mmu	 0.033	 0.036	‑	  0.089	 0.090	 0.112	 0.165	 0.220
gga	 0.112	 0.111	 0.115	‑	  0.019	 0.071	 0.134	 0.199
tgu	 0.121	 0.119	 0.127	 0.045	‑	  0.070	 0.138	 0.200
aca	 0.126	 0.122	 0.132	 0.095	 0.109	‑	  0.144	 0.198
xtr	 0.180	 0.178	 0.178	 0.160	 0.170	 0.167	‑	  0.213
dre	 0.204	 0.203	 0.208	 0.212	 0.226	 0.226	 0.242	‑

Above the diagonal, pairwise genetic distance based on Dicer; below the diagonal, pairwise genetic distance based on Drosha. The 95% CI 
of distance in Drosha was 0.118‑0.166, and the 95% CI of distance in Dicer was 0.101‑0.146. No significant difference of genetic distance was 
detected between Drosha and Dicer (t=1.132, P=0.263). CI, confidence interval.



LIANG et al:  IsomiR EXPRESSION IN miRNAs1074

Table III. Dominantly expressed isomiR sequences in Figs. 2 and 3.

miRNA	 IsomiR species	 Sequence

miR‑451	 The most dominant	 AAACCGUUACCAUUACUGAGUU
	 The second dominant	 AAACCGUUACCAUUACUGAGU
	 The third dominant	 AAACCGUUACCAUUACUGAGUUU
miR‑30a‑5p	 The most dominant	 UGUAAACAUCCUCGACUGGAAGC
	 The second dominant	 UGUAAACAUCCUCGACUGGAAGCU
	 The third dominant	 UGUAAACAUCCUCGACUGGAAG
miR‑30a‑3p	 The most dominant	 CUUUCAGUCGGAUGUUUGCAGCU
	 The second dominant	 CUUUCAGUCGGAUGUUUGCAGC
	 The third dominant	  UUUCAGUCGGAUGUUUGCAGCU
miR‑21‑5p	 The most dominant	 UAGCUUAUCAGACUGAUGUUGAC
	 The second dominant	 UAGCUUAUCAGACUGAUGUUGA
	 The third dominant	 UAGCUUAUCAGACUGAUGUUGACU
miR‑21‑3p	 The most dominant	 CAACACCAGUCGAUGGGCUGUCU
	 The second dominant	 CAACACCAGUCGAUGGGCUGUC
	 The third dominant	 CAACACCAGUCGAUGGGCUGU
miR‑30e‑5p	 The most dominant	 UGUAAACAUCCUUGACUGGA
	 The second dominant	 UGUAAACAUCCUUGACUGGAAGC
	 The third dominant	 UGUAAACAUCCUUGACUGGAAGCU
miR‑30e‑3p	 The most dominant	 CUUUCAGUCGGAUGUUUACAGCG
	 The second dominant	 CUUUCAGUCGGAUGUUUACAGC
	 The third dominant	 CUUUCAGUCGGAUGUUUACAG

miR, microRNA.

Figure 1. An example of multiple isomiRs and their expression patterns. Percentages (%) indicate the percentage of a certain isomiR compared with all detected 
isomiRs in the miRNA locus. (A) Hsa‑mir‑30a yields miR‑30a‑5p and miR‑30a‑3p with a series of multiple isomiRs via cleavage of Drosha and Dicer. Of these, 
miR‑30a‑5p is designated as the mature miRNA, whereas miR‑30a‑3p was termed the miRNA* sequence. (A‑1) Red arrows indicate the annotated canonical 
miR‑30a‑3p sequence in the miRBase database, whereas the canonical miR‑30a‑5p sequence is not dominantly expressed. Only dominantly expressed isomiRs 
are presented here. Expression patterns from the two miRNA loci are presented in (A‑2) and (A‑3) using samples of breast cancer. (A‑2) Expression distribution 
of two isomiRs in miR‑30a‑5p; and (A‑3) the expression distribution of three isomiRs in miR‑30a‑3p. In the miR‑30a‑5p locus, two dominant isomiRs were 
identified (>5% in the locus), and four dominant isomiRs were detected in the miR‑30a‑3p locus. The Y axes in Fig. A‑2 and A‑3 indicate the expression of 
relevant isomiR sequences in Fig. A‑1. (B) Expression patterns were identified for these dominantly expressed isomiRs using tumor and normal samples with 
the same sample sizes (n=87). Compared with the expression in (A) in different sample sizes, the expression patterns were considered to be similar. miRNA, 
microRNAs; BC, breast cancer.
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Figure 3. Multiple isomiRs in miR‑451 and variations across different samples. Percentage (%) in the Y‑axis indicates the percentage of a certain isomiR 
compared with all detected isomiRs in the miRNA locus. (A) hsa‑miR‑451 was identified to undergo Dicer‑independent maturation. A similar phenomenon for 
multiple isomiRs was detected in the miRNA locus. (B) Box plots based on relative expression of isomiRs. According to the most, second and third dominantly 
expressed isomiRs, isomiRs have a larger degree of variation in tumor samples than normal samples. Compared with miR‑30a‑5p, the miR‑451 locus indicates 
a moderate level of isomiR expression, which typically involves higher degree of variation in different samples. miR, microRNAs; BC, breast cancer. 

Figure 2. Phylogenetic trees of Drosha and Dicer. Similar phylogenetic associations are detected based on Drosha and Dicer sequences. hsa, Homo sapiens; 
ssc, Sus scrofa; mmu, Mus musculus; aca, Anolis carolinensis; gga, Gallus gallus; tgu, Taeniopygia guttata; xtr, Xenopus tropicalis; dre, Danio rerio; NJ, 
neighbor‑joining.
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Figure 5. Variations in isomiRs across different samples using equal sample sizes (n=87). Percentage (%) in the Y‑axis indicates the percentage of a specific 
isomiR compared with all detected isomiRs in the miRNA locus. miR, microRNA; BC, breast cancer.

Figure 4. Expression patterns of multiple isomiRs in different miRNA loci and samples. Percentage (%) in the Y‑axis indicates the percentage of a specific 
isomiR compared with all detected isomiRs in the miRNA locus and the X‑axis indicates the isomiR types. A total of three miRNA genes, including miR‑21, 
miR‑30a and miR‑30e, were selected and analyzed due to the fact that miR‑#‑5p and miR‑#‑3p were abundantly expressed. Of these, miR‑30e‑5p was not 
dominantly expressed (however another strand of miR‑30e‑3p was upregulated), and miR‑451 was also rarely expressed in PRAD and normal samples. Lower 
expression levels influence the expression pattern of isomiRs. miRNA/miR, microRNA; PRAD, prostate adenocarcinoma; NT, Normal, Matched Tumor; 
THCA, thyroid carcinoma; TN, Tumor, Matched Normal.
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Another non‑dominant miRNA strand such as the 
miR‑30a‑3p locus induces moderate isomiR expression 
profiles, similar to that observed in Dicer‑independent 
miR‑451 locus  (40). Notably, although several dominant 
isomiRs are present in the passenger strand, distinct differ-
ences were detected between dominant isomiRs and other rare 
isomiRs, whereas in the miR‑451 locus, no evident boundary 
was detected. The moderate level of expression may have 
resulted from the random cleavage of the hairpin, whereas 
isomiRs in most typical miRNAs are strictly controlled. The 
mir‑451 hairpin could not be recognized by Dicer because of 
the insufficient amount of duplexes formed, and therefore it 
was directly cleaved by Ago2. The Dicer‑independent matura-
tion process may lead to relative random cleavage sites at the 
3' ends of miRNAs, which is different from the non‑random  
3' ends of multiple isomiRs derived from typical miRNA 
locus. Generally, in typical miRNA loci, dominant isomiRs are 
evident, and there are always one to three types of abundantly 
expressed isomiRs that can be used to infer dominant cleavage 
sites in Drosha and Dicer. These observations indicate the 
cleavage bias of Drosha and Dicer, which further contributes 
to the distinct expression profiles of dominant isomiRs.

The current study also observed that although isomiR 
expression profiles are always stable across different 
samples, including between tumor and normal samples, and 
variations were also detected between diseased and normal 
samples (39). In diseased samples, a larger degree of varia-
tion was observed compared with that among normal samples, 
which implicates that the miRNA maturation process may be 
affected in the abnormal micro‑environment (Figs. 3 and 5). 
The dispersed expression patterns of isomiRs may be derived 
from changes in Drosha and Dicer cleavage, modification or 
regulation following miRNA maturation in tumor samples. 
These distinct characteristics may furthermore provide addi-
tional information on the dynamic expression profiles of the 
coding‑non‑coding RNA regulatory network.

In conclusion, expression analysis of isomiRs demon-
strated that Dicer‑independent miRNA involves a moderate 
level of isomiR expression compared with that observed 
in typical miRNA loci. Notably, a similar expression 
profile can be detected between non‑dominant miRNA and 
Dicer‑independent miRNA loci, thereby suggesting more 
complex miRNA maturation processes, particularly at the 
isomiR levels. Dynamic miRNA/isomiR expression profiles 
further enrich the regulatory network, particularly those 
involving miRNA‑miRNA and miRNA‑mRNA interactions. 
Additional studies on multiple isomiRs, particularly their 
potential versatile biological roles, may prove beneficial.
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