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ABSTRACT
Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and
Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror
weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed
vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination
against B. pseudomallei flagellin for protection against respiratory challenge.

We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice
were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei
on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or
intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads,
cytokine responses, inflammation and microscopic lesions.

A construct encoding a cellular secretion signal resulted in the most effective protection against
melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs
compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine
resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine
responses were significantly diminished and strong reductions in markers for distant organ damage
were observed.

A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against
intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway
mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute
mass vaccination is indicated and warrants further testing.
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Introduction

Burkholderia pseudomallei is a facultative intracellular
Gram negative bacterium that causes melioidosis and is
endemic in Southeast Asia and Northern Australia.1,2

Infection usually occurs through dermal lesions via rice
paddies and infected soil. During severe weather events,
when the soil is disturbed and B. pseudomallei becomes
aerosolized, inhalation is thought to cause infection.
Importantly, B. pseudomallei was recently upgraded to a
Tier 1 select agent by the National Select Agent Registry
due to its high associated morbidity and mortality,

intrinsic resistance to standard antimicrobial agents and
lack of a vaccine. Even when treated with adequate anti-
biotics, mortality remains high and varies between 14 to
40% depending on geographic regions.1,2 Deliberate
release in an aerosol form may infect large populations
and poses a potential bioterrorist threat.

Despite ongoing efforts, no vaccine is currently avail-
able in humans. The requirements of a vaccination strat-
egy for large populations that are at risk for B.
pseudomallei bioterrorism differ from those for popula-
tions in endemic areas.3 While the latter requires a cost-
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effective vaccine primarily targeted at risk groups such as
diabetics, the former should be rapidly producible and
applicable in large groups of people, ideally by self-
administration. In addition, the different routes of infec-
tion (i.e. aerosol distribution in case of bioterrorism)
should be accounted for in the vaccination approach.3

Vaccination studies have focused on different meth-
ods, including live attenuated -, whole cell killed -, sub-
unit -, recombinant - and plasmid DNA vaccines.4,5 Live
attenuated vaccination is currently regarded as the “gold
standard” in mouse models, but will have limited value
in humans given the potential risk of reversion into a vir-
ulent phenotype.4 Vaccination with subunit and recom-
binant protein vaccines in Complete Freund’s Adjuvant
(CFA) is unattractive in humans, since the subcutane-
ously injected vaccine may induce painful granulomas.6

DNA vaccines induce both humoral and cell-mediated
immune responses7 and have the additional benefit of
being rapidly producible and having a long shelf life
without the need of a cold chain.7

Flagellin is a suitable antigen candidate for vaccine
development, as it is an important putative virulence fac-
tor of B. pseudomallei.8 It signals via Toll like receptor-5,
which is upregulated in granulocytes and monocytes of
patients with melioidosis.9 The only study so far on
intramuscular DNA vaccination against B. pseudomallei
flagellin (FliC) showed diminished bacterial loads and
improved survival in mice.10 In this study, flagellin-
encoding plasmid DNA was injected intramuscularly in
BALB/c mice on day 0, 7 and 14, followed by intravenous
challenge with 105 CFU B. pseudomallei (mixture of 16
strains) eight weeks post-vaccination. In a follow-up
study, using similar routes of immunization and infec-
tion, the authors reported induction of Th1-type
responses as the underlying mechanism, which could be
augmented by CpG oligodeoxynucleotides.11

Application of DNA vaccines by dermal tattoo was
previously shown to improve T-cell immunity.12 When
DNA is injected via thousands of skin perforations, an
adjuvant inflammatory milieu is generated, making
immune responses more robust and allowing for faster
vaccination regimens.13 We and others have shown that
rapid immunization schedules with short times between
immunizations with DNA vaccines can be effective
against HPV-induced tumors, viruses and bacteria, and
that rapid DNA vaccination by dermal tattoo is more
potent than intramuscular administration.12-15 Another
recent development is mucosal immunization, directed
at inducing tissue-resident memory T-cells.16 DNA vac-
cination via the airway mucosa would theoretically be
very well-suited to prevent infection by inhalation.7,17

Several DNA vaccine formulations have been described
in this context, one of which involving polymers such as

polyethylenimine (PEI) that increase mucosal transfec-
tion by approximately thousand fold.18-21

In this study, we have explored rapid application of
B. pseudomallei flagellin DNA as a possible vaccine
for biodefense use, comparing dermal tattooing and
intranasal administration. First, we compared multiple
FliC encoding DNA vaccine designs, applied in a
rapid tattoo immunization schedule. Next, using the
most efficient vaccine, we tested the efficacy of intra-
nasal administration against intranasal melioidosis.

Results

Designing and testing of FliC plasmid DNA vaccine
candidates

In order to select a DNA vaccine that rapidly protects
against intranasal B. pseudomallei infection, we
designed three constructs with FliC sequences in plas-
mid vector pVAX (“pVAX-FliC”). All vaccines were
codon-optimized for mouse tRNA and contained a
Kozak sequence to optimize translation efficiency and
ribosomal binding (Fig. 1A). “pVAX-hTPA-FliC” con-
tained an N-terminal signal peptide from human tis-
sue plasminogen activator (hTPA), thus enabling
protein secretion and augmenting MHC-II presenta-
tion by antigen presenting cells. “pVAX-FliC-KDEL”
had a four-amino acid C-terminal KDEL sequence
leading to FliC accumulation in the endoplasmatic
reticulum (ER) of transfected cells, which via ER
stress and improved MHC-I presentation may
increase T-cell priming effectiveness of the vaccine.
Mice were immunized by tattoo vaccination with
20 mg of plasmid DNA on day 0, 3 and 6, with a
control group receiving an equal amount of empty
pVAX vector via tattoo. After 20 days, all vaccine
designs had induced significantly elevated anti-FliC
IgG levels in plasma compared to the empty pVAX
control (Fig. 1B; pVAX-FliC: p D 0.020; pVAX-
hTPA-FliC: p D 0.006; pVAX-FliC-KDEL: p D
0.007). No significant differences in antibody levels
were observed between FliC vaccinated groups.

On day 21 post-vaccination, mice were challenged intra-
nasally with 200 colony forming units (CFU) of B. pseudo-
mallei 1026b followed by sacrifice 72 hours after infection,
when all mice usually have symptoms of systemic infection.
Bacterial loads were determined in lung, blood, liver and
spleen (Fig. 1C-F). Significantly reduced bacterial loads
were found in both lung, blood and distant organs in mice
vaccinated with pVAX-FliC and pVAX-hTPA-FliC, with
the lowest bacterial concentrations in the lung observed in
pVAX-hTPA-FliC vaccinated mice. In addition, all pVAX-
hTPA-FliC vaccinated mice were blood-culture negative.
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Immunization with pVAX-FliC-KDEL was less effective
than pVAX-FliC, with only a trend toward reduced bacterial
loads compared to the empty pVAX control.

Since cytokines and chemokines are important regula-
tors of the host response during melioidosis,8,22 we next
measured pulmonary and systemic levels of tumor
necrosis factor-alpha (TNFa), interleukin (IL)-6, inter-
feron (IFN)g and chemokine ligand-1 (CXCL1, Fig. 2).
For lung cytokine production, pVAX-hTPA-FliC was
the only vaccine that significantly reduced both TNFa,
IL-6 and CXCL1 (Fig. 2). Plasma cytokine concentra-
tions were significantly reduced as well, in particular
IFNg. In contrast with the observed bacterial loads,
pVAX-FliC-KDEL vaccination resulted in reduced
plasma levels of TNFa, IL-6 and IFNg, whereas pVAX-
FliC only significantly decreased IL-6 levels. Intranasal
inoculation with B. pseudomallei is associated with pro-
found lung and distant organ pathology.9,23,24 A trend
toward lower lung- and liver histopathologic scores was
observed for all FliC vaccines, as well as a lower influx of
neutrophils to the lungs as reflected by Ly6G staining,
but this was not statistically significant (Fig. S1; see

Supplementary Methods for histopathology scoring cri-
teria). Combining these results, the cellular secretion sig-
nal of pVAX-hTPA-FliC appeared to improve the
effectivity of the DNA vaccine. We therefore selected
pVAX-hTPA-FliC as the vaccine design with the most
potential for further testing.

Single intranasal administration of pVAX-hTPA-FliC
strongly reduces bacterial loads

Next, we were interested in the effects of a single vaccine
delivery on preventing imminent intranasal B. pseudo-
mallei infection. Therefore, we compared a single DNA
vaccination on day 0, either via tattoo or intranasally,
with recombinant FliC vaccination plus Complete
Freund’s Adjuvant (CFA, administered subcutaneously)
as a positive control or empty pVAX tattoo as a negative
control (Fig. 3). After a single pVAX-hTPA-FliC tattoo,
the FliC-specific total IgG antibody response on day 20
was not as robust as after triple vaccination (Fig. 3A). No
evident skewing toward IgG1 or IgG2a was detected.

Figure 1. Decreased bacterial loads via rapid DNA tattooing during experimental intranasal melioidosis. (A) Schematic overview of DNA
vaccine designs based on B. pseudomallei flagellin (FliC), cloned into the pVAX1 vector. All vaccines are codon optimized and contain a
Kozak sequence to optimize ribosomal binding. hTPA-FliC contains an N-terminal cellular secretion signal, FliC-KDEL contains a C-termi-
nal endoplasmatic reticulum retention signal. (B) FliC-specific IgG induction in plasma after rapid tattoo vaccination at t D 0, 3 and
6 days (indicated by arrows). Bars represent mean § SEM (C-F) Three weeks after the first vaccination, mice were inoculated intranasally
with 200 CFU B. pseudomallei and sacrificed 72 hours later. Bacterial loads in lung (C), blood (D), liver (E) and spleen homogenate (F) are
depicted as scatter dot plots with a line at the median (n D 8 mice per group). Numbers in the box below (D) indicate the number of
positive blood cultures/total number of mice. The vaccinated groups were compared to the empty pVAX control group using a Mann-
Whitney test. �p < 0.05, ��p < 0.01. For pVAX-hTPA-FliC vs. empty pVAX blood CFU a Chi-square test was performed (p D 0.007).
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Interestingly, intranasal DNA vaccination did not induce
a FliC- specific IgG response at all, whereas recombinant
FliC with CFA induced a strong humoral response.
Serum IgA was below detection in all experimental
groups (data not shown).

On day 21, mice were infected with 300 CFU B.
pseudomallei and sacrificed 72 hours later as in the
previous experiment. A single tattoo vaccination with
pVAX-hTPA-FliC did not lower bacterial loads, com-
pared to the empty pVAX tattoo control group
(Fig. 3B-E). However, a single intranasal application
of the same DNA vaccine very effectively diminished
bacterial growth and dissemination to distant organs,
i.e., more than 1000-fold compared to the empty
pVAX tattoo control group. This equaled the efficacy
of recombinant FliC with CFA. In a separate set of

experiments we compared single intranasal vaccina-
tion with pVAX-hTPA-FliC with empty pVAX intra-
nasally and a control group without any vaccine
(Fig. S2). This experiment confirmed the effectiveness
of a single intranasal vaccination with pVAX-hTPA-
FliC in lowering bacterial burdens. The intranasal
empty pVAX vaccine formulated in PEI did not alter
bacterial loads in blood or organs compared to the
non-vaccinated group, confirming the antigen depen-
dency of the pVAX-hTPA-FliC induced protection.

Single intranasal vaccination with pVAX-hTPA-FliC
reduces lung inflammation and damage

To further investigate the effect of vaccination on lung
inflammation, we first assessed lung cytokine levels
(Fig. 4A-C). Pulmonary IL-6 and CXCL1 were strongly

Figure 2. Decreased proinflammatory pulmonary and systemic cytokine levels in rapid DNA tattoo-vaccinated mice during experimental
intranasal melioidosis. Mice were given rapid tattoo vaccination at t D 0, 3 and 6 days followed by intranasal bacterial challenge (200
CFU B. pseudomallei) on day 21. Mice were sacrificed 72 hours after intranasal B. pseudomallei challenge and heparinized blood plasma
and lung homogenates were obtained. TNFa (A), IL-6 (B) and CXCL1 (C) were measured in lung homogenate; TNFa (D), IL-6 (E) and
IFNg (F) were measured in plasma. Values are in pg/mL; data are presented as box- and whisker plots showing the smallest observation,
lower quartile, median, upper quartile and largest observation. N D 8 mice per group. Vaccinated groups were compared to the control
group (empty pVAX) using a Mann Whitney test. �p < 0.05, ��p < 0.01, ���p < 0.001.
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reduced by recombinant FliC with CFA, as well as by
intranasal pVAX-hTPA-FliC (p<0.001 compared to tat-
too with empty pVAX vector; p D 0.06 for IL-6 and
p D 0.08 for CXCL1compared to recombinant FliC with
CFA). Intranasal pVAX-hTPA-FliC in addition resulted
in significantly lower levels of TNFa (p<0.01 compared
to empty pVAX vector, Fig. 4A). A trend toward lower
IL-6 and CXCL1 was observed for single tattoo vaccina-
tion with pVAX-hTPA-FliC, but this did not reach sta-
tistical significance. We also measured neutrophil influx
by staining lung sections for Ly6G, an important marker
of neutrophils. As expected, the percentage of surface
positive for Ly6G was significantly reduced by both

intranasal pVAX-hTPA-FliC and recombinant FliC with
CFA (Fig. 4D). Neutrophil degranulation, reflected by
myeloperoxidase levels, was not different between the
experimental groups (Fig. 4E).

Lastly, HE stained sections were scored by a blinded
pathologist for several parameters of inflammation,
which were combined into a lung histopathologic
score (Fig. 4F; see Supplementary Methods for histo-
pathology scoring criteria). All mice showed micro-
scopic lesions in the lungs characterized by necrosis,
interstitial inflammation, bronchitis, endothelialitis
and edema 72 hours after inoculation with B.

Figure 3. A single intranasal vaccination with pVAX-hTPA-FliC is more effective in lowering bacterial loads than single tattoo administra-
tion during experimental intranasal melioidosis. A single dose of pVAX-hTPA-FliC was administered on day 0 either via tattoo or intrana-
sally and compared with recombinant FliC C CFA s.c. as a positive control or empty pVAX tattoo as a negative control. All mice were
inoculated intranasally with 300 CFU B. pseudomallei on day 21. (A) FliC-specific IgG in plasma at day 0 and 20 after vaccination. Bars
represent mean § SEM (B-E) Bacterial loads in blood and organ homogenates 72 hours after infection, depicted as scatter dot plots
with a line at the median. Groups were compared using a Kruskal Wallis test followed by Dunns multiple comparisons test; �p < 0.05,
��p < 0.01, ���p < 0.001 versus empty pVAX; # p<0.05 vs. pVAX-hTPA-FliC tattoo. N D 7 or 8 mice per group. s.c., subcutaneous; i.n.,
intranasal; tt, tattoo.
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pseudomallei. Importantly, intranasal vaccination with
pVAX-hTPA-FliC significantly reduced melioidosis-
induced lung histopathology scores when compared to
controls. Representative lung sections of each group
are shown in Fig. 4G-J.

Single intranasal vaccination with pVAX-hTPA-FliC
reduces systemic inflammation and organ damage

Systemic cytokine production followed a similar pattern
as in the lungs (Fig. 5 A-D). TNFa, IL-6, IFNg and
MCP1 in plasma were all significantly lower in the intra-
nasally pVAX-hTPA-FliC vaccinated group compared to
the empty pVAX vector tattoo group, whereas for
recombinant FliC in CFA this was only true for IL-6 and
MCP1. A liver histopathologic score was generated in a
similar way as for the lungs (Fig. 5E; see Supplementary
Methods for histopathology scoring criteria). Intranasal
pVAX-hTPA-FliC protected against B. pseudomallei
induced liver pathology as reflected by strongly reduced
liver histopathologic scores (Fig. 5E). In line with this
finding, plasma levels of markers for hepatocellular

damage alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) remained unaffected upon
infection, in sharp contrast to the controls (Fig. 5F-G).
Finally, lactate dehydrogenase (LDH) was measured in
plasma as a marker for general cellular damage
(Fig. 5H). Notably, this was only decreased in the intra-
nasal pVAX-hTPA-FliC group.

Single intranasal vaccination with pVAX-hTPA-FliC
increases survival

To investigate whether the observed beneficial effects of
intranasal vaccination would also affect outcome after
intranasal infection with B. pseudomallei, we performed
a survival experiment of 14 days. Twenty mice per group
were vaccinated intranasally once with pVAX-hTPA-
FliC and compared to twenty control mice that did not
receive any vaccine. Unfortunately, the intranasally
administered DNA vaccine led to undesired weight loss
in some of the mice during this experiment, due to which
four mice died and one was euthanized because of reach-
ing a humane end point (>20% weight loss; all five were
lost before the start of the survival experiment and are

Figure 4. Decreased pulmonary cytokine levels and lung pathologic scores after single intranasal vaccination with pVAX-hTPA-FliC. All
mice were given a single vaccination on day 0 (tattoo, subcutaneously or intranasally) and inoculated intranasally with 300 CFU B. pseu-
domallei on day 21. Lungs were harvested 72 hours after intranasal challenge with B. pseudomallei. TNFa (A), IL-6 (B) and CXCL1 (C) in
lung homogenate; values are in pg/mL. Paraffin-embedded lung tissue sections were stained for Ly6G, a marker for neutrophil infiltra-
tion, and the percentage of the total lung surface positive for Ly6G was calculated digitally (D). As a representation for neutrophil
degranulation, myeloperoxidase (MPO) was measured in lung homogenates (E). Lung tissue sections were stained with haematoxylin/
eosin and scored on different parameters for pathology by a blinded pathologist (F). Representative images (with the median score) of
the empty pVAX tattoo (G), rFliC C CFA (H), pVAX-hTPA-FliC tattoo (I) and pVAX-hTPA-FliC i.n. (J) groups (4x magnification). Data are
presented as box- and whisker plots showing the smallest observation, lower quartile, median, upper quartile and largest observation.
Groups were compared using a Kruskal Wallis test followed by Dunns multiple comparisons test; �p < 0.05, ��p < 0.01, ���p < 0.001 vs.
empty pVAX; # p <0.05 vs. pVAX-hTPA-FliC tattoo. N D 7 or 8 mice per group. s.c., subcutaneous; i.n., intranasal; tt, tattoo.
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therefore not included in the statistics). At the moment
of bacterial challenge, vaccinated- and control mice had
similar weights. Intranasally vaccinated mice had signifi-
cantly increased survival (53% in the vaccinated group
vs. 15% in the unvaccinated control group, Fig. 6A). In

addition, a clinical observation score reflects the severity
of disease over time in both groups. In accordance with
the survival curves, disease severity is significantly lower
in the vaccinated group (Fig. 6B).

Figure 6. Increased survival after single intranasal vaccination with pVAX-hTPA-FliC. Survival (A) and clinical observation score (B) of
control (open dots, n D 20) and intranasally vaccinated mice (gray dots, n D 15). All mice in the vaccinated group were given a single
intranasal vaccination on day 0 and inoculated intranasally with 500 CFU B. pseudomallei on day 21. Controls did not receive any vaccine.
Survival was monitored for 14 days. Data are presented as Kaplan-Meier survival curves. �p < 0.05, ��p < 0.01.

Figure 5. Diminished plasma cytokine levels and distant organ injury after single intranasal vaccination with pVAX-hTPA-FliC. All mice
were given a single vaccination on day 0 (tattoo, subcutaneously or intranasally) and inoculated intranasally with 300 CFU B. pseudomal-
lei on day 21. Plasma TNFa (A), IL-6 (B), IFNg (C) and MCP-1 (D); values are in pg/mL. Liver tissue sections were stained with haematoxy-
lin/eosin and scored on different parameters by a blinded pathologist, combined in a pathology score (E). ALT (F), AST (G) and LDH (H)
were measured in plasma as markers for liver- and general cellular damage. Data are presented as box- and whisker plots showing the
smallest observation, lower quartile, median, upper quartile and largest observation. N D 6–8 samples per group. Groups were com-
pared using a Kruskal Wallis test followed by Dunns multiple comparisons test; �p < 0.05, ��p < 0.01, ���p < 0.001 vs. empty pVAX; # p
< 0.05 vs. rFliC C CFA s.c. s.c., subcutaneous; i.n., intranasal; tt, tattoo.
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Discussion

To our knowledge, this study is the first to investigate
rapid vaccination against B. pseudomallei flagellin using
plasmid DNA administered via tattoo or intranasally. A
pVAX vector construct encoding secreted flagellin
proved most effective at inducing a balanced immune
response against B. pseudomallei, reducing bacterial bur-
dens and improving survival without resulting in severe
cytokine-induced damage. Although IFNg is believed to
play a protective role in the host defense against melioi-
dosis,1,25,26 levels measured in both the systemic and pul-
monary compartment during experimental melioidosis
are also a reflection of disease severity; lower levels are
observed in subjects with a relatively mild disease.23,27 As
a result, the observed lower levels of IFNg in vaccinated
mice after infection with B. pseudomallei are most proba-
bly a reflection of a decreased inflammatory state. A sin-
gle intranasal administration of the aforementioned
vaccine was equally effective as subcutaneous injection
of recombinant protein in CFA, strongly diminishing
bacterial loads and organ damage. Intranasal DNA vacci-
nation was the only vaccine approach that significantly
diminished lung and liver pathology after a single dose.
Survival of intranasally vaccinated mice was significantly
increased compared to unvaccinated controls.

Single dermal DNA vaccination induced inferior IgG
levels compared to the rapid immunization schedule of
three immunizations within six days. Interestingly, single
intranasal DNA vaccination did not induce an IgG
response at all, while being more effective in lowering
histopathologic scores and cytokine levels compared to
recombinant protein vaccination, which induced a
strong IgG response. Because intranasal DNA vaccina-
tion against B. pseudomallei has not been previously
described, further studies are required to provide better
insight into the immunological characteristics needed for
such vaccines to optimally protect against melioidosis.

In the context of bioterrorism by deliberate release of
aerosolized B. pseudomallei, a rapidly working vaccine
aimed at preventing a B. pseudomallei pneumonia that
can easily be administered can be of paramount impor-
tance. It has been described previously in mouse models
of melioidosis that administration of both vaccine and
bacteria via the same route induces stronger protection.4

Intraperitoneally administered vaccine candidates had
less protective efficacy after inhalation of B. pseudomallei
than after intraperitoneal challenge; likewise, intranasal
vaccination was more effective than intraperitoneal vac-
cination when bacteria were administered via the
nose.28-30 Our results support the notion that vaccination
via the airways is a suitable vaccination route to protect
against aerosolized B. pseudomallei infection, as was

suggested by a number of studies.28,31,32 Overall, many
vaccine candidates are still either considered unsafe for
use in humans (live attenuated) or only induce humoral
responses (purified or recombinant antigens, heat-killed
whole cell vaccines) that may be insufficient to combat
intracellular B. pseudomallei infection. DNA vaccines
were shown to be effective against intracellular bacteria
as well, allegedly through inducing a protective cellular
immune response.17,33,34 The results of our study suggest
that a strong cellular immune response was elicited, as
we observed a strong reduction in bacterial loads
through a single intranasal vaccination, with almost no
detectable antibody response after the intranasal pVAX-
hTPA-FliC vaccination. One important drawback of
intranasal DNA vaccines is the possibility of vaccination
related morbidity, manifesting as weight loss after vacci-
nation, similar to weight loss observed after intranasal
influenza infection.14 In young mice with a low body
weight this can be life threatening. We experienced this
in one of the four experiments presented in this paper
(the survival experiment). Importantly, all mice - vacci-
nated and control mice - had similar weights at the time
of bacterial challenge.

We did not include the impact of this vaccine on cell-
mediated immunity in our study. Also, we did not test
our vaccine in other mouse strains or in a diabetic mouse
model, nor with a second strain of B. pseudomallei. Nei-
ther did we compare our vaccine candidate with the cur-
rent “gold standard” (i.e., a live attenuated vaccine).
These experiments would abide the consensus criteria
for the development of melioidosis vaccines that have
been published recently.3 However, these criteria are of
special relevance in the development of a vaccine for the
general population in endemic areas, as illustrated by the
requirement that bacterial challenge should take place no
sooner than four weeks after vaccination. Clearly, earlier
challenge is specifically suitable to test the effectiveness
of vaccines in an acute bioterrorism setting.

Future research should focus on understanding the
underlying mechanisms of the immunity induced by
intranasal DNA vaccination. In addition, it will be of
interest to see whether the tattoo-administered vaccine
has superior effectivity when bacteria are inoculated
intradermally. The intradermal route might be more
applicable to at risk populations in endemic areas, where
the majority of infections are thought to occur via the
cutaneous route.1,2 Using different vaccination regimens
and routes of administration, a cost effective and safe
DNA vaccine could be extremely valuable for both peo-
ple at risk in endemic areas and for preparedness plan-
ning for potential deliberate release of B. pseudomallei.
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Material and methods

Plasmid DNA sequences, experimental infection, sam-
ple harvesting, determination of bacterial loads and
assays are described in more detail in the online
supplement.

Mice

Seven-week old female specific pathogen-free C57BL/6
mice were purchased from Charles River. After one week
of acclimatization, vaccination was performed at eight
weeks of age. Infection was induced at eleven weeks of
age. Animals were housed in IVC cages in rooms with a
controlled temperature and light cyclus and received
standard rodent chow and water ad libitum. The Institu-
tional Animal Care and Use Committee of the Academic
Medical Center approved all experiments.

DNA vaccines

Three DNA vaccine inserts were designed based on the
FliC gene of B. pseudomallei 1026b (Genbank accession
U73848.1) and synthetized (Biobasic inc.). The FliC
sequence was codon-optimized to murine codon usage,
using JCAT web-based software.35 A Kozak sequence
was added to all vaccines, which consists of a GCCACC
before the start codon and an additional GAC triplet
immediately following the start codon, leading to
increased ribosomal binding. Also, a double stop codon
was added. The inserts, flanked by a BamH1 and Xho1
restriction site, were cloned into pVAX1 and amplified
using the Nucleobond Xtra EF kit (Macherey-Nagel) to
form construct “pVAX-FliC.” Construct “pVAX-FliC-
KDEL” was similarly generated with an additional 50end
AAGGACGAGCTG sequence (amino acid code: KDEL)
immediately before the stop codon, thus adding an endo-
plasmatic reticulum retention signal. For construct
“pVAX-hTPA-FliC” the start codon was immediately
followed by the codon-optimized hTPA signal sequence
(GenBank accession AAA61213.1), thus targeting the
gene product to secretory vesicles. Full insert sequences
are described in the Supplemental Material.

Immunization

In the first experiment, vaccination was performed at day
0, 3 and 6. Eight mice per group were anesthetized using
2–4% isoflurane and their abdomens were shaved fol-
lowed by additional hair removal using cream (VEET,
Reckitt Benckiser). 20 mg of DNA vaccine or a control
vaccine (empty pVAX) in 10 mL sterile water was admin-
istered to the naked skin and vaccination was performed

for 45 seconds at 100 Hz using a tattoo machine as
described previously.13 In the following experiments,
20 mg pVAX-hTPA-FliC or empty pVAX was adminis-
tered at day 0 either via tattoo or intranasally. To opti-
mize stability and transfection efficiency in the
intranasally vaccinated group, the pVAX-hTPA-FliC
was administered in 50 uL sterile, endotoxin free water
with 6,5 vol/vol% polyethylenimine (PEI, PolyPlus
Transfection Inc.) and 5% glucose. In the positive control
group, an emulsion of 50 mg recombinant flagellin of B.
pseudomallei 1026b (kindly provided by professor Don-
ald E. Woods, University of Calgary, Alberta, Canada)
with 50 mL Complete Freund’s Adjuvant (CFA) was
injected subcutaneously at two different sites at the back
of the mouse.

Induction of melioidosis and sample harvesting

Plasma was collected by tail vein bleeds at day 0, 7, 14
and 20. On day 21, experimental melioidosis was
induced by intranasal inoculation with 200–500 colony
forming units (CFU; approximately LD50) of B. pseudo-
mallei strain 1026b in 50 mL sterile saline as
described.9,23,24 At 72 hours post-infection, mice were
euthanized (ketamine 75mg/kg and medetomedine 1,0
mg/kg intraperitoneally) and sacrificed by bleeding from
the heart, after which organs were harvested.9,23,24 Tis-
sues were homogenized, serially diluted and plated to
assess bacterial loads (for full methods see Supplemental
Material).

Antibody responses

Induction of FliC-specific IgG was measured by coating
1 mg/mL rFliC on high-binding ELISA plates (Greiner
Bio-one) overnight at 4�C, followed by blocking with 1%
bovine serum albumin (BSA) in phosphate buffered
saline (PBS) for 2 hours, washing with PBS-0.05%Tween,
and incubation with 1:100 diluted mouse sera in 1%
BSA/PBS for 1 hour. Next, plates were washed and incu-
bated with 1:2500 anti-mouse IgG-HRP (Cell signaling)
in 1% BSA-PBS for 30 minutes. After washing, plates
were developed using 3,30,5,50-Tetramethylbenzidine
substrate and read at 450 nm (Biotek).

Survival and clinical observation score

Mice were observed for 14 days after intranasal inocula-
tion to study survival. Clinical signs were scored as previ-
ously described:36 solitude (0 absent, 1 present), posture
(0 normal, 1 sphere), fur (0 normal, 1 pilo-erection), eyes
(0 open, 1 closed, 2 dirty), alertness (0 normal, 1 slow, 2
apathic, 3 non-responsive), pace (0 normal, 1 shaky, 2
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collapse), respiration (0 normal, 1 heavy, 2 slow, 3 inter-
mittent) and time to ascent when laid down (0 normal, 1
<5 seconds, 2 >5 seconds, 3 unresponsive); resulting in
a maximum score of 16, which was also given to
deceased mice. Four humane end points were enforced:
if the animal was non-responsive; if time to ascent was
>5 seconds, or if the animal collapsed.

Statistical analysis

Differences between groups were analyzed by one-way
ANOVA followed by Dunns multiple comparisons test
or Mann Whitney test as indicated. For survival analysis,
Kaplan-Meier analysis followed by log-rank test was per-
formed. Clinical disease scores were analyzed by
matched two-way ANOVA (all using GraphPad Prism 5,
GraphPad Software). Values of p < 0.05 were considered
statistically significant.
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