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Forests in the United States are managed by multiple public and private entities making harmonization of
available data and subsequent mapping of management challenging. We mapped four important types of
forest management, production, ecological, passive, and preservation, at 250-meter spatial resolution in
the Southeastern (SEUS) and Pacific Northwest (PNW) USA. Both ecologically and socio-economically
dynamic regions, the SEUS and PNW forests represent, respectively, 22.0% and 10.4% of forests in the
coterminous US. We built a random forest classifier using seasonal time-series analysis of 16 years of
MODIS 16-day composite Enhanced Vegetation Index, and ancillary data containing forest ownership,
roads, US Forest Service wilderness and forestry areas, proportion conifer and proportion riparian. The map
accuracies for SEUS are 89% (10-fold cross-validation) and 67% (external validation) and PNW are 91% and
70% respectively with the same validation. The now publicly available forest management maps,
probability surfaces for each management class and uncertainty layer for each region can be viewed and
analysed in commercial and open-source GIS and remote sensing software.
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Background & Summary
Forests cover about a third of land area in the coterminous United States (US), with the largest tracts of
forest land managed by the federal government for preservation or multiple uses1. The top ten largest
private landowners in the United States own and manage forestlands primarily for forest products and,
increasingly, for real estate development and investments2. Forest management practices (e.g. harvesting
methods, planting decisions, prescribed fire and fire suppression, and road building) are continually
changing in response to policy, socio-economic conditions, climate, and scientific knowledge3.

While the effects of management on forests are well-studied at the stand to larger management units
such as a national forest scale4, little is known about how socioeconomics, land use, and management
decisions influence forest ecology across landscapes larger than national forest boundaries such as regions
and continents4. Without regional scale knowledge, predictions of changes from climate, land use, or
policy on forest structure and function remain uncertain, thereby limiting the evaluation of management
scenarios to improve forest resilience and sustainability.

Nearly 41% of US private forests have management plans5,6 but assimilating these plans to map
management activities is difficult and error-prone due to non-systematic information about mixed
management practices. Since many management plans are not spatially referenced they are not conducive
for spatial analysis. Mapping the ecological effects of forest management across broad geographic extents
remains a challenge7, therefore gaps exist in the characterization of spatial patterns in forest extent and
types of forest management strategies. Climate, ecological disturbance, and forest management interact to
influence ecosystem processes of forests across extensive spatial and temporal scales. However, at present,
Earth systems models that examine the effects of environmental change do not sufficiently incorporate
ecosystem management8 and a consistent and systematic approach to mapping forest management at
regional and continental scales is needed9.

We produced forest management maps for two forested regions of the continental United States, the
Southeastern Coastal Plain and Piedmont (SEUS) and the Pacific Northwest (PNW), where production is
the main management strategy and production cycles are a large cause of land cover change and
terrestrial carbon cycles, but different types of land ownership and forest management practices are at
play (Fig. 1). The SEUS forest ecosystem is a fire-dominated system with most native trees adapted to
short-period events (e.g. 3–5 years10). About 85% of SEUS forested land is privately owned, with more
than half (54%) owned by corporations11. These privately-owned corporate lands are primarily managed
for silvicultural production and have an average harvest rotation of 18–20 years. PNW forests ecosystem
have adapted to a disturbance regime consisting of wind, fire and beetle disturbance vectors12. Two-thirds
of forested land is publicly owned and 44% of private forested land is owned by corporations11. Areas
managed for silvicultural production has an average harvest rotation of about 70 years.

Historically, the interaction of forest policy with land-use and economic priorities has created a mosaic
of forest management types in both the SEUS and the PNW. These can be simplified into four
management types9: 1) production forestry, 2) ecological forestry, 3) passive management, and 4)
preservation management. The primary goal of production forestry is extraction of wood products for
economic gain. Common production forestry silviculture practices include clear-cut harvesting and site
preparation with fertilizer and pesticides. Ecological forestry aims to balance wood products extraction
with maintenance of other forest ecosystem services, such as habitat provision, water resources and
carbon storage12. Harvests occur periodically with methods like variable retention harvesting performed
across decades to maintain an uneven aged forest, a practice which mimics relatively fine scale local
disturbances to recreate a shifting mosaic of stand age to maintain structural complexity12. Passively
managed forests are those that are largely left alone apart from occasional harvest driven by economic
need or opportunity by the landowner. These include naturally regenerating forests without specific
apparent management plans, which often have mixed uses, e.g. hunting or recreation areas. Preservation
management maintains ecosystems based on historical or natural range of variation for conservation,
cultural reasons, recreation and wildlife management. Management practices exclude harvesting but often
involve prescribed fire, invasive species removal, and the planting of species to manage ecosystem
composition.

Methods
We built a random forest (RF) classifier13 to classify management types using a combination of trends,
seasonality, and phenological pattern derived from the Breaks For Additive Seasonal and Trend (BFAST)
algorithm analysis14 of the MODIS EVI. Ancillary covariates such as road density and forest ownership
type coupled with expertly classified training samples.

MODIS Data
We used a 16-year time series (February 2000 to December 2015) of EVI collected by the MODIS
Terra satellite platform. The MOD13Q1 data product is a 16-day composite (23 images per year) imaged
at 250-meter spatial resolution15, resulting in 360 individual EVI images stacked to create a data cube
(i.e. EVI time series).

Poor quality pixels, affected by cloud and processing errors, were identified in the MODIS Quality
Assurance (QA) VI Usefulness layer. These data were used with a threshold of 0000-0100 (MOD13Q1
vegetation index quality bits 2-5) in the upper half of the quality range15. If, within the 360-band EVI data
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cube, we had more than 75% good data, we set the value of poor quality pixels to ‘missing,’ and linearly
interpolated between the two nearest good pixels. Otherwise the pixel was left as no data. We spatially
subset the EVI and QA data-cubes to the SEUS and PNW level-3 ecoregions16 (Fig. 1).

Break Detection, Spectral Entropy and Time Series Decomposition
We used the BFAST algorithm14 to decompose the EVI data cube into summary data describing trends,
seasonality, and breaks in phenological pattern. The BFAST algorithm as implemented in the R system
for statistical computing17 (R) decomposes a time series into trend, seasonal, and noise components and
detects abrupt change, or ‘breaks’ in the seasonal and trend components, which correspond to
disturbances, anthropogenic and natural14.

Due to the large size of the EVI data cube and large number of forested pixels (9,810,118 for the SEUS
and 4,638,101 for the PNW) we ran the BFAST analysis on the HiPerGator High Performance
Computing research cluster at Research Computing, University of Florida totaling six weeks of wall time
and approximately 54,000 processing hours.

The summary statistics and break locations extracted from the BFAST summary data provided
information on the frequency, timing, magnitude and direction of change occurring within the trend and
seasonality components of the EVI time series (Table 1). These statistics describe the input EVI signal, the
BFAST-derived seasonal, trend, and noise components to define a set of variables used in subsequent
analyses. We also calculated spectral entropy18, which is a measure of time series complexity related to
the number of unique sine/cosine wave series derived from a Fourier decomposition.

Additional Covariates
In addition to the BFAST summarized covariates and spectral entropy we used five other covariates for
the random forest classifier to further describe the forested landscape. We created a 250-meter road
density raster using OpenStreetMap data19 with the ArcGIS Linear Density tool specifying a 1-km search
radius.

Forest ownership data sources from federal and nongovernment agencies were integrated for
landowner type (Table 2). Six types of public ownership were identified: federal protected, federal, state
protected, state, military, and local; and four types of private ownership: nongovernment organization,
private, family, and corporate. The U.S. Protected Areas Database (PADUS) was the primary source for
public ownership and U.S. Department of Agriculture (USDA) Forest Service for private ownership
(Table 3). The USDA Forest Service defines private ownership across the coterminous United States as
family, including individuals; corporate; and other private (includes conservation and natural resource
organizations, unincorporated partnerships and associations, and Native American tribal lands). The
spatial distribution of private ownership was modelled using Forest Inventory and Analysis (FIA) data20.
Additional ownership data were cross-walked to the PADUS and USDA ownership based on
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Figure 1. Forest management maps. The SEUS (a) and PNW (b) forests represent, respectively, 22.0 and

10.4% of forests in the coterminous US. The management maps were created with a random forest classifier

using seasonal time-series analysis of 16 years of MODIS 16-day composite Enhanced Vegetation Index, and

ancillary data. The SEUS map has an overall accuracy of 89% (10-fold cross-validation) and 67% (external

validation) and the PNW map has overall accuracies of 91 and 70%. Raster resolution is 250 meters, and

number of forested pixels are n = 9,810,118 for the SEUS and n = 4,638,101 for the PNW. Interstate 10 (I-10)

is the southernmost interstate in the SEUS (in black).
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management goals, skills, budgets, and interests of landowners (Table 3). Overlay analyses and manual
editing rectified polygon topology problems (e.g. intersection, separation, and interlacing) to maintain
spatial consistency. Public and private ownership were combined through raster processing operations to
produce a 250-meter spatial resolution raster data depicting forest ownership.

For the PNW only, we created a thematic raster covariate to represent National Forest Lands with:

● Nationally Designated Management and Use Limitations (https://data.fs.usda.gov/geodata/edw/
edw_resources/shp/S_USA.OtherNationalDesignatedArea.zip),

● National Forest System Roads (https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA.Road-
Core_FS.zip),

● Roadless Areas (https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA.RoadlessArea_2001.
zip,

● National Wild and Scenic Rivers (https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA.
WildScenicRiver.zip) and,

● Wilderness boundaries (http://www.wilderness.net/GIS/Wilderness_Areas.zip) for U.S. National Forest
Service, U.S. Fish and Wildlife Service, U.S. Bureau of Land Management, and U.S. National Park
Service.

We created proportion conifer and proportion riparian spatial data from the Landfire Existing
Vegetation Type (EVT) data21 by querying “Conifer” and “Riparian” vegetation types to upscale the
proportion of the 30-meter spatial resolution of Landfire data to that of the 250-meter resolution of the
EVI data cube. This conceptually simple spatial cross-tabulation analysis proved computationally difficult
to implement at regional extents due to the large raster sizes of 59,384,315 (9,815,810) pixels for the SEUS
and 19,419,379 (4,643,335) pixels for PNW, at 30- (250-) meter spatial resolution. We overcame the
memory limitations of running a spatial cross tabulation analysis in GIS software using the ArcGIS arcpy
Python library to convert the raster data to tables to import to in PostgreSQL open-source Object-
Relational database management system and perform the cross tabulation analysis using a sequence of
SQL queries.

Training Sample Development
We created our training dataset using expert opinion and a modified Delphi method22. The USFS Forest
Inventory Analysis (FIA) dataset would have been an excellent alternative if it were not already an input
to the ED2 ecosystem model. Using them to validate the forest management maps would have introduced
collinearity among input variables and biased subsequent ED2 model estimates. We also chose against
using the FIA data because this would have required a classification of the dataset to fit our four-category
categorization of forest management, a process that was beyond the scope of this study. To develop our
training dataset, we placed 1000 spatially random points in forested areas in both the SEUS and PNW.
Five experts (i.e. remote sensing specialists, forest ecologists, and ecosystem modellers) for the SEUS and
two people for the PNW, examined each point with Google Earth, using historical imagery back-
catalogue when needed, and designated one of four forest management types using expert knowledge and
a rubric for each region. Landfire EVT (Physiognomy and Group Name), ownership (from PADUS and
USDA ownership), Landfire Disturbance Type, and Monitoring Trends in Burn Severity were added to
each test point to aid the classification of each management type. Regardless of region, points with
complete or majority consensus (80%) were assigned the corresponding management type. Sites without
majority agreement were discussed collaboratively, whereby the opinion of an expert could be changed by
logical arguments from other participants. New consensus points were then assigned a management type.
The management types of unresolved points were designated by regional forest experts. Points for which
consensus was not reached were dropped from the training set (i.e. n = 22 for the SEUS, and n = 5 for
the PNW).

Management Type Classification
The RF algorithm grows many classification “trees,” which are decision trees based on thresholds
(explained below in fifth paragraph of this section) in the covariate values, each of which produces a
classification, as well as “votes” for that class13. The algorithm then chooses the classification having the
most votes compared to all “trees” in the forest. To classify a new object (a pixel) from an input set of
covariates and training data, the input data are passed down each tree in the forest.

A bootstrap sampling is performed on a training set chosen n times with replacement from all
available training data, N. Given the full set of input covariates, a much smaller subset of covariates is
randomly selected, at each node in the tree and the best split based on the subset is used as the resulting
node split to retain the most information content from the full set of covariates. The RF parameter mtry,
is the size of the subset and is held constant during the forest growing whereby each tree in the forest is
grown to the largest extent possible without pruning. The forest error rate depends on the correlation
between any two trees in the forest, increased correlation increases overall error, and the strength of each
individual tree in the forest. A low forest error rate depends on the low correlation among trees, and the
increased strength of individual trees, denoting a tree is a strong classifier.
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The Mean Decrease in Accuracy is estimated during the out-of-bag (OOB) error calculation phase of
the RF algorithm. For each tree in the RF the held-out sample observations (those that are OOB) have
predictions compared with and without randomly permuting the values for each covariate. The number
of votes for the correct class using permuted data is subtracted from the number of correct votes from
unpermutated data.

The spatial covariates were sampled and used to classify management into four forestry management
classes. Despite a low number of training points for ecological management in the SEUS and ecological
and production management in the PNW, we are confident in the performance of the RF algorithm,
which is robust against unbalanced sets of training data23 and we weighted these underrepresented classes
in the initial tuning of the RF model. We removed non-forest pixels, identified from a composite of years
2001-2006-2011 from National Land Cover Dataset (NLCD)24,25, from the estimation process and only
those MODIS pixels that were 50% or more forest and 50% or more of one of the disturbance/intensity
classes were used as training data.

We fit a full random forest model with 500 individual classification trees and seven (7) covariates tried
at each split as determined to be optimal by the tuneRF() algorithm in the randomForest R package26 and

BFAST VARIABLE DESCRIPTION SEUS PNW

MIN MAX MIN MAX

bd_b location of break with the biggest decrease between current and previous trends 46 314 46 314

bd_b_diff largest decrease in difference between break in trend and previous trend − 6148.36 4446.837 − 5245.37 3453.825

bd_b_inqtrng largest decrease in variability between 25th and 75th quartiles between location of declining break and
previous trend

2 132 2 133

bd_b_mean_diff largest decrease in the difference of mean EVI value between break in trend and previous trend -4495.99 2837.041 -4311.45 2642.348

bd_sb location of break with the biggest decrease in the seasonal component 46 314 46 314

bd_sb_entropy_diff largest decrease of the difference in entropy detected in the break in the seasonal component − 0.521 0.515 − 0.549 0.478

bd_sb_inqtrng largest decrease in variability between 25th and 75th quartiles between location of declining break and
previous trend in the seasonal component

2 41 3 41

bd_sb_range_diff largest decrease in the difference of the EVI value range between declining break and previous trend in the
seasonal component

− 4630.4 6079.135 − 5675.56 4652.122

bi_b location of the break with the biggest increase between current and previous trends 46 314 46 314

bi_b_diff largest increase in difference between break in trend and previous trend − 4847 5115.445 − 5120.05 4116.391

bi_b_inqtrng largest increase in variability between 25th and 75th quartiles between location of recovery break and previous
declining trend

2 132 2 133

bi_b_mean_diff largest increase in the difference of mean EVI value between break in trend and previous trend − 4020.48 3896.045 − 3879.1 3348.371

bi_sb location of break with the biggest increase in the seasonal component 46 314 46 314

bi_sb_entropy_diff largest increase of the difference in entropy detected in the break of the seasonal component − 0.518 0.515 − 0.549 0.528

bi_sb_inqtrng largest increase in variability between 25th and 75th quartiles between location of recovery break and previous
declining trend in the seasonal component

2 41 3 41

bi_sb_range_diff largest increase in the difference of the EVI value range between declining break and previous trend in the
seasonal component

− 4584.58 5979.124 − 5537.2 6075.467

detected_breaks number of detected breaks in trend component 0 3 0 3

detected_breaks_seasonal number of detected breaks in seasonal component 0 3 0 3

entropy entropy in time series 0.246 0.942 0.302 0.96

entropy_seasonal entropy in seasonal component 0.022 0.664 0.019 0.732

lb_b location of the longest break 46 314 46 314

lb_b_diff largest increase in difference between break in trend and previous trend − 5767.18 4446.837 − 5120.05 3363.041

lb_b_inqtrng variability between 25th and 75th quartiles between location of longest break and previous trend 2 132 2 133

lb_b_mean_diff location of mean difference of longest break from previous trend − 4020.48 3292.601 − 3879.1 3348.371

lsb_b location of the longest break in the seasonal component 46 314 46 314

lsb_break_num number of the longest break in the seasonal component 1 3 1 3

lsb_sb_entropy_diff difference in entropy of the longest break in the seasonal component − 0.521 0.515 − 0.549 0.528

lsb_sb_inqtrng variability between 25th and 75th quartiles between location of longest break and previous trend in the
seasonal component

2 41 3 41

lsb_sb_range_diff difference of the value range of the longest break in the seasonal component − 4312.92 5614.436 − 5537.2 6075.467

Table 1. BFAST summary variables. The summary statistics and break locations extracted from the BFAST
summary data provide information on the frequency, timing, magnitude and direction of change in the
Enhanced Vegetation Index (EVI) occurring within the trend and seasonality components of the EVI time
series. These statistics describe the input EVI signal, the BFAST-derived seasonal, trend, and noise components
to define a set of variables used in random forest classification.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180165 | DOI: 10.1038/sdata.2018.165 5



post-fitting diagnostics guided the creation of a fitted random forest model used for predictions. We ran
an iterative classification to remove covariates that contributed a negative increase in node purity to
remove computation burden during the prediction stage. We then selected the 15 most important
covariates based on decreased mean accuracy to create spatial predictions using the fitted random
forest model.

Code Availability
The BFAST and RF codes, used to produce the forest management datasets, are publicly available
through the figshare repository (Data Citation 1). The code consists of sets of Python (version 2.7)
and sets of R (version 3.1 and higher) programming language scripts that must be run sequentially in
the following order: 1) 01 MODIS Data Download Preparation.zip (R); 2) 02 Calculate proportion
riparian and conifer from Landfire.zip (python); 3) 03 Running BFAST on High Performance
Cluster using Moab.zip (R); 4) 04 Random forest classification.zip (python and R). Each script is also
internally documented in order to both explaining its purpose (including a detailed description of the
GIS-specific spatial operations that it performs) and, when required, guiding the user through its
customization.

Data source Owner type

USGS Protected Areas Database of the United States
(PADUS)

Federal, State, Local Government, and private http://gapanalysis.usgs.gov/padus/

NCED Federal, Tribal, State, Regional agency, Local Government, Non-Governmental Organization (NGO), Private
http://conservationeasement.us/

Military installations, Ranges, and Training Areas,
Acquisition Technology and Logistics

Military

https://catalog.data.gov/dataset/military-installations-ranges-and-training-areas

US Military Bases, Bureau of Transportation
Statistics

Military https://koordinates.com/layer/749-us-military-bases/

Bureau of Land Management - Surface Management
Agency

Bureau of Land Management https://catalog.data.gov/dataset/blm-national-surface-management-agency-
area-polygons

Federal Lands of the United States, USGS DOD, FS(national Forest), FWS (national wildlife refuge system), NPS(national park system), Other, TVA
(Tennessee Valley Authority)https://nationalmap.gov/small_scale/mld/fedlanp.html

Public and private forest ownership in the
conterminous United States: distribution of six
ownership types, USDA

Federal, State, Local, Family, Corporate, Other private (This dataset was only used for private area owner
type classification) https://www.fs.usda.gov/rds/archive/Product/RDS-2017-0007

Table 2. Input data sources for ownership. Forest ownership data sources from federal and nongovernment
agencies were integrated for landowner type. Six types of public ownership were identified: federal protected,
federal, state protected, state, military, and local, and four types of private ownership: nongovernment
organization, private, family, and corporate.

Owner Type NCED Bureau of Land
Management

Federal Lands of the United
States, USGS

USDA public and private
ownership US

Federal protected FWS, NPS

Federal Federal, Regional agency Bureau of Land Management FS, Other, TVA

State protected

State State, Regional agency

Military DOD

Local Local Government

Nongovernment
organization

NGO, Tribal, Regional agency Other private

Family Family

Corporate Corporate

Private Private

Table 3. Cross walk of owner types standardized to the PADUS and USDA ownership based on
management goals, skills, budgets, and interests of landowners. Overlay analyses and manual editing
rectified polygon topology problems (e.g. intersection, separation, and interlacing) to maintain spatial
consistency. Public and private ownership were combined through raster processing operations to produce a
250-meter spatial resolution raster data depicting forest ownership.
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Data Records
The forest management rasters and management class probability rasters are available for each region as
georeferenced GeoTIFF rasters with 250-meter resolution from PANGAEA (Data Citation 2). They can
be download as 7-Zip archives (7-Zip.org). Table 4 details the specifics of each available dataset. The
uncertainty layers have a horizontal resolution of 10 kilometres to match the use of the management data
sets with a convenient grid cell size of the ED2 ecosystem model27. All data are viewable and analysable in
commercial and open-source GIS and remote sensing software (e.g. ArcGIS 10 × , ENVI 5 × , ERDAS
Imagine, QGIS 2 × , GRASS GIS 7 × ) and the raster package in R. All data are in the Albers Conic Equal
Area projection (EPSG 5070), NAD 1983 datum and horizontal units in meters.

The forest management rasters (Fig. 1) contain the four categories of ecological, passive, preservation
and production management types represented as numerical integers (Value field) and lexical description
(Management field). The values in the probability rasters for each management class range from 0 (least
likely to be the respective management class) to 1 (most likely). The uncertainty rasters depict the
Bayesian simulated proportion28 of forest management type at 250 meter resolution within a 10
kilometre cell.

Technical Validation
Validation
We specified a ten-fold cross validation internal to the random forest classifier and assessed the individual
contribution from each covariate to the overall accuracy of the management maps. The ten-fold cross
validation randomly splits data into ten partitions, with model fitting using nine partitions, and model
testing using one partition. The procedure is repeated ten times to generate the sample error as an average
of the ten validation runs. This bootstrap method provides unbiased estimation of classification errors.
We specified an external validation withholding approximately 20% of data from the training set
described above. For each region 178 (SEUS) and 194 (PNW) of the 1000 points were omitted from the
training set and used for external error analysis. We constructed an error matrix from the OOB data and
external validation data, and calculated commission, omission, and overall errors.

The SEUS map (Fig. 1a) has an overall accuracy of 89% for the 10-fold cross-validation or 67% for the
external validation in Table 5 and the PNW map (Fig. 1b) has overall accuracies of 91% and 70%,
respectively (Table 6).

Dataset Name File Size (Mb) Dimensions (columns, rows) Attributes

PNW Forest Mgmt Map 1.62 4118, 4562 Value, Management

PNW Probability of Ecological 19 4118, 4562

PNW Probability of Passive 22.1 4118, 4562

PNW Probability of Preservation 17.8 4118, 4562

PNW Probability of Production 17.6 4118, 4562

PNW Uncertainty Ecological 0.046 103, 115

PNW Uncertainty Passive 0.046 103, 115

PNW Uncertainty Preservation 0.046 103, 115

PNW Uncertainty Production 0.046 103, 115

SEUS Forest Mgmt Map 3.72 7487, 6784 Value, Management

SEUS Probability of Ecological 29.02 7487, 6784

SEUS Probability of Passive 48.4 7487, 6784

SEUS Probability of Preservation 33.3 7487, 6784

SEUS Probability of Production 49 7487, 6784

SEUS Uncertainty Ecological 0.125 188, 170

SEUS Uncertainty Passive 0.125 188, 170

SEUS Uncertainty Preservation 0.125 188, 170

SEUS Uncertainty Production 0.125 188, 170

PNW Validation Points 0.06 MGMT_REF, MGMT_PRED

SEUS Validation Points 0.04 MGMT_REF, MGMT_PRED

PNW Training Points

SEUS Training Points

pnw_bfast_stack.tif 266 4118, 4562

seus_bfast_stack.tif 601 7487, 6784

Table 4. Datasets available for download.
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Uncertainty Analysis
To assess uncertainty when upscaling the forest management maps from 250-m spatial resolution to the
10-km grain of ED2 (ref. 27) we performed a Bayesian analysis proposed by Quaife et al.28 to model
uncertainty in categorical maps aggregated to coarser spatial resolutions. The analysis calculates the
posterior distribution of true management classes coupling the observed proportion of management
classes in each 10-km site with a confusion matrix produced from the validation methods above, using
Monte Carlo simulation to sample the posterior distribution. We considered only forested pixels within
each 10-km site and used the standard deviation from the Bayesian analysis to represent uncertainty.

The uncertainty analysis quantified the amount of error when scaling the management map from 250-
meter resolution to the 10-km aggregate resolution for use by ED2 (ref. 27) by modelling the proportion
of each management type as they fit inside an ED2 10-km site. The maps (Fig. 2) give us the spatial
distribution of uncertainty. Scatterplots of the observed proportions and the mean of the samples from
posterior distribution (Fig. 3), while ignoring the spatial component, indicate fit between the Bayesian
modelled and observed proportions. Recall the 978 training points of the SEUS were sub-divided into 800
for training (used for 10-fold cross-validation in the random forest model) and 178 for external
validation, hence the two confusion matrices.

In general, there is low uncertainty in the classification of forest management. (Fig. 2), however, the
results from the Bayesian analysis of proportions are slightly biased at lower and higher values of the
proportion of a forest management type within 10-km cells (Fig. 3). The plots from the random forest
model show tighter fit to the 1:1 line (i.e. where the RF algorithm closely models the training data), while
those from the external validation show greater spread and under-prediction bias at larger values of
observed proportions. The under-prediction is noticeable also in the plots from the RF model (Fig. 3). We
see a higher amount of uncertainty associated with peripheral pixels for each forest management type.
That is, we are more certain about the forest type of the core area of a forest patch compared to the edge
of the forest patch regardless of forest management type. Note the relative ‘high’ uncertainty for passive
and production classes north of the highway I-10 corridor and Gulf of Mexico coast is possibly due to
edge effects and/or lower total pixel counts.

In the PNW, we are most certain about our ability to classify preservation and production
management. We have low confidence in the classification of ecological management, which could be
because of small sample size despite the weighting during the tuning of the initial RF model. The evidence
of low adjusted r-squared (0.63) from comparing the Bayesian simulation results with the observed
proportion (Fig. 3) indicates that our predictions of the higher proportions of ecological forestry are not
as certain as other management types. In the SEUS preservation and ecological forestry show lowest
uncertainty based on adjusted r-squared of the fit between the observed proportions and those from the
Bayesian analysis. Classification of passive management is the most problematic at high observed
proportions, possibly because passively managed patches are probably smaller.

Usage Notes
We successfully mapped forest management in both the Southeastern U.S. coastal plain and Piedmont
(SEUS) and in the U.S. Pacific Northwest forest area (PNW) using satellite derived data and expert
classified training samples. Once we determined the suite of covariates and algorithm parameters from
our classification of a pilot single Landsat footprint, we created forest management maps of the entire

10-fold cross-validation (n= 800) external validation (n= 178)

Ecological Passive Preservation Production Ecological Passive Preservation Production

Total % 26 217 76 481 Producers
Accuracy

Total % 2 43 22 111 Producers
Accuracy

Ecological 28 3.5 25* 1 1 1 0.89 3 1.69 1* 0 2 0 0.33

Passive 230 28.75 0 188* 4 38 0.82 49 27.53 0 24* 3 22 0.49

Preservation 76 9.5 1 3 66* 6 0.87 20 11.24 0 4 13* 3 0.65

Production 466 58.25 0 25 5 436* 0.94 106 59.55 1 15 4 86* 0.81

800 Users
Accuracy

0.96 0.87 0.87 0.91 0.89 178 Users
Accuracy

0.50 0.56 0.59 0.77 0.62

Table 5. Confusion matrices, and producers, users and overall accuracy of the SEUS forest
management classification. Confusion matrix for the 10-fold internal validation (a) and the external
validation (b). Internal validation resulted from the out-of-bag (OOB) error during the training of the random
forest classifier. The external validation was conducted with 178 training samples omitted from training of
random forest model. The percentage column provides the distribution of validation points among the
management classes. The diagonal represents the correctly classified classes with an *. The column with the
producers accuracy (i.e. errors of omission) depicts the number of correctly classified management class (on
diagonal) divided by the column total. The row with user’s accuracy (i.e. errors of commission) depicts number
of correctly classified wound classes (on diagonal) divided by the row total.
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Southeastern U.S. coastal plain and Piedmont (SEUS) and in the U.S. Pacific Northwest forest area
(PNW) (Fig. 1) for the composite time period 2000-2015. We mapped four management classes of
ecological, passive, preservation and production management9 that collectively represent 59.29% of the
SEUS of the total land cover (1,034,633. km2) and 62.80% of the PNW land cover (461,593.8 km2), and
representing, respectively, 22.0% and 10.4% of the coterminous U.S. forests.

General Usage
These maps are a first attempt, as far as we know, to map forest management at regional extents in the
United States. Land cover is a fundamental variable that impacts and links many parts of link between the
human and physical environments. Land use is the socio-economic intent or purpose behind the
management of the land surface (e.g. residential, commercial, parks and green spaces). Land cover is the
biophysical covering of the land surface (e.g. forest, grassland). Changes in observed land cover patterns
are the net result of individual, communal or societal decision-making processes regarding the relative
returns to land use29 set within a local, regional or national context. Hence, land cover, along with pattern
analysis and social science measures, can be used to infer the changing patterns in land use (i.e., to link
land cover to land use).

The forest management maps have a spatial resolution of 250 m and results from an analysis of a
composite of phenological patterns and changes in the patterns from February 2000 through December
2015. The maps represent a temporal composite of the 16 year time period to be used as dominant forest
management conditions during this time range. These maps were created originally to represent the
proportion of management classes and to parameterize forest functional types for the ecosystem
dynamics simulation model ED2 (ref. 27) to simulate carbon cycling at a 10-km spatial resolution. The

10-fold cross-validation (n= 800) external validation (n= 194)

Ecological Passive Preservation Production Ecological Passive Preservation Production

Total % 62 411 201 126 Producers
Accuracy

Total % 6 123 47 18 Producers
Accuracy

Ecological 77 9.63 57* 17 0 3 0.74 18 9.28 1* 15 2 0.06

Passive 389 48.63 4 364* 6 15 0.94 98 50.52 4 83* 3 8 0.85

Preservation 203 25.38 0 8 195* 0 0.96 48 24.74 5 43* 0.90

Production 131 16.38 1 22 0 108* 0.82 30 15.46 1 20 1 8* 0.27

800 Users
Accuracy

0.92 0.89 0.97 0.86 0.91 194 Users
Accuracy

0.17 0.67 0.91 0.44 0.70

Table 6. Confusion matrices, and producers, users and overall accuracy of the PNW forest
management classification. The 10-fold internal validation (a) and external validation (n = 194) (b) follow
the same explanation given in Table 5.

a b

Figure 2. Uncertainty maps of each forest management class. Uncertainty maps, expressed as a percentage,

for the SEUS (a) and the PNW (b) were calculated using the mean and standard deviation posterior

distributions of modeled proportions from Bayesian analysis of 250 m MODIS cells within each 10 km

ED2 cell.
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development of a forest management functional type framework allowed the addition of forest
management practices to Earth systems models. The many varied management practices can be grouped
into regionally specific sets of practices. These management functional types include a variety of
approaches including the short rotation times, clearcuts, and even-age stands used by production forestry
systems and the uneven aged stands with selective harvesting used by ecological forestry systems. In
practice, the forest management data can be used in any ecosystem simulation model that requires
explicit spatial representation of forest management classes and forest management functional types.

Following Becknell et al.9, we established four simplified categories of forest management. However,
because production forestry and ecological forestry possibly represent endpoints along a gradient of
production-based silviculture practices, they were difficult to clearly distinguish thematically in all cases.
This gradient includes even-age stand management; clearcutting, coppicing (i.e. overstory removal), seed-
tree, shelterwood and, uneven-age stand management; patch or group selection, thinning, and single tree
selection30. Many of these silvicultural approaches can be readily observed through remote imagery. For
instance, our classification of production forestry is based on extraction of wood products for economic
gain and that can be easily applied to clearcut sites as well as some other even-age management
applications. However, our classification of ecological forestry as one that mimics relatively fine scale
disturbances to recreate a shifting mosaic of stand age may be harder to distinguish via remote sensing
from shelterwood or patch selection timber harvest approaches. Most likely the gradient between
production and ecological forestry practices would require a fuzzy logic rule set to reduce classification
error31. Additionally, ecological forestry occur on lands that require follow-up management post-harvest.
Franklin et al.12 defines ecological forestry as a “is a three-legged stool.” Where the legs, or principles for
management, include (1) retention of biological legacies at harvest; (2) intermediate treatments that
enhance stand heterogeneity; and (3) allowances for appropriate recovery periods between regeneration
harvests.

We acknowledge that mapping the SEUS and PNW regions of the United States may at first appear to
limit user applications, however, we posit the maps and underlying regional-scale datasets produced to
date represent a salient and overdue contribution to the ecosystem modelling community in the US. The
SEUS and the PNW forest regions have the largest total area of forest, compared to the other US forest
regions32 with the largest area of forested timberland in the SEUS and the highest are of forested reserves
in the PNW. This project concerns the major ownership types and management styles that occur in the
US, therefore we began this project by looking the regions with large areas of forest and large proportions
of active forested timberland, being harvested and replanted, and under various ownership types
including private, private corporate, and reserved forest. We appreciate the potential for mapping
forested lands over the whole of North America and endeavour to do so in a subsequent phase of this
project.

a b
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Figure 3. Scatter plots of land cover proportion. Forest management maps for the SEUS (a) and the PNW

(b) indicate fit between the Bayesian modeled and observed proportions of the 250 m forest management cells

within each 10 km ED2 cells.
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All maps contain errors and in thematic maps the nature and extent of misclassifications are addressed
in accuracy assessments through the use of a confusion matrix. The confusion matrices (Tables 5 and 6)
were produced at a regional scale, appropriate for these maps. It is becoming more common to construct
confusion matrices against higher resolution, manually interpreted satellite data28. However, Fang et al.33

noted confusion matrices developed at fine scales might have much different error rates than regional
matrices. The confusion matrix also has its own suite of inherent uncertainties as the reference data itself
can also contain unmeasured sources of error34. Additionally, although a confusion matrix is excellent at
capturing thematic errors of omission and commission, it cannot capture all the non-thematic error that
affects classification35. Ultimately, obtaining a reliable confusion matrix and associated indices can be
problematic36. However, it currently remains the core accuracy assessment tool34 and the map user is
limited to the data provided unless they conduct their accuracy assessment37.

The SEUS silviculture harvest occurs on a 18–25-year rotation and we have satellite imagery that
nearly reaches that time frame, hence, the SEUS mapping effort captures most silvicultural activities. The
PNW as harvest rotations are much longer (e.g. 40–60 years38) leading to forest harvest activities that
extend beyond the period of our remote sensing data. Interpreting silvicultural activities that occurred
before our period of record offered a challenge to our mapping effort (i.e. we could not discern when a
patch of secondary growth forest was harvested initially). For instance, we only considered pixels mapped
as forest in the 2011 NLCD in our analysis; however, PNW clearcuts mapped as non-forest in the 2001
and 2006 NLCD were omitted from our analysis resulting in some misclassification. For the PNW we
suggest an alternative approach to this problem below.

Misclassifications: NLCD and PNW Clearcuts
The treatment of clearcut areas in the PNW as non-forest by NLCD is caused misclassification errors.
One solution to this problem may be that the NLCD has a 2001–2011 from-to change index, most useful
because it can represents succession from clearcut to forest or land use change from forest to clearcut. In
other places forest to grass, grass to shrub, or shrub to forest is captured when there was a clearcut. NLCD
should be used in conjunction with other vegetation transitions maps to capture the succession pathways
of forest cover. For example, the Landfire Vegetation Transition Magnitude data product (https://www.
landfire.gov/vtm.php) captures clearcuts and conversions from forest to pasture, agriculture, and urban
reasonably well like NLCD. To map omitted clearcuts, we recommend using either the Landfire
Vegetation Transition Magnitude and/or the NLCD 2001-2011 from-to product to extend the mapped
forest area with the following rule set.

It is a forest if:

● It is forest cover in Landfire 2001, 2006 or 2011,
● It was forest cover in NLCD then transitioned to grass, or
● Transitioned from grass to shrub or shrub to forest.

Recommendations for improved mapping methods
We recommend better spatial and temporal resolution of ancillary data (e.g. roads, ownerships, USFS
management) and incorporation of local scale management plans into creation of management maps. We
need better spatial and temporal representation of forest ownership. Private ownership is especially
unclear when working across state boundaries as no two states have spatial and attribute consistency
between tax parcel datasets. We need temporal snapshots of management maps since we developed only a
composite of management aggregated from 15 years of MODIS EVI data. This is challenging as training
data are needed for each time period of interest, and we would need to fully or partially automate the
training methodology (e.g. image segmentation and recognition, and machine labeling of training data).

The Google Earth time slider was used to estimate the dominant forest management conditions to
train the RF classifier. While it provides a retrospective view of historic forest cover conditions and spatial
patterns, the time slider has limitations. The intervals of the time slider were not consistent over the two
regions and are dependent on the available imagery in the Google archives. For example, imagery exists
approximately every year between 2004 and 2017 for a forest tract northeast of Gainesville, Florida, while
imagery of forest southeast of Hattiesburg, Mississippi is available every two to four years for the same
period. Additionally, the spatial resolution and color depth varies across both regions. It is very difficult to
compile a temporally consistent and high spatial resolution set of images to derive the training samples
needed for the random forest classifier; hence Google Earth imagery is an attractive alternative.

The maps represent a temporal composite of forest management. To truly capture forest dynamics as
they affect the carbon cycle, ideally, we would create an annual time series of management maps. Given
the labor-intensive process of manually coding 1000 training samples for each region, while desirable, a
time series of annual forest management conditions was prohibitive to create and beyond the scope of
this effort. Automated image recognition coupled with machine learning could speed up the development
of training samples and allow for repeated characterization of management practices over time.
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