
sensors

Article

Enhancing Mobile Edge Computing with Efficient Load
Balancing Using Load Estimation in Ultra-Dense Network

Wen Chen , Yongqi Zhu * , Jiawei Liu and Yuhu Chen

����������
�������

Citation: Chen, W.; Zhu, Y.; Liu, J.;

Chen, Y. Enhancing Mobile Edge

Computing with Efficient Load

Balancing Using Load Estimation in

Ultra-Dense Network. Sensors 2021,

21, 3135. https://doi.org/10.3390/

s21093135

Academic Editor: Behnam Dezfouli

Received: 13 March 2021

Accepted: 29 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information Science and Technology, Donghua University, Shanghai 201620, China;
chenwen@dhu.edu.cn (W.C.); 2201777@mail.dhu.edu.cn (J.L.); 2201780@mail.dhu.edu.cn (Y.C.)
* Correspondence: zhuyongqi@mail.dhu.edu.cn

Abstract: With the exponential growth of mobile devices and the emergence of computationally
intensive and delay-sensitive tasks, the enormous demand for data and computing resources has
become a big challenge. Fortunately, the combination of mobile edge computing (MEC) and ultra-
dense network (UDN) is considered to be an effective way to solve these challenges. Due to the highly
dynamic mobility of mobile devices and the randomness of the work requests, the load imbalance
between MEC servers will affect the performance of the entire network. In this paper, the software
defined network (SDN) is applied to the task allocation in the MEC scenario of UDN, which is based
on routing of corresponding information between MEC servers. Secondly, a new load balancing
algorithm based on load estimation by user load prediction is proposed to solve the NP-hard problem
in task offloading. Furthermore, a genetic algorithm (GA) is used to prove the effectiveness and
rapidity of the algorithm. At present, if the load balancing algorithm only depends on the actual
load of each MEC, it usually leads to ping-pong effect. It is worth mentioning that our method can
effectively reduce the impact of ping-pong effect. In addition, this paper also discusses the subtask
offloading problem of divisible tasks and the corresponding solutions. At last, simulation results
demonstrate the efficiency of our method in balancing load among MEC servers and its ability to
optimize systematic stability.

Keywords: software defined network (SDN); ultra dense network (UDN); mobile edge computing
(MEC); load balancing; subtask; genetic algorithm (GA); ping-pong effect

1. Introduction

With the development of 5G technology and the Internet of Things (IoT), the number
of wireless devices is exploding exponentially and the application scenarios of IoT are
becoming more and more diversified. For example, there are a large number of computa-
tionally intensive and delay-sensitive applications, such as virtual reality, online games,
and so on, which need strong computing power to meet the requirements of ultra-low
latency. In order to meet this demand, in recent years, the traditional cloud computing
network architecture is gradually turning to the MEC network, and the computing services
and functions originally located in the core cloud data center are gradually moving towards
the edge of the network. Through the MEC network, users can be provided with ubiquitous
computing, storage, communication and other services through base stations and wireless
access points closer to them, so as to effectively reduce the computing delay and energy
consumption, and greatly improve the resource utilization of the whole network [1–3].

UDN solves more wireless access requirements by deploying dense base stations
in the community so as to provide user equipment (UE) with huge access capacity and
improve the capacity of the whole network. Hence, the combination of UDN and MEC
cannot only provides services for more UE but also meets the computing power and latency
requirements of UE for some specific tasks at the same time [4–6].

Even though the combination of UDN and MEC can bring great advantages and
benefits, there are inevitably some problems to be solved, such as load balancing between

Sensors 2021, 21, 3135. https://doi.org/10.3390/s21093135 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9850-5864
https://orcid.org/0000-0001-6554-9254
https://orcid.org/0000-0003-1293-6239
https://orcid.org/0000-0003-4129-6285
https://doi.org/10.3390/s21093135
https://doi.org/10.3390/s21093135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093135
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093135?type=check_update&version=2

Sensors 2021, 21, 3135 2 of 25

MEC servers, which is mainly caused by the highly dynamic distribution of UE temporally
and spatially and the randomness of UE application tasks [7]. Excessive offloading tasks
to the same MEC server will lead to server overload and congestion, which will not only
impact system performance and server life, but also lead to a sharp decline in term of
quality of service (QoS) and quality of experience (QoE) [8–10]. On the contrary, it is a huge
waste of computing resources when servers running under low load [11]. Consequently, it
is urgent to solve the problem so as to achieve load balancing between the MEC servers
in UDN.

SDN is a new network architecture commonly associated with the OpenFlow protocol.
With Openflow, the control of network traffic can be realized flexibly by separating the
control plane of network devices from the data plane. Based on the advantage of SDN,
the SDN paradigm can be applied to the task assignment in MEC. The MEC servers route
the corresponding information to the controller, and then the controller sends back the
command according to the scheme.

The UE’s task offloading scheme greatly affects the load balance between MEC servers.
It determines which MEC server to assign processing tasks to. To achieve load balancing
between servers, we need to design an appropriate global offloading scheme for all tasks
applied by UE during each decision period. Moreover, it is an NP-hard problem that
becomes more and more complex as the number of tasks increases. At present, there are
three main designs of MEC offloading strategies: (1) Convex optimization theory is used to
design the optimal or suboptimal computing offloading strategy. However, this process
may take a long time, which is contrary to the original intention of MEC to shorten the
computing delay. (2) A heuristic algorithm is used to design offloading strategies with
low complexity. However, this method often lacks theoretical support and cannot achieve
better computing performance. (3) Artificial intelligence technology is used to design fast
and efficient offloading strategy. However, it relies heavily on historical data. In addition,
due to the highly dynamic MEC environment, the correlation between training data and
real-time data is low [7]. Therefore, this paper innovatively proposes a fast and effective
load balancing algorithm to solve the above problems.

According to the characteristics of UE’s tasks, they can be divided into several different
subtasks. According to the interdependence among subtasks, there are three main types of
computing tasks, i.e., sequential task, parallel task, and sequential-parallel-hybrid task [12].
By dividing the task into subtasks, the resource utilization can be improved, and the
calculation delay and energy consumption of the system can be further reduced. However,
it is difficult to take this into account in most of the work on load balancing.

The main contributions of this paper are as follows:

• By incorporating the user load prediction into the load-balancing scheme, a ping-pong
effect solution based on load estimation is proposed. Due to the highly dynamic
environment of MEC, if the load strategy considers the currently applied tasks and the
load of each MEC server only, it will cause too much unnecessary task transmission
between MEC servers. Meanwhile, it will result in unexpected load overhead, which
is called the ping-pong effect in load balancing. In fact, the impact of the ping-pong
effect can be reduced by our approach.

• A new concept is proposed: task unit load transfer overhead. On this basis, we propose a
low complexity and effective load balancing algorithm. In fact, the simulation results
also show the effectiveness of the algorithm. Compared with the genetic algorithm
(GA), our algorithm has a better time-consuming performance.

• In the case of divisible tasks, the load of each MEC on the timeline is first sensed,
and then a balancing decision based on the interdependency of subtasks is made.
In particular, for sequential-parallel-hybrid tasks, the hierarchical method of subtasks
is used to simplify and specify the relationship between them. Furthermore, the
effectiveness of the above methods is verified through experimental results.

The remainder of this paper is arranged as follows. In Section 2, some related work
is introduced generally. In Section 3, the system model consisting of system framework,

Sensors 2021, 21, 3135 3 of 25

task model, sub-task model, and load estimation is proposed in detail. In Section 4, solu-
tions and corresponding algorithms to solve the problem of load balancing are proposed.
In Section 5, simulation results are discussed. Finally, in Section 6, some conclusions of the
whole paper are summarized.

2. Related Work

It is of great significance to study MEC under UDN. A lot of research work has been
carried out in recent years.

Reference [13] studied how to choose the MEC server that users can directly connect
to offload tasks to minimize the cost-effectiveness of operators and users and compared the
total delay and resource utilization of Q-learning, DQN, and game theory. Reference [8]
proposes a heuristic greedy offloading scheme to solve the offloading problem of MEC.
However, it only considers the total delay of the entire system but ignores the delay
requirement of each task. Reference [4] formulated task-offloading as an integer nonlinear
programming problem and proposed an efficient task-splitting and channel resource
allocation scheme based on a differential evolution algorithm. It can obviously reduce
energy consumption and has good convergence. Nevertheless, the computing resources
allocated to each task are the same, and the delay requirements of the tasks were not
taken into account; thus the resources might not be fully utilized. Reference [14] proposes
an iterative algorithm based on the Successive Convex Approximation (SCA) method to
minimize the energy consumption of the equipment and meet the delay requirement of the
task. Reference [15] proposed a user-centric energy-aware mobility management scheme,
which optimizes the delay caused by radio access and computation under the constraints
of long-term energy consumption of users. All these efforts are focused on solving the
system energy consumption and delay while ignoring the impact and consequences of the
unbalanced load of the MEC servers.

Considering the dynamic arrival of tasks and limited computing resources, Refer-
ence [9] proposed an online computing offload mechanism to optimize the system perfor-
mance and achieve sub-optimal performance. Reference [16] proposes an online peer-to-
peer offloading framework for small cell base stations, which uses Lyapunov technology to
maximize long-term system performance while keeping the energy consumption of small
base stations under various long-term constraints. Reference [17] considered the three-tier
collaborative computing network of devices, edge nodes, and cloud servers and optimized
the framework by using the alternating direction method of multipliers (ADMM) and the
difference in convex functions (DC), so as to minimize the average task duration when the
equipment power is limited. None of the above work considers the delay limit of the task.
Although load balancing is performed on the MEC servers, they only focus on short-term
load balancing, which will lead to a ping-pong effect and cannot achieve long-term load
balancing. References [7,10] introduced the idea of prediction in load balancing. The spe-
cific method is such that the size and processing time of UE application tasks follow an
exponential distribution. Hence, after knowing the number of users covered by each small
base station, their approximate load can be sensed. In [18], judging from the trajectory of
Google cluster, the arrival time and service time of job requests are exponential distributed
can be regarded as a Poisson process. It is believed that the arrival process of the work
request is not a stationary process, but is essentially a pseudo-stationery process [19], and
it can use the load of the previous moment to predict the load of the next moment. How-
ever, load forecasting based on the law of large numbers may not be ideal. Reference [20]
mentioned that due to work and study, more users often gather in certain fixed areas,
while fewer users are located in other areas. As a result, it is easy to cause an unbalanced
distribution of cellular traffic. Reference [21] mentions that the traffic fluctuation of small
cells is much greater than that of large ones since small cells and cannot benefit from the
law of large numbers. Reference [22] proposed that global popularity can only represent
the average content request trend of many users. Therefore, it is more reasonable to use
user preferences than global popularity to maximize the click-through rate. From the above

Sensors 2021, 21, 3135 4 of 25

work, in order to make the load prediction more accurate and reasonable, we can consider
the load prediction for each user.

3. System Model

In this section, we propose the system framework, the task model, and the load estimation.

3.1. System Framework

As shown in Figure 1, this paper presents a system framework that is a network
scenario of MEC in 5G UDN. In a macro cell, a macro base station (MBS) is deployed in
its center. Under the coverage of an MBS, B small base stations (SBSs) are placed. A large
amount of UE is randomly distributed near the SBS to request services through a wireless
link. We denote the set of SBSs as B = {1, 2, ..., B} and the set of UEs covered by the mth SBS
∈ B as Um = {1, 2, ..., U}. Each base station is equipped with an MEC server to process the
tasks offloaded by UEs. Adjacent MEC servers are all connected by fiber links to transmit
data [4,16,17,23]. In UDN, this is feasible due to the short distance between SBSs. The fiber
link provides a stable, high-speed, and reliable connection, saving channel resources for
the communication between the UEs and the SBS.

:MEC Server

:SBS

:UE

:fiber link

MBSMBSMBS

:Wireless link

SDN Controller

Data Plane

Figure 1. System framework.

SDN plays an important role in the system model. First, it hierarchizes the network
devices in the system and defines different levels with different functions. Second, it
monitors the system environment changes through network devices to obtain real-time
environment variable parameters. Third, it runs the user task algorithm according to these
parameters and gets the task offloading instruction of each task. The instruction indicates
which MEC server the task is executed by. The specific content of SDN is as follows.

In order to apply the SDN paradigm to the above architecture, we introduced the
core ideas of SDN under different circumstances from the normal SDN scenario. The main
content of SDN consists of two parts: (1) control plane and (2) data plane. Compared with
the traditional network, it separates the controller from the data plane. On this basis, we
let MBS and its MEC server represent the SDN controller and let all the SBSs and their
MEC servers represent the data plane. However, the MEC scenario of UDN is different
from the traditional data network. Its responsibility is not only to forward packets of
network elements. Therefore, the functions proposed by traditional SDN are not sufficient
in this case. In order to make it suitable for this scenario, its concept needs to be expanded
appropriately. In the traditional SDN framework, the network elements in the data plane

Sensors 2021, 21, 3135 5 of 25

are limited to forwarding data packets, and the controller determines the forwarding rules.
In addition, we also need a data plane to obtain a global view of network information,
including user distribution, MEC server load status, task request information, etc. In more
detail, if the UE is within the coverage of this SBS, the UE distribution can be obtained
through the wireless link between the UE and the SBS. The MEC server can obtain its load
status, including current processing progress of these tasks and the computing resources
spent by the UE tasks. If the UE has a task request for processing, it will send the task
information to the SBS before the task starts running. In each decision slot, each SBS sends
this information to the MBS. Then, the controller aggregates the messages from all SBSs and
makes decisions through load balancing algorithms. Specifically, the offloading decision
determines which MEC server the user’s task will be offloaded to, so as to balance the load
among the MEC servers while meeting the task delay requirements.

3.2. Task Model
3.2.1. Task Information

If the UE applies for a service from the MEC server that has established a link connec-
tion, the UE will upload a delay-sensitive task to the SBS. The task has three parameters that
can be denoted as T = {s, c, d}, and then the task information of nth UE ∈ Um represents
Tn,m = {sn,m, cn,m, dn,m}. The details of T are as follows [24,25]:

• s indicates the size of task data. If the algorithm needs to transfer a task from one
MEC server to another MEC server through an fiber link, it will affect the task trans-
mission delay.

• c represents the total number of CPU cycles required to complete the task. The MEC
server will allocate some computing resources (cycles/s) to process these CPU cycles
if the task is selected to be executed in it. Then, the computing resource used to
perform the offloading task becomes the MEC server load.

• d represents the maximum time delay that can be tolerated to complete the task, that
is, the time from when the task is offloaded to the end of the task.

These parameters are related to the specific type and requirements of computing tasks
and can be obtained through task analysis and modeling [26–28].

3.2.2. Task Offloading

Similarly to other studies in the literature [7,9,29], this paper mainly studies the com-
putational load balancing of MEC servers in UDN but does not consider the communication
model of task upload. In other words, its purpose is to balance the load of tasks that have
reached the MEC server but have not yet begun to execute. Another reason is that although
most works, for example, [16,17], introduce a communication model, the allocated channel
bandwidth, upload power, and signal interference of each UE are considered fixed. Ac-
cording to the Shannon equation, the upload rate of the UE can be easily obtained as a
fixed value, resulting in a fixed upload delay of the task. In this case, there is no need to
introduce a communication model. If the above parameters are treated as dynamically
variable, it will make the entire system model too complicated and difficult to solve.

Since we did not consider the task upload process in the model, we need to make
appropriate changes in d of T to fit our model. We denote d as the maximum tolerance
delay of the task minus the transmission delay of the task upload. That is to say, d is
the remaining time to complete the task within the maximum delay range after the task
is uploaded.

There are two methods of task offloading. One is to offload in the initial MEC server
(IMEC), which has established a link with the UE. The other is to offload in non-initial
MEC server (NMEC), and the task is transferred from the initial MEC server to the server.

We can get a basic equation when a task is computing in one MEC server, expressed as

c = t · l, (1)

Sensors 2021, 21, 3135 6 of 25

where t denotes the processing time in MEC server and l is the computing resources (in
CPU cycles/s) allocated by the MEC server.

(1) Offloading in IMEC:
We let l I

n,m represent the task computational load of nth UE ∈ Um. When the task is
processed in it, it is calculated into the load of the IMEC server.

If the task is completed at the maximum tolerance delay dn,m, we obtain the following
equation from Equation (1) :

cn,m = dn,m · l I
n,m, (2)

then, the l I
n,m can be expressed as:

l I
n,m =

cn,m

dn,m
. (3)

(2) Offloading in NMEC:
The transfer of the task from IMEC to NMEC will cause a certain transmission delay,

and it can be expressed as

ttrans
n,m =

sn,m

rtrans , (4)

where rtrans is the transmission rate of optical fiber. Then, the processing time for complet-
ing the task at the maximum tolerance delay in NMEC can be represented as

t = dn,m − ttrans
n,m . (5)

After the completion of the task, there will be a process of returning the calculation
results. Since the calculation results are usually very small and the transmission speed of
optical fiber is fast and stable, we ignore the return delay.

Since the transmission delay takes up part of the time dn,m, it is initially used for task
processing, compared with offloading in IMEC. It will not complete the task within the
maximum delay if it still allocates the same computing resources as l I

n,m. Therefore, it is
necessary to increase the allocation of computing resources to meet the delay demand.
Furthermore, let this part of the increased computing resources be denoted as lExtra

n,m , which
is defined as task transfer load overhead (TTLO). Then, when the task is processed in the
NMEC server, the task calculation load lN

n,m of nth UE ∈ Um can be expressed as follows:

lN
n,m = l I

n,m + lExtra
n,m . (6)

We bring Equations (5) and (6) into Equation (1); then, we can get

cn,m = (dn,m − ttrans
n,m) · (l I

n,m + lExtra
n,m). (7)

Further, lExtra
n,m can be given as follows from Equation (7):

lExtra
n,m = l I

n,m ·
ttrans
n,m

dn,m − ttrans
n,m

. (8)

3.2.3. Subtask Model

In order to complete a computationally arduous task efficiently and improve the
utilization of computing resources, the task can be divided into several related subtasks
according to the characteristics of the task. Due to the different ways of dividing subtasks,
the running order, and relationship between subtasks will change, there are three types of
subtasks according to the interdependency among them, which are sequential subtasks,
parallel subtasks, and sequential-parallel-hybrid subtasks. We assume that after the entire
task is divided, we know the task information set T of each subtask, because we know the
detailed division process.

Sensors 2021, 21, 3135 7 of 25

(1) Parallel subtasks:
There are no dependencies between subtasks. Therefore, they are considered as

independent subtasks that can be executed in parallel; e.g., some video tasks can be divided
into frames and processed simultaneously. Subtasks only need to be completed within
their respective delay deadlines to ensure the delay requirements of the overall task.

(2) Sequential subtasks:
Subtasks need to be executed one by one; e.g., face recognition includes three sequen-

tial subtasks: face detection, image processing feature extraction, and face recognition.
After each subtask is computed completely, it will generate a certain amount of calculation
results. The latter subtask must receive the calculation results of the previous subtask
before it can be executed. Hence, the start time of execution of the latter subtask is the end
time of execution of the previous subtask. The whole process does not finish until the last
subtask obtains the final calculation result. For example, in Figure 2a, tn represents the task
processing time of subtask n, i.e., the maximum tolerance delay d, and subtask2 can only
be executed after t1 seconds, etc., until subtask4 gets the final result after execution. If all
subtasks are not executed in the same MEC server, the calculation results between the two
subtasks will be transmitted between MEC servers via optical fiber. Due to the small scale
of data, we still ignore the delay of data transmission.

(3) Sequential-parallel-hybrid subtasks:
Because of the coexistence of sequential and parallel relationships among subtasks,

the execution order and execution time of each subtask become complicated. In order to
simplify and refine them, we propose a hierarchical method of sub-tasks. Specifically, we
divide all subtasks into several layers. The subtasks in the same layer can be processed in
parallel, and the subtasks between different layers need to be executed in order. The layer
of a subtask depends on the maximum number of layers of its previous subtasks. For
example, as shown in Figure 2b, subtask1, subtask2, and subtask3 can be computed in parallel
because of the same layer they are at. subtask4 must receive the results of both subtask1
and subtask2 before it can be computed. It is worth noting that t1 and t2 may not be equal;
therefore, the execution time of subtask4 depends on the larger one. The previous subtasks
of subtask6 are subtask1 at layer1 and subtask4 and subtask5 at layer2. We place it on layer3
because the largest layer of its previous subtasks is layer2 even though subtask1 is at layer1.

Subtask 1Subtask 1

Subtask 2Subtask 2

Subtask 3Subtask 3

Subtask 4Subtask 4

Final resultFinal result

t1

t2

t3

t4

(a)

Subtask 1Subtask 1

Final resultFinal result

Subtask 2Subtask 2 Subtask 3Subtask 3

Subtask 4Subtask 4 Subtask 5Subtask 5

Subtask 6Subtask 6 Subtask 7Subtask 7

Subtask 8Subtask 8 Subtask 9Subtask 9

t1

Layer 1:

Layer 2:

Layer 3:

Layer 4:

t2 t3

t4 t5

t6 t7

t8 t9

t2

t1

t4 t5

t7

(b)

Figure 2. Subtask model. (a) Sequential subtasks model; (b) sequential-parallel-hybrid subtasks model.

3.3. Load Estimation

In this section, we introduce the idea of load estimation into our model. Load predic-
tion allows each SBS to estimate its approximate load status. As a result, the SDN controller
can learn the global load status and make corresponding load balancing decisions. The rea-

Sensors 2021, 21, 3135 8 of 25

sons for introducing load prediction are explained by the following situations that may
take place in the MEC network.

3.3.1. Ping-Pong Effect

Due to the user’s temporal and spatial mobility and the random arrival of UE tasks,
the environment of the MEC system is highly dynamic. Therefore, the load of each MEC
server also changes from time to time. Our goal is to maintain the load balance of all MEC
servers for a long time and offload part of the load from high-load MEC servers to low-load
MEC servers. However, UEs covered by the a certain SBS do not always apply for task
service at the same time, which will lead to the following two cases occurring.

Since we are trying to consider the whole situation more comprehensively, when
all UEs offload their tasks at the same time, we let the real high-load MEC (RHL-MEC)
and real low-load MEC (RLL-MEC) represent the high-load MEC server and low-load
MEC server, respectively. Another explanation for the classification is that we consider
the load of all UEs covered by each SBS, regardless of whether the UE has offloaded the
task. In order to achieve it, estimated load is then proposed in Section 4.1.2. Let ε represent
the load difference between RHL-MEC and RLL-MEC at this time. In the case of ignoring
the TTLO, as shown in Equation (8), RHL-MEC offloading ε

2 to RLL-MEC can balance the
load. We assume that all UEs in Figure 3 have the same task load requirements, so that
we can explain the following situations in this section in this section. In this case, we can
divide the MEC servers into RHL-MEC and RLL-MEC according to the number of UEs. In
addition to this assumption, the classification needs to be based on the estimated load of
all MEC servers.

SBS 3

SBS 1 SBS 2

SBS 1 : 7 SBS 2 : 5 SBS 3 : 6 (the number of UE covered by SBS)

Figure 3. Illustration of a case of MEC in UDN.

Case 1: Incorrect direction of load balancing:
The load of RHL-MEC may be less than that of RLL-MEC at some point; then, part

of the load of RLL-MEC will be offloaded to RHL-MEC for load balancing. As shown in
Figure 3, as far as SBS1 and SBS2 are concerned, at a certain moment, all five UEs of SBS2
apply for task processing, and the number of UEs of SBS1 is less than this number, even
though its total number of UE is seven. In order to balance the load between them, part of
the load of SBS2 needs to be offloaded to SBS1.

Case 2: Excessive load balancing:
The load of RHL-MEC exceeding RLL-MEC may be greater than ε at some point; then,

the load exceeding ε
2 will be offloaded from RHL-MEC to RLL-MEC for load balancing.

For example, seven UEs of SBS1 all apply for task processing, and only one task of five UEs

Sensors 2021, 21, 3135 9 of 25

of SBS2 is applied for processing; then, three tasks can be transferred from SBS1 to SBS2 to
computed for load balancing.

If the load balancing decision only depends on the actual load of the MEC server at
a certain time, the above two situations will occur randomly in the MEC network, which
will cause tasks to be transferred back and forth between RHL-MEC and RLL-MEC. It
is the so-called ping-pong effect of load balancing in the MEC network that may lead to
unexpected TTLO. The reason for this effect is that the MEC server cannot estimate its
approximate load limit, so the controller cannot grasp the global load status. Once the MEC
server takes the estimate, we can get the correct direction of load transfer in load balancing
and the specific amount of load that needs to be transferred. For example, in Figure 3, only
the tasks of SBS1 need to be transferred to SBS2, and only one task needs to be transferred.

Let us give an example to describe the ping-pong effect in detail:
(1) When t = 0, all five UEs of SBS2 apply for task processing, and the number of

UEs that SBS1 applies for task is three. At this time, the remaining four UEs of SBS1 do
not apply for task processing. If we only consider the load that has been applied to the
task processed at this time to balance the load, we need to transfer the task of one of the
five UEs to SBS1. Then, the load status of SBS1 and SBS2 is [SBS1: 4, SBS2: 4], where the
number 4 represents the number of tasks loaded at this time.

(2) When t = t1, where t1 is the next decision slot, the remaining four UEs of SBS1
apply for task processing. Taking into account the time cost of task completion and the
continuity of task processing, the decision time slot is generally less than the task-processing
time. The tasks offloaded in the previous step (t = 0) may not be completed. We assume
that none of the eight tasks have been completed. In this case [SBS1: 8, SBS2: 4], two
tasks of the remaining four UEs of SBS1 need to be transferred to SBS2 to balance the load.
Therefore, the load status of SBS1 and SBS2 is [SBS1: 6, SBS2: 6].

After the above two steps, the total number of task transfers is 3. In fact, if we take the
load of the remaining four UEs into account, only one task needs to be transferred from
SBS1 to SBS2 to balance the load ([SBS1: 7, SBS2: 5]→ [SBS1: 6, SBS2: 6]). This is just a
simple example; the actual situation will be more complex and changeable than the case
above, which will lead to a more serious ping-pong effect.

3.3.2. User Load Prediction

User load prediction can be used to estimate the load of an MEC server, which has
been studied in some works using the law of large numbers. However, it may not be
suitable for a small unit due to the user’s personal behavior preferences and task load
requirements. For example, in Figure 3, the number of UEs covered by SBS1 is more than
that of SBS2, but it does not mean that the load of SBS1 must be higher than that of SBS2.
It is possible that users of SBS2 tend to apply for tasks that are computationally intensive,
while users of SBS1 tend to apply for lighter tasks. In this case, the load of SBS2 may exceed
that of SBS1. For this reason, in order to make the load estimation more accurate, we carry
out the load prediction for each user instead of using the law of large numbers.

In [30,31], the time-series analysis is used to predict user behavior, which can also
be utilized to predict user load. Specifically, a cycle time is subdivided into several time
periods, from which the user load is predicted. For example, a week can be divided into
seven specific days, because the behavior and needs of users may be different on each
day. Moreover, to make the load prediction more accurate, we can further analyze three
time periods of a day: morning, afternoon, and evening. Since the task load of different
application programs may vary, it is necessary to distinguish the usage of them by users.
In general, we record the user’s task load requirements for different application programs in
each time segment and then analyze the user’s approximate load requirements at this time.

Nonetheless, the above is just a simple mention of how to do load prediction. The spe-
cific load-prediction algorithm is beyond the scope of this paper.

Sensors 2021, 21, 3135 10 of 25

3.3.3. Overlapping Coverage

Due to the short distance between SBS, a UE may be covered by several SBSs. It
will lead to a wrong balancing strategy when we rely on the UEs covered by a single SBS
but ignore the overlapping coverage. As shown in Figure 3, we also assume that all UEs
have the same task load requirements and that each MEC server has the same computing
capacity in this section.

In terms of the number of UEs, SBS1 and SBS3 are both greater than SBS2, but this
does not mean that the load of SBS1 and SBS3 is higher than that of SBS2. Although the
computing capacity doubles when SBS1 is added up to SBS3, they only need to serve nine
UEs. This means that an MEC server serves 4.5 UEs that are less than the five UEs of SBS2.
Therefore, in order to make the load estimation more reasonable in the case of multiple
coverages, it is necessary to average the load of the UE under multiple coverages. For
example, in Figure 3, the load of the four UEs covered by SBS1 and SBS3 needs to be evenly
distributed to them, which is equivalent to the fact that SBS1 covers five UEs and SBS3
covers four UEs. In this way, we can get a more reasonable load state, such that the load of
the MEC server of SBS2 is actually the highest of the three in the network. Based on this,
we can make a more correct load balancing decision.

4. Problem Solving
4.1. The Load of MEC Server Formulation

In this section, the estimated load of an MEC server is introduced to solve the ping-
pong effect in load balancing. Furthermore, we then provide solutions to solve the load
balancing problem of subtasks in MEC network.

4.1.1. Load Timeline for Subtask

From Section 3.2.3, we conclude that after task division, due to the interdependency
among subtasks, the execution time of the subtasks does not always start from the current
moment. Consequently, if we still consider the load balancing strategy of these subtasks
according to the current load and determine which MEC server the subtasks processed on,
it will cause a certain load fluctuation that affects load balancing.

In order to solve the above problem, a timeline for the load of each MEC server is
established to estimate the load variation from current moment. It is feasible since we can
obtain the minimum delay requirement of each task and subtask and accordingly allocate
computing resources to them. Then, we can obtain the execution completion time of a task
when it is offloaded. Specifically, when making a load balancing decision for a subtask,
we consider the load of all MEC servers at the execution start time on the timeline. For
example, in Figure 2a, subtask3 should consider the load in t1 + t2 time from the current
moment. Similarly, in Figure 2b, subtask6 should consider the load in t time from current
moment, which is the maximum of t1 + t4 and t2 + t4.

4.1.2. The Estimated Load of MEC Server

In order to reduce the impact of the ping-pong effect in load balancing, instead of
directly depending on their current load to make load balancing decisions, the maximum
load of each MEC server should be estimated before that. In each time slot, not all UEs are
covered by an SBS receive task processing services from the MEC server. The purpose of
load estimation is to consider the load of UEs without offloading tasks into consideration in
load balancing decision, and the method is user load prediction mentioned in Section 3.3.2.

Then, as shown in Figure 4a, the estimated load at the current time consists of two
parts, where one is occupied by the task in progress, and the other is the predicted load
of the UEs without offloading tasks. In addition to the two parts, the estimated load of
other time points (t > 0) on the timeline may also include the load of the subtasks executed
currently. It is worth noting that the green load will gradually decrease on the timeline
as some tasks may be completed. As for the orange load, it may increase or decrease,
depending on whether the task is offloaded in IMEC or NMEC. If the task is offloaded

Sensors 2021, 21, 3135 11 of 25

in NMEC, it decreases. Furthermore, if the task is offloaded in IMEC, the corresponding
green load will be replaced with the predicted load of the user when it is completed.

In Figure 4b, load estimation and timeline are introduced in more detail. At the
current time, the tasks of UE1, UE2, and UE6 are being processed, where the task of UE6
is transferred from another MEC server. The load of these three tasks is marked in green.
Since UE3 and UE4 do not offload tasks, their predicted load is marked in orange. UE5 has
two sequential subtasks to process, in which subtask2 starts to be processed after subtask1 is
completed. That is, subtask1 is completed at t2 time, while subtask2 is completed at t3 time.
Therefore, on the timeline, the brown load represents the load of subtask1 from current
time to time t2 and the load of subtask2 from time t2 to time t3. After subtask2 of UE5 is
completed, UE5 has no task to process. Then, starting from time t3, its predicted load is
marked in orange and positioned on the timeline. Moreover, at time t1, the tasks of UE2
and UE6 are completed. Then, the green load of UE2 is replaced by its predicted load in
orange. However, the green load of UE6 has been removed, because UE6 is not covered by
the SBS. Furthermore, its predicted load in orange should be added to its IMEC.

SBS 1

SBS 2

SBS 3

SBS 4 SBS 5

LOAD

MEC 1

MEC 1

MEC 2
MEC 3

MEC 4 MEC 5

MEC 2 MEC 3 MEC 4 MEC 5

Mean load line

Current time

timelinet1 t2 t3

: The load of tasks being
processed at that time.

: Prediction load of UEs
without offloading tasks.

: The load of subtasks being
processed at that time.

(a)

Current time
t1

UE1 UE2

UE3 UE4

UE5

timeline

UE1

UE2

UE3

UE4

UE6

UE5Subtask1

UE2

UE3

UE4

UE6

UE5Subtask1

UE2

UE3

UE4

UE6

UE5Subtask1

UE1

UE2

UE3

UE4

UE6

UE5Subtask1

UE1

UE2
UE3

UE4

UE5Subtask1

UE2
UE3

UE4

UE5Subtask1

UE2
UE3

UE4

UE5Subtask1

UE1

UE2
UE3

UE4

UE5Subtask1

UE1

UE2
UE3

UE4

UE5Subtask2

UE2
UE3

UE4

UE5Subtask2

UE2
UE3

UE4

UE5Subtask2

UE1

UE2
UE3

UE4

UE5Subtask2

UE1

UE2
UE3

UE4

UE5

UE2
UE3

UE4

UE5

UE2
UE3

UE4

UE5

UE1

UE2
UE3

UE4

UE5

t2 t3

(b)

Figure 4. Illustration of load estimation. (a) Global load estimation; (b) details of load estimation
and timeline.

4.2. Problem Formulation

In this section, we will detail the problem formulation process.
As shown in Figure 4a, through load estimation, we can obtain the approximate

maximum load of each MEC server in UDN. Furthermore, then, a mean load line is obtained,
which indicates the expected ideal load of each MEC server through the load balancing
decision, under the condition that all UEs offload their tasks. The MEC server whose
estimated load is above the mean load line is RHL-MEC, such as MEC2, MEC4, MEC5
in Figure 4a. Otherwise it is RLL-MEC, such as MEC1, MEC3. Moreover, through load
estimation, one can be made aware of how much load needs to be transmitted away from
each RHL-MEC to the mean load line, and on the contrary, and how much load should be
transmitted into each RLL-MEC to reach the mean load line.

Sensors 2021, 21, 3135 12 of 25

Due to the TTLO between MEC servers, what is expected is not only to save computing
resources, but also to achieve load balancing goal with fewer task transferred. According to
the characteristics of the MEC network shown in Figure 4a, there is only one effective load
transfer method that can both make the estimated load of two MEC servers tend to the
mean load line together and minimize the TTLO in a task transfer, i.e., the load transferred
from RHL-MEC to RLL-MEC. Naturally, there are also two other methods of load transfer,
i.e., from one RHL-MEC to another RHL-MEC and from one RLL-MEC to another RLL-
MEC. However, these two methods are invalid, since they cannot balance the network load
but increase the TTLO in vain.

Through the above discussion, we only need to transfer the load of RHL-MEC above
the mean load line to RLL-MEC. Nevertheless, it is only an ideal situation where all users
covered by the SBS are receiving task processing service in Figure 4a. However, sometimes,
this is not the case. The actual load, which includes the load of the task being processed
and the load of the requested task, may be above or below the mean load line. As shown
in Figure 5, only when the actual load is above the mean load line, and only the part of the
load that exceeding the mean load line needs to be transmitted; otherwise it does not.

Estimated load of RHL-MEC

Mean load line:

: The load of tasks being processed
at this time.

: The load of applied tasks at
this time.

Actual load of RHL-MEC

This part load of
applied tasks is
needed to be
offloaded to RLL-
MEC.

Estimated load of RLL-MEC

Mean load line:
Capacity to transfer
load in.

Figure 5. Illustration of how to offload tasks for an RHL-MEC and the load capacity of an RLL-MEC.

In each decision slot, the UEs covered by each SBS may apply for task processing. We
let the set of RHL-MECs whose actual load above the mean load line be denoted asM⊂ B
and the set of RLL-MECs be denoted as S ⊂ B. Furthermore, it is obvious thatM∪S ⊆ B
andM∩S = ∅. We let the task that is applied at that moment be represented as (n, m),
which indicates that it belongs to nth UE ∈ Um of mth SBS ∈ B. Then, we let the set of all i
tasks that are applied fromM at that slot be denoted asA = {(n1, m1), (n2, m2), ..., (ni, mi)}.
Each task (n, m) ∈ A gets a task offloading instruction through the load balancing decision,
which is represented as xn,m ∈ S . Then, the set of offloading instructions of all tasks
(n, m) ∈ A can be represented as X = {xn1,m1 , xn2,m2 , ..., xni ,mi}. Furthermore, the task
offloading instruction xn,m of the task (n, m) /∈ A is equal to m, which means that the task
will be offloaded in IMEC.

We define a function h(a, b), which is represented as follows:

h(a, b) =
{

1, a = b,
0, otherwise.

(9)

Then, the load ln,m that is brought to an MEC server by task (n, m), through the offloading
instruction xn,m, can be represented as follows:

ln,m = l I
n,m · h(xn,m, m) + lN

n,m · (1− h(xn,m, m)). (10)

where h(xn,m, m) indicates the position where the task will be offloaded. If h(xn,m, m) = 1,
it indicates that the task will be offloaded in IMEC, then ln,m = l I

n,m. Furthermore, if
h(xn,m, m) = 0, it indicates that the task will be offloaded in NMEC, then ln,m = lN

n,m.

Sensors 2021, 21, 3135 13 of 25

The decision benefit function, which indicates the quality of load balancing, can be
expressed as follows:

f = ∑
α∈(M∪S)

∣∣∣∣∣∣(∑
(n,m)∈A

ln,m · h(xn,m, α) + Lcurrent
α)− Lmean

∣∣∣∣∣∣, (11)

where Lcurrent
α is the load currently being used and Lmean represents the value of mean load

line. h(xn,m, α) indicates whether the task is offloaded in the MEC server of αth SBS. Then,
function f represents the sum of the distance from the load of these MEC servers inM∪S
to the mean load line.

From Equation (11), the decision benefit function of a subtask can be obtained, which
can be expressed as follows:

f (t) = ∑
α∈(M∪S)

∣∣∣∣∣∣
 ∑
(n,m)∈A

ln,m · h(xn,m, α) + Lcurrent
α (t)

− Lmean

∣∣∣∣∣∣, (12)

where t is the time when the subtask starts to execute. Then Lcurrent
α (t) represents the load

of the MEC server of αth SBS at time t on the timeline.
The optimization goal in this paper is to minimize f as expressed as follows:

min
X

f . (13)

4.3. Solving Method

Due to the differences of tasks embodied in T , the processing load and TTLO of each
task may vary. It is likely to happen that a task with smaller processing load may cause a
larger TTLO than other tasks or vice versa. Therefore, the optimization problem as shown
in function (13) is NP-hard. In this section, we propose an efficient load balancing scheme
to reduce the complexity of solving the problem and consequently shorten the running
time. Afterwards, we compare our algorithm with the genetic algorithm (GA), which is
one of the solutions to solve the NP-hard problem.

4.3.1. Load Balancing Algorithm

With Equations (3) and (8), load allocation of the IMEC to complete the task within the
minimum delay requirement and additional load overhead caused by the task transmission
delay can be obtained, respectively. The two parameters affect the task offloading decision,
jointly. In order to simplify the problem, we propose a new parameter of the task (n, m) to
establish the relationship between them, which is defined as task unit load transfer overhead
(TULTO), expressed as follows:

on,m =
lExtra
n,m

l I
n,m

, (14)

where on,m indicates how much additional load overhead will be caused by a unit load
transfer of the task. It can directly reflect the transfer quality of the task, since TTLO
decreases as on,m goes down when transferring the same load.

MEC is committed to reducing the computation delay of task offloading strategy
algorithm to meet the delay requirements of users. Therefore, the computational complexity
of load balancing algorithm must be as low as possible. Based on TULTO, a load balancing
algorithm is proposed as shown in Algorithm 1, which has low complexity and a stable and
effective load balancing effect. The detailed process of the algorithm is shown as follows.

Sensors 2021, 21, 3135 14 of 25

Algorithm 1 Load Balancing Algorithm

1: Input : Current estimated load and actual load of each MEC server, set of the tasks
applied at that moment and the task information set T of them;

2: Output : Set of task offloading instruction X ;
3: Lmean is obtained from the estimated load;
4: According to Lmean,M and S are obtained from the actual load of each MEC server;
5: A is obtained according toM;
6: for each task (n, m) /∈ A do
7: Set the task offloading instruction xn,m = m;
8: end for
9: Calculate on,m for each task (n, m) ∈ A;

10: Calculate Lcapacity
β for each MEC server in the set S ;

11: while S 6= ∅ do
12: if Lactual

α > Lmean, where the αth MEC server has the highest actual Lactual
α in the set

M then
13: Select the task (n, m) ∈ A with the smallest on,m from the αth MEC server;
14: else
15: break
16: end if
17: Select the βth MEC server with the lowest actual load Lactual

β in the S ;

18: if lN
n,m ≤ Lcapacity

β then
19: xn,m = β;
20: Lcapacity

β = Lcapacity
β − lN

n,m;

21: Lactual
β = Lactual

β + lN
n,m;

22: Lactual
α = Lactual

α − l I
n,m;

23: Remove task (n, m) from A;
24: else
25: Remove β from S ;
26: end if
27: Append xn,m to X ;
28: end while
29: if A 6= ∅ then
30: Set the task offloading instructions of all the tasks in A, xn,m = m;
31: end if
32: return X .

Step 1: In each time slot, each SBS estimates the load of users under its coverage so
that the value of Lmean of mean load line is obtained. With Lmean, the set of RLL-MECs can
be obtained and denoted as S . The actual load of an MEC server is expressed as follows:

Lactual = Lcurrent + Lapply, (15)

where Lcurrent is the load of the task being processed and Lapply is the load of the requested
task at that slot. The setM is composed of the RHL-MECs whose the actual load Lactual is
higher than Lmean.

Step 2: For the tasks requested by this slot, if the task (n, m) comes from an MEC
server that does not belong toM, it will be processed in IMEC, which indicates that the
task offloading instruction value Xn,m is equal to m.

Step 3: For all the tasks (n, m) from the MEC servers inM, the TULTO on,m of them is
calculated. For each MEC server in S , the load capacity Lcapacity of it is calculated. As is
shown in Figure 5, Lcapacity represents how much load can be transferred to an RLL-MEC
to maintain long-term load balancing, since not all the UEs of the RLL-MEC may apply for
tasks at the same time. It is necessary to prevent excessive load from being transmitted
into the RLL-MEC.

Sensors 2021, 21, 3135 15 of 25

Step 4: The key of the load balancing algorithm is such that, at each iteration of the
algorithm, it selects the task with the lowest TULTO of the RHL-MEC, whose actual load is
the highest inM, and transfers it to the RLL-MEC with the lowest actual load in S . Thus,
the value of Xn,m of the task equals the index of the RLL-MEC. Then, the parameters are
updated, including the load capacity of the RLL-MEC and the actual load of the RHL-
MEC and the RLL-MEC. It is worth noting that load transfer is performed only when the
load of the RHL-MEC is higher than Lmean. Otherwise, the iteration will come to an end.
Furthermore, if the load capacity of an RLL-MEC is lower than the load lN

n,m of the task, it
indicates that the task cannot be offloaded in this RLL-MEC. Otherwise, a certain degree
of load instability will happen, since the actual load of the RLL-MEC may exceed Lmean at
some time. In this case, we remove it from S before S is empty to exit the iteration.

Step 5: Due to the existence of TTLO, after the iteration, there are still some tasks in
A that may not get the task offloading decision instructions, and these tasks should be
executed in their IMEC.

4.3.2. GA Approach

To solve the NP-hard problem in the MEC network with GA, some adjustments need
to be made to fit the model, including gene type, chromosome length, and fitness function.

Chromosome length: For a task, a gene on a chromosome is used to represent the task
offloading instruction. In a decision slot, since all the tasks in A need to be determined
with respect to which MEC it is to be executed on, the chromosome length is supposed to
correspond to the number of tasks in set A.

Gene type: the value of a gene indicates the specific MEC server in which the task is
offloaded. There are two options for the task in set A. One is to offload in IMEC, and the
other is to be offloaded in the MEC server in S . Therefore, the gene type contains all the
elements in S and the index of its IMEC.

Fitness function: for a chromosome, the fitness value describes the quality of the
decision to offload these tasks in A. Equation (11) is used as the fitness function. The
smaller the fitness value is, the better the fitness of the chromosome is. Therefore, the goal
is to find the chromosome with the smallest fitness value during the GA iteration. The
specific process of the GA is as shown in Algorithm 2.

Algorithm 2 GA Approach

1: Input : A,M, S ;
2: Output : the chromosome with the smallest fitness value;
3: Initialization parameters: population size, maximum number of iterations, crossover

probability, mutation probability;
4: Obtain the gene type of each gene in a chromosome according to S ;
5: Obtain the chromosome length according to A;
6: Generate initial population according to the gene type, chromosome length, and popu-

lation size;
7: while current iteration number < maximum number of iterations do
8: Calculate the fitness value of each chromosome;
9: Update the chromosome with smallest fitness value;

10: if current smallest fitness value < a certain value then
11: break
12: end if
13: Population selection by roulette;
14: Population crossover according to the crossover probability;
15: Population mutation according to the mutation probability;
16: end while
17: return the chromosome with the smallest fitness value.

Sensors 2021, 21, 3135 16 of 25

4.3.3. Time Complexity Analysis

(1) Load balancing algorithm:
The number of iterations of the algorithm is mainly related to the number of tasks n in

A. The execution of the algorithm mainly consists of two parts, one is to sort the o (TULTO)
of these n tasks, and the other is to offload them.

By using the quicksort algorithm, the sorting time is approximately O(n log n). To
offload each task, some parameters updating operation need to be conducted, and the time
spent is approximately O(n). Therefore, the overall time complexity is O(n log n).

(2) GA:
Supposing that the iteration number of GA is set to i, the population size is set to

p, and the chromosome length is set to n. Each iteration mainly consists of four parts.
The calculation of fitness value and mutation are related to n and p jointly, and the time
complexity is O(pn). Selection and crossover are related to p, and the time complexity is
O(p). Then, the time of the entire iteration is approximately ip(2 + 2n). Therefore, the time
complexity of GA is O(ipn).

5. Simulation Analysis

This section describes how simulation experiments were conducted to prove the effec-
tiveness of our solutions, including load estimation by user load prediction, load timeline
for subtask, and the load balancing algorithm. The whole experimental environment and
the experimental process were simulated with python, running on a laptop with Intel Core
i7-6650U 2.20 GHz processor and 16 GB RAM.

5.1. Algorithm Performance and Iterative Process

In this experimental scenario, the number of SBSs under the coverage of MBS in a
community is 8, and the number of UEs covered by each SBS is set to a random number
ranging from 1 to 50. The transmission rate of optical fiber is set to 1 Gbps. Each user has
a delay-sensitive task to process, the size of which ranges from 1 to 10 Mbit. Meanwhile,
the number of CPU cycles required to complete the task ranges from 500 to 1000 M, and the
minimum delay requirement for the task ranges from 50 to 200 ms. The above three
parameters are randomly set within their ranges, and we let all UEs applied for tasks at the
same time. After that, our algorithm is used to balance the load. It is worth noting that the
load estimation is mainly for UEs without offloading tasks. However, in this experiment,
all UEs have applied for task processing, so there is no prediction load for UEs without
offloading tasks. In other words, the estimated load of the MEC server is exactly equal to
its actual load at that moment.

Figure 6a shows the actual load of each MEC server before load balancing, and the
red line represents the load value of the mean load line at this decision. Then, through load
balancing, the load of each MEC server is shown in Figure 6b, in which it can be seen that
they are all closer to the mean load line. Furthermore, in Figure 6c, the change process of the
load of each MEC in the entire algorithm iteration is shown. Furthermore, we can see that,
in each iteration, the task is transferred continuously from the MEC server with the highest
actual load to the one with the lowest actual load until each server approaches the mean
load line.

Sensors 2021, 21, 3135 17 of 25

(a) (b)

(c)

Figure 6. Illustration of the load of each MEC before and after load balancing and its algorithm
iteration process: (a) before load balancing; (b) after load balancing; (c) iterative process.

5.2. Reduction of The Impact of the Ping-Pong Effect

In this experimental scenario, the simulation parameters are kept the same as those in
Section 5.1. Nevertheless, the tasks of all UEs are not applied at the same time. Accordingly,
the decision slot interval is set to 10 ms, and each UE that has not yet applied for a task has
a 50% probability of applying for a task in each decision slot. The simulation time is set to
10,000 ms, and the number of decision epochs is set to 1000.

In each decision slot, for the requested task, our load balancing algorithm with or
without load estimation is used, respectively, to balance the load. It is worth noting that,
according to the characteristics of the load balancing algorithm, the algorithm will stop
after a certain number of iterations, which depends on the number of tasks applied in the
decision slot. Furthermore, it is set to stop automatically in each decision slot. Furthermore,
load balancing decisions without load estimation depends on the actual load of each MEC
server, which will affect the value of Lmean, and then the ping-pong effect is aggravated in
loading balancing.

Figure 7a,b shows the load change of each MEC server with or without load estimation
over time, respectively. It can be seen that both of them can keep the load of those MEC
servers near the average. However, as shown in Figure 7c,d, without load estimation,
the number of tasks transferred is increased accordingly, which causes the growth of TTLO.
Furthermore, these are exactly the impacts of the ping-pong effect. The impact can be
reduced effectively through load estimation, since the approximate load of MEC servers
rather than the current actual load is considered in the proposed algorithm, which will
lessen the influence of the highly dynamic environment in the MEC network.

Sensors 2021, 21, 3135 18 of 25

(a) (b)

(c) (d)

Figure 7. Illustration of simulation parameters under load estimation or not: (a) load balancing with
load estimation; (b) load balancing without load estimation; (c) number of tasks transferred when
load estimation or not; (d) TTLO when load estimation or not.

5.3. Systematic Stability with Load Estimation

In this experimental scenario, the number of MEC servers is set to 6, and the load of
each server is a random number ranging from 0 to 500 before load balancing. Firstly, each
MEC server is set with full load. Then, a certain MEC server in a decision slot is randomly
selected to drop its load to 0 instantly and recover its load in the next decision slot, which
can be considered as a load fluctuation. By using the load balancing algorithm with or
without load estimation, respectively, the inflow load, outflow load, and actual used load
of the MEC server can be obtained and compared, respectively, in the entire process.

The inflow load includes the load of applied tasks and the load transferred from other
MEC servers. The outflow load refers to the load transferred from this MEC server to
another. Furthermore, the actual used load refers to the load actually used to process the
tasks. In fact, the actual used load is equal to the inflow load minus the outflow load.
The inflow load and the outflow load can reflect how the scheme works to balance the load.

In this experiment, MEC2, MEC3, and MEC6 are RHL-MECs, and MEC1, MEC4,
and MEC5 are RLL-MECs. Firstly, as shown in Figure 8a,c, the inflow load of RLL-MECs
keeps at a fixed value all the time, namely the value of the mean load line when there is no
load fluctuation. In Figure 8a, when the fluctuating MEC server is RHL-MEC; e.g., when
the decision epoch equals to 10, the inflow load of MEC2 which is the fluctuating MEC
server drops to 0, and the inflow load of the all RLL-MECs is affected. When the fluctuating
MEC server is RLL-MEC, e.g., when the decision epoch equals 20, the inflow load of MEC5,
which is the fluctuating MEC server, drops a little, but not to 0, since part of RHL-MECs’s
load flows into it. In this case, only MEC5’s inflow load is affected. In Figure 8c, no matter
whether the fluctuating MEC server is RHL-MEC or RLL-MEC, the inflow load of all MEC
servers is affected.

Sensors 2021, 21, 3135 19 of 25

Secondly, as shown in Figure 8b,d, when there is no load fluctuation, only the RHL-
MECs have outflow load, which is equal to the part of the inflow load that is higher than
the mean load line, and the outflow load of the RLL-MECs is 0. In Figure 8b, only when
the fluctuating MEC server is RHL-MEC does its outflow load drop to 0. No other MEC
server’s outflow load is affected. In Figure 8d, similarly, no matter whether the fluctuating
MEC server is RHL-MEC or RLL-MEC, the outflow load of all MEC servers is affected.

Thirdly, in Figure 8e,f, when there is no load fluctuation, the actual used load of all
MEC servers is at the mean load line. The change of Figure 8e is similar to that of Figure 8a.
Furthermore, in Figure 8f, the actual used load of all MEC servers is affected, and their
values are equal when load fluctuation occurs.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Illustration of various loads of the MEC server under load estimation or not: (a) inflow load
with load estimation; (b) outflow load with load estimation; (c) inflow load without load estimation;
(d) outflow load without load estimation; (e) actual used load with load estimation; (f) actual used
load without load estimation.

Generally speaking, when the load of an MEC server fluctuates, load estimation can
reduce the number of affected MEC servers in terms of the three types of load through
load balancing. When the fluctuating MEC server is different, the system may be affected
differently. Specifically, when the fluctuating MEC server is RHL-MEC, the inflow load
and actual used load of these RLL-MECs will be affected, but only the outflow load of the
RHL-MEC with load fluctuation will be affected. Furthermore, when the fluctuating MEC
server is RLL-MEC, only the inflow load and the actual used load of other RLL-MECs are

Sensors 2021, 21, 3135 20 of 25

affected. Without load estimation, the load fluctuation of the fluctuating MEC server can
be slowed down, which is to average the load fluctuation to other MEC servers. However,
all three types of load of all MEC servers will be affected. Hence, with load estimation,
the impact of load fluctuation can be reduced and the stability of the load of the system can
be maintained to a certain extent.

5.4. Systematic Stability with Load Timeline for Subtask

In this experimental scenario, the number of MEC servers is set to 8, and the number
of UEs of each MEC server is set to a random number ranging from 1 to 30. Only sequential
subtasks are discussed here, because the sequential-parallel-hybrid subtasks model can
be considered as a sequential subtasks model in a hierarchical way. Each UE has three
sequential subtasks, and the number of CPU cycles required to complete each subtask is
a random number ranging from 400 to 800 M. The minimum delay requirement of each
subtask is fixed at 20 ms. Then, the load balancing algorithm with or without load timeline
is used, respectively, for the load balancing of the subtasks.

If there is a load timeline, the load balancing of subtasks depends on the corresponding
load of each MEC server, when the execution of subtasks starts on the timeline. Otherwise,
it depends on the load of each MEC server at the current time.

As shown in Figure 9, the introduction of load timeline for subtasks can make it more
concentrated around the average value for the load of each MEC server through load
balancing. Otherwise, a certain load fluctuation may appear. Because load estimation
provides each subtask with the load status at the beginning of its execution, accordingly,
a more accurate and reasonable load balancing decision will be made.

(a) (b)

Figure 9. Illustration of whether the load balancing of subtasks is based on the load timeline: (a) load
balancing with timeline for subtask; (b) load balancing without timeline for subtask.

5.5. Comparision with GA

In this experimental scenario, GA is further used for load balancing on the basis of the
simulation experiment in Section 5.1 and then compared with our load balancing algorithm
(LBA) in terms of the time consumption. The crossover probability of GA is set to 0.6 and
the mutation probability is set to 0.01. GA is made to stop iterating when its balancing
error reaches that of LBA, which is represented by f in Equation (11).

As shown in Figure 10, the population size of GA is set to 20, 35, 50, 100, and 200,
respectively, and the experiment is carried out 50 times. Due to the random search of
GA, the search time fluctuates with the same population size. As shown in Table 1, as the
population size increases from 20 to 100, the average time consumed by GA increases,
but the average generation decreases. The reason is that with smaller population size and
search scope, more crossover and mutation are needed to expand the search scope so as
to search for a better solution. Nevertheless, the larger the population size is, the more
the amount of computation of each generation will increase, and thus the more the total
search time increases. Therefore, it is necessary to set a suitable population size of GA

Sensors 2021, 21, 3135 21 of 25

according to specific situation to get better performance. According to Figure 10 and
Table 1, compared with GA, LBA has better performance in terms of time consumption in
the model in this paper.

In order to further compare the load balancing performance of the two algorithms,
the condition for GA to stop iteration is set as when the number of iteration reaches a
certain value, and the simulation parameters after the iteration can be obtained. The larger
the population size is, the higher the stability of GA is. Hence, the population size and
generation are both set to 200 according to Table 1.

Table 1. Average time consumed by algorithm and average generations of GA.

LBA GA:20 GA:35 GA:50 GA:100 GA:200

time (s) 0.0012 3.239 3.275 3.371 4.445 6.428

generations - 1220 680 456 284 184

Figure 10. Illustration of time consumed by the algorithm.

As shown in Figure 11a, the number of tasks transferred by the two algorithms are
similar, because the amount of load to be balanced is fixed and the difference between
tasks is not particularly large; moreover, the TTLO is relatively small for the load of a
task. However, in Figure 11b, the TTLO of LBA is significantly lower than that of GA,
because it is based on TULTO, which makes it tend to transfer the tasks that are relatively
less burdensome for the entire system. As shown in Figure 11c, with GA, the error varies
every time through the load balancing, and sometimes a better solution is found than
LBA. Nonetheless, there is a certain amount of randomness and instability existing in GA ,
and the iteration time of GA is much longer than LBA. It is very clear that the execution
time of load balancing decisions will affect the size of resource allocation. Obviously, if it is
too time-consuming, additional task-computing resources need to be allocated to make up
for time consumption.

5.6. Scalability Analysis of Algorithm

Due to the highly dynamic environment in the actual case, it is necessary for the load
balancing algorithm to have a certain degree of scalability. For this purpose, the number of
SBSs and the number of UEs under each SBS are changed, respectively. Furthermore, the
time consumption and load balancing effect of LBA and GA can thus be attained.

Sensors 2021, 21, 3135 22 of 25

(a) (b)

(c)

Figure 11. Illustration of simulation parameters of LBA and GA: (a) number of tasks transferred of
LBA and GA; (b) TTLO of LBA and GA; (c) balancing error of LBA and GA.

Specifically, in Figure 12a,b, the number of UEs of each SBS is fixed at 50, and the
number of SBSs is gradually increased from 4 to 12. The population size of GA is set to
50, and the generation is fixed at 500 according to Table 1. In Figure 12a, we can see that
with the increase in SBS, the time consumption of LBA is always at a low level, obviously
contrary to that of GA increases. In Figure 12b, there is no obvious change for balancing
error of LBA. Furthermore, the load balancing effect of GA becomes worse with the increase
in SBSs, since the larger the balancing error is, the worse the load balancing effect is.

In Figure 12c,d, the number of SBSs is fixed at 8, and the number of UEs of each SBS is
gradually increased from 10 to 100. Furthermore, the trend of these two lines is similar to
that of Figure 12a,b. Therefore, LBA has better scalability than GA in terms of algorithm
complexity and load balancing effect. In order to show the scalability of LBA in more detail,
Figure 12e,f are given in addition.

In Figure 12e, the time consumption increases with the rise of the number of SBSs and
UEs, but it is always at a lower level compared with GA. In Figure 12f, on the contrary,
the balancing error is reduce with the rise in the number of SBSs and UEs. The reason is
that, unlike the constant increase in total load, the balancing error is almost at the same
size, which makes the proportion of the balancing error decrease. In general, LBA has a
good scalability performance.

Sensors 2021, 21, 3135 23 of 25

(a) (b)

(c) (d)

(e)
(f)

Figure 12. Illustration of scalability analysis: (a) time consumption of GA and LBA as the number of
SBS increases; (b) balacing error of GA and LBA as the number of SBS increases; (c) time consumption
of GA and LBA as the number of UE increases; (d) balacing error of GA and LBA as the number of
UE increases; (e) time consumption of LBA under different numbers of UE; (f) balacing error of LBA
under different numbers of UE.

6. Conclusions

In this paper, the issues of mobile edge computing with load balancing were studied
in the ultra-dense network. Firstly, as for the ping-pong effect existing in load balancing,
the reason for its formation and its generation process are explained in detail. Then,
in order to reduce the cost and burden brought to the entire network by the ping-pong effect,
the main idea of SDN was introduced into the system framework. Furthermore, on the basis
of that, a load balancing algorithm based on load estimation was later proposed. In our
algorithm, by introducing the new concept of task unit load transfer overhead, an effective
solution to the NP-hard problem was quickly obtained in task offloading. Moreover,
the load timeline of the MEC server and the hierarchical method of subtasks for divisible
tasks were proposed to solve their instability in load balancing. Finally, simulation results
also demonstrate the effectiveness of load estimation in reducing the impact of the ping-
pong effect, as well as the efficiency and rapidity of our algorithm compared with GA.
However, for the differences between theoretical research and practice, there are many other
factors affecting the results that have not taken into account. Therefore, in the follow-up
research work, solutions for more complex scenarios will be considered.

Sensors 2021, 21, 3135 24 of 25

Author Contributions: Conceptualization, W.C. and Y.Z.; Methodology and Software, Y.Z.; Supervi-
sion, W.C.; Writing—Review and Editing, W.C., Y.Z., J.L. and Y.C.; Validation, W.C., Y.Z., J.L. and
Y.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This project is supported by the National Natural Science Foundation of Shanghai (Grant
No. 20ZR1400700).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest

References
1. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective.

IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
2. Xu, D.; Li, Y.; Chen, X.; Li, J.; Hui, P.; Chen, S.; Crowcroft, J. A Survey of Opportunistic Offloading. IEEE Commun. Surv. Tutor.

2018, 20, 2198–2236. [CrossRef]
3. Qin, M.; Chen, L.; Zhao, N.; Chen, Y.; Yu, F.R.; Wei, G. Power-Constrained Edge Computing With Maximum Processing Capacity

for IoT Networks. IEEE Internet Things J. 2019, 6, 4330–4343. [CrossRef]
4. Chen, X.; Liu, Z.; Chen, Y.; Li, Z. Mobile Edge Computing Based Task Offloading and Resource Allocation in 5G Ultra-Dense

Networks. IEEE Access 2019, 7, 184172–184182. [CrossRef]
5. Liu, J.; Zhang, Q. Offloading Schemes in Mobile Edge Computing for Ultra-Reliable Low Latency Communications. IEEE Access

2018, 6, 12825–12837. [CrossRef]
6. Xia, Y.; Zhou, M.; Luo, X.; Zhu, Q.; Li, J.; Huang, Y. Stochastic Modeling and Quality Evaluation of Infrastructure-as-a-Service

Clouds. IEEE Trans. Autom. Sci. Eng. 2015, 12, 162–170. [CrossRef]
7. Mondal, S.; Das, G.; Wong, E. A Game-Theoretic Approach for Non-Cooperative Load Balancing Among Competing Cloudlets.

IEEE Open J. Commun. Soc. 2020, 1, 226–241. [CrossRef]
8. Guo, H.; Liu, J.; Zhang, J. Computation Offloading for Multi-Access Mobile Edge Computing in Ultra-Dense Networks. IEEE

Commun. Mag. 2018, 56, 14–19. [CrossRef]
9. He, J.; Zhang, D.; Zhou, Y.; Zhang, Y. An Online Computation Offloading Mechanism for Mobile Edge Computing in Ultra-Dense

Small Cell Networks. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted
Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 826–833. [CrossRef]

10. Fan, Q.; Ansari, N. Towards Workload Balancing in Fog Computing Empowered IoT. IEEE Trans. Netw. Sci. Eng. 2020, 7, 253–262.
[CrossRef]

11. Zhang, F.; Liu, G.; Fu, X.; Yahyapour, R. A Survey on Virtual Machine Migration: Challenges, Techniques, and Open Issues. IEEE
Commun. Surv. Tutor. 2018, 20, 1206–1243. [CrossRef]

12. Chen, S.; Zhao, T.; Chen, H.; Meng, W. Downlink Coordinated Multi-Point Transmission in Ultra-Dense Networks with Mobile
Edge Computing. IEEE Netw. 2019, 33, 152–159. [CrossRef]

13. Guo, H.; Lv, J.; Liu, J. Smart Resource Configuration and Task Offloading with Ultra-Dense Edge Computing. In Proceedings of
the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona,
Spain, 21–23 October 2019; pp. 1–6. [CrossRef]

14. el Haber, E.; Nguyen, T.M.; Assi, C.; Ajib, W. An Energy-efficient Task Offloading Solution for MEC-based IoT in Ultra-dense
Networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh,
Morocco, 15–18 April 2019; pp. 1–7. [CrossRef]

15. Sun, Y.; Zhou, S.; Xu, J. EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra Dense Networks. IEEE
J. Sel. Areas Commun. 2017, 35, 2637–2646. [CrossRef]

16. Chen, L.; Zhou, S.; Xu, J. Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks.
IEEE/ACM Trans. Netw. 2018, 26, 1619–1632. [CrossRef]

17. Wang, Y.; Tao, X.; Zhang, X.; Zhang, P.; Hou, Y.T. Cooperative Task Offloading in Three-Tier Mobile Computing Networks: An
ADMM Framework. IEEE Trans. Veh. Technol. 2019, 68, 2763–2776. [CrossRef]

18. Jiang, C.; Chen, Y.; Wang, Q.; Liu, K.J.R. Data-Driven Stochastic Scheduling and Dynamic Auction in IaaS. In Proceedings of the
2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [CrossRef]

19. Tang, F.; Fadlullah, Z.M.; Mao, B.; Kato, N. An Intelligent Traffic Load Prediction-Based Adaptive Channel Assignment Algorithm
in SDN-IoT: A Deep Learning Approach. IEEE Internet Things J. 2018, 5, 5141–5154. [CrossRef]

20. Yan, X.; Dong, C.; Qu, Y. Efficient Load Balancing for Cellular Networks through D2D Relay and User Association. In Proceedings
of the 2018 IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China,
16–18 November 2018; pp. 209–215. [CrossRef]

http://doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/COMST.2018.2808242
http://dx.doi.org/10.1109/JIOT.2018.2875218
http://dx.doi.org/10.1109/ACCESS.2019.2960547
http://dx.doi.org/10.1109/ACCESS.2018.2800032
http://dx.doi.org/10.1109/TASE.2013.2276477
http://dx.doi.org/10.1109/OJCOMS.2020.2971613
http://dx.doi.org/10.1109/MCOM.2018.1701069
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00172
http://dx.doi.org/10.1109/TNSE.2018.2852762
http://dx.doi.org/10.1109/COMST.2018.2794881
http://dx.doi.org/10.1109/MNET.2018.1700421
http://dx.doi.org/10.1109/WiMOB.2019.8923227
http://dx.doi.org/10.1109/WCNC.2019.8885671
http://dx.doi.org/10.1109/JSAC.2017.2760160
http://dx.doi.org/10.1109/TNET.2018.2841758
http://dx.doi.org/10.1109/TVT.2019.2892176
http://dx.doi.org/10.1109/GLOCOM.2015.7417023
http://dx.doi.org/10.1109/JIOT.2018.2838574
http://dx.doi.org/10.1109/AUTEEE.2018.8720748

Sensors 2021, 21, 3135 25 of 25

21. Zhang, H.; Song, L.; Zhang, Y.J. Load Balancing for 5G Ultra-Dense Networks Using Device-to-Device Communications. IEEE
Trans. Wirel. Commun. 2018, 17, 4039–4050. [CrossRef]

22. Ren, J.; Tian, H.; Lin, Y.; Fan, S.; Nie, G.; Wu, H.; Zhang, F. Incentivized Social-Aware Proactive Device Caching with User
Preference Prediction. IEEE Access 2019, 7, 136148–136160. [CrossRef]

23. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint Computation Offloading and User Association in Multi-Task Mobile Edge Computing.
IEEE Trans. Veh. Technol. 2018, 67, 12313–12325. [CrossRef]

24. Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C. An Efficient Computation Offloading Management Scheme in the Densely Deployed
Small Cell Networks With Mobile Edge Computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [CrossRef]

25. Chen, X.; Zhang, H.; Wu, C.; Mao, S.; Ji, Y.; Bennis, M. Optimized Computation Offloading Performance in Virtual Edge
Computing Systems Via Deep Reinforcement Learning. IEEE Internet Things J. 2019, 6, 4005–4018. [CrossRef]

26. Melendez, S.; McGarry, M.P. Computation offloading decisions for reducing completion time. In Proceedings of the 2017 14th
IEEE Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 160–164.
[CrossRef]

27. Yang, L.; Cao, J.; Cheng, H.; Ji, Y. Multi-User Computation Partitioning for Latency Sensitive Mobile Cloud Applications. IEEE
Trans. Comput. 2015, 64, 2253–2266. [CrossRef]

28. Yang, L.; Cao, J.; Tang, S.; Li, T.; Chan, A.T.S. A Framework for Partitioning and Execution of Data Stream Applications in Mobile
Cloud Computing. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA,
24–29 June 2012; pp. 794–802. [CrossRef]

29. Dong, Y.; Xu, G.; Ding, Y.; Meng, X.; Zhao, J. A Joint-Me Task Deployment Strategy for Load Balancing in Edge Computing. IEEE
Access 2019, 7, 99658–99669. [CrossRef]

30. Harihar, V.K.; Sukumaran, S. Behaviour Comprehension and Prediction Using Time Series Analysis of Data for Code Offloading in
Mobile Cloud Computing. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information
Communication Technology (RTEICT), Bengaluru, Karnataka, India, 18–19 May 2018; pp. 367–375. [CrossRef]

31. Liarokapis, D. Mobility Prediction for Traffic Offloading in Cloud Cooperated MM Wave 5G Networks. In Proceedings of the 2017
9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017; pp. 1–9. [CrossRef]

http://dx.doi.org/10.1109/TWC.2018.2819648
http://dx.doi.org/10.1109/ACCESS.2019.2942440
http://dx.doi.org/10.1109/TVT.2018.2876804
http://dx.doi.org/10.1109/TNET.2018.2873002
http://dx.doi.org/10.1109/JIOT.2018.2876279
http://dx.doi.org/10.1109/CCNC.2017.7983099
http://dx.doi.org/10.1109/TC.2014.2366735
http://dx.doi.org/10.1109/CLOUD.2012.97
http://dx.doi.org/10.1109/ACCESS.2019.2928582
http://dx.doi.org/10.1109/RTEICT42901.2018.9012270
http://dx.doi.org/10.1109/IEEEGCC.2017.8448090

	Introduction
	Related Work
	System Model
	System Framework
	Task Model
	Task Information
	Task Offloading
	Subtask Model

	Load Estimation
	Ping-Pong Effect
	User Load Prediction
	Overlapping Coverage

	Problem Solving
	The Load of MEC Server Formulation
	Load Timeline for Subtask
	The Estimated Load of MEC Server

	Problem Formulation
	Solving Method
	Load Balancing Algorithm
	GA Approach
	Time Complexity Analysis

	Simulation Analysis
	Algorithm Performance and Iterative Process
	Reduction of The Impact of the Ping-Pong Effect
	Systematic Stability with Load Estimation
	Systematic Stability with Load Timeline for Subtask
	Comparision with GA
	Scalability Analysis of Algorithm

	Conclusions
	References

