ARTICLE

Resolving stepping rotation in Thermus thermophilus H^{+}-ATPase/synthase with an essentially drag-free probe

Shou Furuike ${ }^{1,2,}$, Masahiro Nakano ${ }^{3,4}$, Kengo Adachi ${ }^{1,7,}$, Hiroyuki Noji4, Kazuhiko Kinosita Jr \& Ken Yokoyama ${ }^{3,5,6}$

Vacuole-type ATPases $\left(\mathrm{V}_{0} \mathrm{~V}_{1}\right)$ and $\mathrm{F}_{0} \mathrm{~F}_{1}$ ATP synthases couple ATP hydrolysis/synthesis in the soluble V_{1} or F_{1} portion with proton (or Na^{+}) flow in the membrane-embedded V_{0} or F_{0} portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V_{1} and the whole $\mathrm{V}_{0} \mathrm{~V}_{1}$ from Thermus thermophilus, by attaching a $40-\mathrm{nm}$ gold bead for which viscous drag is almost negligible. V_{1} made 120° steps, commensurate with the presence of three catalytic sites. Dwells between the steps involved at least two events other than ATP binding, one likely to be ATP hydrolysis. $\mathrm{V}_{0} \mathrm{~V}_{1}$ exhibited 12 dwell positions per revolution, consistent with the 12 -fold symmetry of the V_{0} rotor in T. thermophilus. Unlike F_{1} that undergoes $80^{\circ}-40^{\circ}$ substepping, chemo-mechanical checkpoints in isolated V_{1} are all at the ATP-waiting position, and V_{0} adds further bumps through stator-rotor interactions outside and remote from \bigvee_{1}.

[^0]The $\mathrm{F}_{0} \mathrm{~F}_{1}-$ and V-type ATPase/ATP synthase superfamily utilizes a rotary mechanism to perform their specific functions ${ }^{1-3}$. The basic structures of these ATPases/synthases are conserved among species. The soluble, cytoplasmic portion of $\mathrm{F}_{0} \mathrm{~F}_{1}$ - and V-type ATPases (called F_{1} and V_{1}, respectively), responsible for ATP hydrolysis/synthesis, is connected via the central rotor stalk and the peripheral stator stalk to the transmembrane portion (F_{o} and V_{o}) that houses the ion-transporting pathway. In the bacterial V-type ATPase of Thermus thermophilus $\left(\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}\right)$, the V_{1} portion is composed of a hexameric $\mathrm{A}_{3} \mathrm{~B}_{3}$ cylinder and a central shaft composed of D and F subunits ${ }^{4}$ (see Fig. 1a). The V_{o} portion of T. thermophilus is composed of two distinct domains: a hydrophobic rotor ring made of $\mathrm{V}_{0}-\mathrm{c}$ subunits supplemented with a funnel shape V_{o}-d subunit and a stator apparatus composed of a transmembrane V_{o}-a subunit and EG subunits forming the peripheral stalk ${ }^{5,6}$ (see Fig. 1b). Cryoelectron micrographs of two-dimensional crystals of the V_{o} ring at $7.0 \AA$ resolution showed the presence of $12 \mathrm{~V}_{\mathrm{o}}$-c subunits, each composed of two transmembrane helices ${ }^{7}$. The bacterial V-ATPase that we describe here works as an ATP synthase ${ }^{1}$, whereas its eukaryotic counterpart is vacuolar proton pump and thus some mechanistic differences may exist ${ }^{1,2,8}$. A number of researchers refer to the bacterial V-ATPase as archaeal-ATPase or $\mathrm{A}_{0} \mathrm{~A}_{1}$-ATP synthase, but here we adopt the broader terminology.

It is believed that $V_{0}\left(\right.$ and $\left.F_{0}\right)$ is a rotary motor driven by the transmembrane flow of protons (or Na^{+}) and $\mathrm{V}_{1}\left(\right.$ and F_{1}) is another rotary motor driven by ATP hydrolysis, and that the two motors have a common rotary shaft yet their genuine rotary directions are opposite to each other. Thus, when $\mathrm{V}_{\mathrm{o}}\left(\mathrm{F}_{\mathrm{o}}\right)$ takes control, $\mathrm{V}_{1}\left(\mathrm{~F}_{1}\right)$ is rotated in reverse direction, ending in the synthesis of ATP. Powering $V_{1}\left(F_{1}\right)$, on the other hand, results in proton pumping ${ }^{9}$. According to a model for V_{o} and F_{o}, a proton enters an access channel and binds to a glutamate on one of the c subunits in the rotor ring and after one revolution of the ring, the proton is released to the other side of the membrane via an exit channel ${ }^{10}$. In this model, the copy number of the c subunit of V_{o} or F_{o} in the rotor ring is equal to the number of transported protons per revolution. For the T. thermophilus V-ATPase, 12 protons are expected per revolution.

The ATP-driven rotation of the DF shaft in V_{1} has been observed directly ${ }^{11}$: a bead (nominal diameter $0.56 \mu \mathrm{~m}$) attached to the D subunit rotated unidirectionally anticlockwise when viewed from the membrane side. At low ATP concentrations where ATP binding is rate limiting, the rotation proceeded in steps of 120°, commensurate with the presence of three catalytic sites at A-B interfaces ${ }^{12}$. Rotation of the V_{o}-c ring in $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ has also been observed ${ }^{13}$, with 120° steps at low ATP concentrations ${ }^{14}$.

For F_{1}, which also undergoes anticlockwise 120° stepping at low ATP, high-speed imaging with $40-\mathrm{nm}$ gold particles, with little drag, has revealed that a 120° step consists of $80-90^{\circ}$ and $40-30^{\circ}$ substeps ${ }^{15}$. F_{1} cycles through an ATP-waiting dwell, $\sim 80^{\circ}$ substep rotation driven by ATP binding and subsequent ADP release, a catalytic dwell where ATP is hydrolyzed and the phosphate is released, and $\sim 40^{\circ}$ substep rotation driven by the phosphate release ${ }^{16}$. ATP-driven rotation of $\mathrm{F}_{0} \mathrm{~F}_{1}$ has also been demonstrated for Escherichia coli and thermophilic Bacillus PS3 enzymes, with features basically similar to those of $\mathrm{F}_{1}{ }^{17-19}$. So far, ATP-driven rotation either in $V_{0} V_{1}$ or in $F_{0} F_{1}$ has failed to reveal a sign of specific interactions between a rotor and a stator subunit in the $\mathrm{V}_{\mathrm{o}} / \mathrm{F}_{\mathrm{o}}$ portion, even in the high-resolution study ${ }^{17}$.

Here, we have analysed ATP-driven rotation of both V_{1} and $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ (holo V-ATPase) derived from T. thermophilus, using a $40-\mathrm{nm}$ bead and a submillisecond fast camera. V_{1} molecules rotated with 120° steps without adopting the $80^{\circ}-40^{\circ}$ substep scheme of F_{1}. $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$, in contrast, showed $\sim 30^{\circ}$ steps that likely reflect stator-rotor interactions in the V_{o} domain. All rate-limiting reactions in the V_{1} chemo-mechanical cycle occur in one angle, whereas stator-rotor interactions in V_{o} pose additional bumps that might check rotation depending on protonation/deprotonation.

Figure $\mathbf{1} \mid$ Rotation of $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{0}} \mathbf{V}_{\mathbf{1}}$ carrying a $\mathbf{4 0} \mathbf{- n m}$ bead. Schematic observation systems for rotation of $\mathrm{V}_{1}(\mathbf{a})$ and $\mathrm{V}_{0} \mathrm{~V}_{1}(\mathbf{b})$. (a) V_{1} was fixed to the Ni^{2+}-NTA-coated glass surface with his ${ }_{10}$ tags at A subunits. $\mathrm{A} 40-\mathrm{nm}$ bead (or duplex) was attached to the biotinylated cysteine residues (E48C/Q55C) of the D subunit via streptavidin. In this system, the central shaft composed of D and F subunits rotates relative to $A_{3} B_{3}$ subcomplex containing catalytic sites. (b) $\mathrm{V}_{0} \mathrm{~V}_{1}$ was fixed to the Ni^{2+}-NTA-coated glass surface with His_{3} tags at V_{0}-c subunits. In this system, the stator apparatus composed of $A_{3} B_{3}, E, G$ and V_{0}-a subunit rotates relative to the fixed central rotor shaft composed of $\mathrm{V}_{0}-c$ ring, V_{0} - d, D and F subunits. A 40-nm bead (or duplex) was attached to the AviTag at A subunit(s) by biotin-streptavidin linkage. Bead rotation was observed under an optical microscope with dark-field illumination, and recorded with a high-speed camera at 250-8000 frames per s (fps). (c) Rotation rates of beads attached onto V_{1} (circles) and $\mathrm{V}_{0} \mathrm{~V}_{1}$ (triangles) at the indicated ATP concentrations. Red and black circles indicate in the presence and absence of 0.05% (w / v) DDM, respectively. Squares indcate the averages of V_{1} rotation rates ($n \geq 8$; s.d. greater than the symbol size shown with bars). Line indicates the fit with Michaelis-Menten kinetics: $V=V_{\text {max }}$. $[A T P] /\left(K_{m}+\right.$ [ATP]), where $V_{\text {max }}$ and K_{m} are 64 r.p.s. and $229 \mu \mathrm{M}$, respectively, giving the apparent ATP-binding rate $k_{\text {on }}$ of $0.84 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\left(3 \times V_{\max } / K_{m}\right)$. For $\mathrm{V}_{0} \mathrm{~V}_{1}$, the rotation buffer contained 0.05% DDM. Time-averaged rotation rates of V_{1} or $\mathrm{V}_{0} \mathrm{~V}_{1}$ were estimated over tens of consecutive revolutions as listed in Supplementary Table S1. The molecules of $\mathrm{V}_{0} \mathrm{~V}_{1}$ which showed relatively clean 120° steps are shown as closed blue triangles.

Results

Stepwise rotation of $\mathbf{V}_{1} . \mathrm{V}_{1}$ was immobilized on a nickelnitrilotriacetic acid $\left(\mathrm{Ni}^{2+}-\mathrm{NTA}\right)$-coated glass surface through His (histidine) ${ }_{10}$-tags introduced at the amino terminus of the A subunits, and a $40-\mathrm{nm}$ streptavidin-coated gold colloid (40nm bead) was attached to the biotin-labelled D subunit (Fig. 1a).

Bead rotation was imaged by laser dark-field microscope and recorded on a fast-framing CMOS camera at speeds up to 8,000 frames per s.

ATP dependence of the time-averaged rotation rate of V_{1} is shown in Figure 1c. Below $100 \mu \mathrm{M}$, ATP binding was rate limiting, the rotation speed being practically proportional to the ATP concentration ([ATP]). The rate constant for apparent, or effective, ATP binding was $0.8 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, assuming three ATP molecules consumed per revolution. Above 1 mM ATP, the rotary speed saturated, reaching $V_{\max }$ of 64 revolutions per s (r.p.s.). This is the full speed of V_{1} rotation at $23^{\circ} \mathrm{C}$, not limited by the viscous drag on the bead (see below). The Michaelis-Menten constant, K_{m}, of $229 \mu \mathrm{M}$ (Fig. 1c) agrees with that for the bulk ATP hydrolysis assay without beads of $205 \mu \mathrm{M}^{14}$, supporting the contention that $V_{\max }$ above represents the speed of unloaded rotation (the reported maximal hydrolysis activity of $39.9 \mathrm{~s}^{-1}$ is lower than $180 \mathrm{~s}^{-1}$ expected for rotation at ~ 60 r.p.s., because of MgADP inhibition ${ }^{14,15}$).

Even at saturating [ATP], all $40-\mathrm{nm}$ beads rotated stepwise, pausing every 120° (Fig. 2a), reminiscent of the unloaded rotation of F_{1} at saturation. The 120° steps were completed within 0.25 ms (two frames), indicating that V_{1} can drive the $40-\mathrm{nm}$ bead at $>480^{\circ} \mathrm{ms}^{-1}$, and thus mechanical stepping does not limit the overall rotation rate. The average rotation speed of 64 r.p.s. at saturating [ATP] is limited by the $\sim 5 \mathrm{~ms}$ dwells where a reaction(s) that does not accompany rotation takes place. The 120° steps at saturating [ATP] were not resolved in the previous study with a $340-\mathrm{nm}$ bead duplex ${ }^{12}$, where the time-averaged rotation speed at saturation was also low, limited by viscous drag on the large beads.

At lower [ATP], we still observed 120° steps (Fig. 2b-d) without a clear sign of substeps as with F_{1} (refs 15,16). Even at $200 \mu \mathrm{M}$ ATP, around K_{m} where F_{1} would repeat $\sim 80^{\circ}$ and $\sim 40^{\circ}$ substeps with equal dwells in between, V_{1} underwent 120° stepping (Fig. 2 b and insets therein). The V_{1} dwells at low [ATP] must be at ATP-waiting angles, implicating that the $\sim 5 \mathrm{~ms}$ dwells at saturating [ATP] were also at, or close to, ATP-waiting angles. This was also confirmed by solution exchange: Figure 2d,e show rotation of the same V_{1} molecule, showing that dwell positions at both high and low [ATP] do not differ significantly.

Events that underlie the \mathbf{V}_{1} dwell. V_{1} dwells basically (see below) at every 120°, or once per catalytic cycle, irrespective of [ATP]. We now enquire what causes these dwells. At least four events occur in a catalytic cycle of V_{1} : ATP binding, ATP hydrolysis, phosphate release and ADP release. Of these, ATP binding must trigger, and likely drives at least partially, the 120° step. Our previous study ${ }^{12}$ with a slowly hydrolyzed ATP analogue ATP- γ-S indicated that ATP hydrolysis occurs at an ATP-waiting angle, and thus the time required for hydrolysis is a determinant of the dwell.

To see whether hydrolysis alone is responsible for the dwell, we have analysed the distribution of dwell times, measured as the time between the midpoints of two successive 120° steps (Fig. $2 \mathrm{f}-\mathrm{i}$). At all four [ATP] examined, the dwell-time histogram was not exponential and rose from the origin (not well resolved at $4 \mu \mathrm{M}$), indicating the involvement of two or more rate-limiting reactions. Sequential two-reaction scheme could reasonably fit the histograms (orange lines in Fig. 2f-i). At 4 mM ATP, the two rates seemed indistinguishable and were $0.36 \mathrm{~ms}^{-1}$. One rate should correspond to that of ATP hydrolysis, unless a third reaction is also involved. The nature of the other reaction is unknown, but it cannot be ATP binding, which must be rapid at 4 mM ATP (binding rate for ATP is calculated as $3.2 \mathrm{~ms}^{-1}$ by multiplying 4 mM by $0.8 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Likely candidates are phosphate or ADP release (or both combined).

At and below $200 \mu \mathrm{M}$ ATP, the dwells must also involve the time for ATP binding in addition to the two (or more) reactions at 4 mM . We therefore attempted a global fit to the three histograms (Fig. 2f-h, blue lines) around K_{m} where the rise from the origin was well resolved, with a sequential scheme for three reactions, of which
one is ATP binding with the apparent rate constant $k_{\text {on }}$. Although the fit was not perfect, the recovered $k_{\text {on }}$ of $1.2 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ is consistent with that for $4 \mu \mathrm{M}$ ATP, and with the estimate from Figure 1c above and a previous value of $\sim 1.3 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ obtained with $220-\mathrm{nm}$ duplex beads ${ }^{14}$. The other two rates were $0.49 \mathrm{~ms}^{-1}$ and $0.34 \mathrm{~ms}^{-1}$, roughly consistent with the two-rate fit of the 4 mM dwells above.

In addition to the relatively clean 120° steps as in Figure 2, some beads (52 out of 169 ; see Supplementary Table S1) exhibited peculiar fluctuations such as jumping to and fro between two angles separated by $\sim 40^{\circ}$ (see Supplementary Fig. S1). Because the basic 120° stepping feature was preserved, we ignore these minor fluctuating beads in the analyses above.

Rotation of $\mathbf{V}_{\mathrm{o}} \mathbf{V}_{1}$. To examine the effect(s) of the V_{o} domain on the ATP-driven rotation of V_{1} in intact $V_{o} V_{1}$, we constructed the experimental system in Figure $1 \mathrm{~b} . \mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ was fixed, in the presence of $0.05 \%(\mathrm{w} / \mathrm{v}) \mathrm{N}$-dodecyl β-D-maltoside (DDM) upside down on a Ni^{2+}-NTA-coated glass surface via His_{3} tags on the $\mathrm{V}_{\mathrm{o}}-\mathrm{c}$ subunits. A $40-\mathrm{nm}$ gold bead was attached to V_{1} - A subunit(s) through the Avitag-biotin-streptavidin linkage. Immediately after infusion of millimolar ATP, we found a few rotating beads per field of view $\left(7.1 \times 7.1 \mu \mathrm{~m}^{2}\right)$. The number decreased with time, particularly at high [ATP] where finding the rotation became difficult after 1 h . Both $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ and V_{1} are highly susceptible to ADP inhibition even in the presence of an ATP-regeneration system ${ }^{14,20}$. Part of the dormant molecules was somehow reactivated by re-infusion of the observation buffer, allowing further observations.

All molecules that rotated for many revolutions (as listed in Supplementary Table S1) without an obvious sign of obstruction at a particular angle were subjected to analysis. Rotation speed of $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ was variable and was distributed around $1-10 \mathrm{r} . \mathrm{p}$.s. at 4 mM ATP (Fig. 1c). Typical rotation time courses are shown in Figure 3a-e. Unlike V_{1}, which basically paused every $120^{\circ}, \mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ made short pauses at many angles at all [ATP] examined. A relatively fast rotation (~ 10 r.p.s.) at 4 mM ATP is shown in Figure 3e, which still contains many pauses. At this [ATP], most V_{1} molecules rotated much faster, at ~ 60 r.p.s. (Fig. 1c). The V_{o} domain seems to introduce bumps that lead to the small steps and the reduced average speed of $V_{0} V_{1}$ rotation. In this observation system, the whole stator apparatus ($\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{EGV}_{\mathrm{o}}-\mathrm{a}$) rotates against the central rotor spanning the $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ ($\mathrm{DFV} \mathrm{V}_{\mathrm{o}}-\mathrm{d} \mathrm{V}_{\mathrm{o}}-\mathrm{c}$ ring). The bumps likely represent the interaction between V_{o}-c ring and V_{o}-a in the V_{o} domain. In 15 analysed molecules, we found three beads that showed clean 120° steps(Fig.3f), and these beads (Fig. 1c, blue triangles) rotated fast ($>\sim 30$ r.p.s.). Detailed analyses of the short pauses in the presence of Triton below suggest that these 120° stepping beads are attached to defective $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ in which the V_{o} interaction is somehow impaired, although the opposite possibility of short pauses being an artefact cannot be ruled out.

Approximately 30° stepping. The detergent Triton X-100 (Triton) has been reported to be deleterious to the integrity of $\mathrm{F}_{0} \mathrm{~F}_{1}$, presumably affecting stator-rotor interaction in $\mathrm{F}_{\mathrm{o}}{ }^{21}$. Unexpectedly, however, the substep behaviour of $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ above, indicative of rotor-stator interaction in the V_{o} domain, was enhanced when DDM was replaced with Triton. The small substeps could be more clearly discerned in the presence of Triton. When Triton-solubilized $\mathrm{V}_{0} \mathrm{~V}_{1}$ was reconstituted into liposomes, it actively pumped protons, indicating that Triton treatment leaves $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ intact ${ }^{22}$. The same lot of $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ has also been shown to be inactivated by $\mathrm{N}, \mathrm{N}^{\prime}$-dicyclohexylcarbodiimide ${ }^{14}$, another sign of integrity particularly in the V_{o} portion. Below, we analyze the clearer substeps observed in the presence of Triton.

Somehow, rotation trajectory of $\mathrm{V}_{0} \mathrm{~V}_{1}$ was unstable in the presence of a detergent, whether Triton or DDM, and gradually drifted both rotationally and translationally up to a few nanometres. Nevertheless, we could identify pauses clearly in trajectories of

Figure 2 | Rotation of $\mathbf{V}_{\mathbf{1}}$ (a-e) Typical time courses of rotation with a 40-nm bead (or duplex). (a) Rotation at 4 mM ATP captured at 8,000 fps; (b) $200 \mu \mathrm{M}$ ATP at $2,000 \mathrm{fps}$; (c) $40 \mu \mathrm{M} \mathrm{ATP} \mathrm{at} 250 \mathrm{fps}$; (d) $4 \mu \mathrm{M}$ ATP at 4,000 fps and (e) 2 mM ATP at 4,000 fps, obtained from the same molecule as in \mathbf{d} after medium exchange. Trajectories of the bead centroid (axis divisions: 11.1 nm) and histograms of angular positions, both for the indicated portion of the records, are shown in the upper and lower insets, respectively. (f-i) Histograms of dwell times between 120° steps. (f) Dwell times at 4 mM ATP with $125 \mu \mathrm{~s}$ bin size obtained from 6 molecules observed at $8,000 \mathrm{fps}$; (\mathbf{g}) $200 \mu \mathrm{M}$ ATP, $250 \mu \mathrm{~s}$ bin size, 6 molecules at $8,000 \mathrm{fps}$; (h) $40 \mu \mathrm{M} \mathrm{ATP}$,1 ms bin size, 6 molecules at $4,000 \mathrm{fps}$; (i) $4 \mu \mathrm{M}$ ATP, 4 ms bin, 15 molecules at 2,000 fps. Orange curves show fit with the sequential two-reaction scheme with rates k_{a} and k_{b} : constant $\cdot\left(\exp \left(-k_{a} t\right)-\exp \left(-k_{b} t\right)\right)$. At 4 mM ATP, the two rates turned out to be indistinguishable and thus the fit was made with two identical rates k : constant $\cdot t \cdot \exp (-k t)$. The estimated rates and associated s.e. are: $k^{4 m \mathrm{~m}}=0.36 \pm 0.01 \mathrm{~ms}^{-1}, k_{\mathrm{a}}^{200 \mu \mathrm{M}}=0.17 \pm 0.02 \mathrm{~ms}^{-1}, k_{\mathrm{b}}^{200 \mu \mathrm{M}}=0.28 \pm 0.03 \mathrm{~ms}^{-1}, k_{\mathrm{a}}^{40 \mu \mathrm{M}}=31 \pm 1 \mathrm{~s}^{-1}$, $k_{\mathrm{b}}{ }^{40 \mu \mathrm{M}}=0.40 \pm 0.03 \mathrm{~ms}^{-1}$, and $k_{\mathrm{a}}{ }^{4 \mu \mathrm{M}}=6.1 \pm 0.1 \mathrm{~s}^{-1}, k_{\mathrm{b}}{ }^{4 \mu \mathrm{M}}=0.26 \pm 0.02 \mathrm{~ms}^{-1}$. If we assume that k_{a} represents the rate of ATP binding ($k_{\mathrm{a}}=k_{\text {on }}$ [ATP]), k_{on} is given as $0.85 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $200 \mu \mathrm{M}$ ATP, $0.78 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $40 \mu \mathrm{M}$ and $1.5 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $4 \mu \mathrm{M}$. At $4 \mu \mathrm{M}, k_{\text {on }}$ should dominate the histogram, and the green fit with constant $\cdot \exp \left(-k_{\text {on }}\right.$ [ATP]t) gave $k_{\text {on }}$ of $1.5 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Blue curves show a global fit to $\mathbf{f}-\mathbf{h}$ (equal weight for each count), with sequential reactions starting with ATP binding at the rate $k_{\text {on }}[A T P]$ and two ATP-independent reactions with rates k_{1} and k_{2} : constant $\cdot\left\{\left(k_{2}-k_{1}\right) \cdot \exp \left(-k_{\text {on }}[A T P] t\right)+\left(k_{\text {on }}[A T P]-k_{2}\right)\right.$. $\left.\exp \left(-k_{1} t\right)+\left(k_{1}-k_{\text {on }}[A T P]\right) \cdot \exp \left(-k_{2} t\right)\right\}$ with $k_{\text {on }}=(1.2 \pm 0.1) \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}, k_{1}=0.49 \pm 0.05 \mathrm{~ms}^{-1}, k_{2}=0.34 \pm 0.04 \mathrm{~ms}^{-1}$.

Figure $\mathbf{3}$ | Rotation of $\mathbf{V}_{\mathbf{0}} \mathbf{V}_{\mathbf{1}}$. Typical time courses of the rotation of a 40-nm gold bead attached on $\mathrm{V}_{0} \mathrm{~V}_{1}$ in the presence of 0.05% DDM. Horizontal lines are 30° apart, except in f. (a) Rotation at 4 mM ATP captured at $2,000 \mathrm{fps}$; (b) $40 \mu \mathrm{M} \mathrm{ATP} \mathrm{at} \mathrm{2,000} \mathrm{fps;} \mathrm{(c)} 4 \mu \mathrm{M}$ ATP at $1,000 \mathrm{fps}$ and (d) 400 nM ATP at 250 fps . (e) A relatively fast rotation (~ 10 r.p.s.) with small substeps at 4 mM ATP captured at $1,000 \mathrm{fps}$. (f) A minor case of rotation with 120° steps at 4 mM ATP captured at 2,000 fps. Trajectories of the bead centroid (axis divisions: 11.1 nm) and histograms of angular positions for the indicated portion of the records are shown in the upper and lower insets, respectively.
successive segments for one to two revolutions (Fig. 4a, square insets, with frames coloured as in the segmented time course). We could also estimate pausing angles by fitting an ellipse to each segmented trajectory and assuming that the ellipse represents the projection of a circular orbit oblique to the glass surface (Fig. 4b). The angular histogram of the time course is shown on the left axis of Figure 4a. In most parts, the histogram as well as the trajectories show dwells that occur every $\sim 30^{\circ}$, missing positions ascribed to rapid passage. An autocorrelation of the histogram, equivalent with the pairwise
angular distribution function ${ }^{23,24}$, is shown in Figure 4 c together with its power spectrum (Fig. 4d). The latter shows a peak at $\left(27^{\circ}\right)^{-1}$, indicated by the arrowhead at the resolution of $\sim 4^{\circ}$. In Figure 4e,f, the average of all autocorrelations of individual angular histograms and its power spectrum, including other examples of $\sim 30^{\circ}$ step rotation shown in Figure 5 and Supplementary Figures S2a,b is shown. The power spectrum in Figure 4 f shows a peak at $\left(32^{\circ}\right)^{-1}$.

In Figure 5, in particular, $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ was fixed upside up on a Ni^{2+}-NTA-coated glass surface via His_{10} tags in the A subunits and

Figure $4 \mid$ Well-resolved substeps in $\mathbf{V}_{\mathbf{0}} \mathbf{V}_{\mathbf{1}}$. (a) An expanded time course of the rotation of a 40-nm gold bead attached on a $\mathrm{V}_{0} \mathrm{~V}_{1}$ at $40 \mu \mathrm{M}$ ATP, in the presence of $0.1 \% ~(w / v)$ Triton captured at $2,000 \mathrm{fps}$. Horizontal lines are 30° apart. The time course is split into three and horizontally shifted (magenta and orange curves partially overlap). To minimize the effect of small, gradual drift on the angle analysis, the record was divided into six coloured portions (black, magenta, orange, green, blue and purple) covering ~1 revolution and analysed as follows. First, the bead trajectory in each portion (coloured square insets; grey points show raw data and black after 21-point median filtering of x and y time courses) was fitted with an ellipsoid (orange). Rotary angle was calculated by assuming the ellipsoid to be a projection of a circular orbit (b). The angle 0 , a start of a revolution on the vertical axis of the figure, was assigned to the red dot in each inset, chosen from the 12 orange spokes that fitted the dwells. The green line on the time courses shows 41 -point (20 ms) median. The histograms on the left axis represent logarithm of the number of data points per 2°. Red arrowheads, dwells that are clearly out of the 30° periodicity. Black arrowheads, excursions to a neighbouring (closed, forward; open, backward) dwell position for $>20^{\circ}$ and $>20 \mathrm{~ms}$. Boxes enclosing trajectories show a fixed $89 \times 89 \mathrm{~nm}^{2}$ area, such that drifts manifest as differences between insets. (b) Circular orbit (cyan) of a bead projected on the image plane (pink). Direction of observation is indicated by a green arrow. For the data in \mathbf{a}, the angle θ ranged between 43° and 55°. (c) The autocorrelation of the angular histogram derived from a; the continuous time course over $2,500^{\circ}$ was 21 -point median filtered and then binned at 0.25° intervals. For this analysis, we calculated the angular histogram without adjusting the angular origins of the six portions, that is, without correction for the rotational drift, to eliminate possible subjectivity. (d) The power spectrum of \mathbf{c}, the arrowhead showing a peak at $\left(27^{\circ}\right)^{-1}$. (e) The average of autocorrelations of individual angular histograms for Figures 4c, 5c and Supplementary Figures S2a,b. (f) The power spectrum of e, the arrowhead showing a peak at $\left(32^{\circ}\right)^{-1}$.

Figure 5 | Substep rotation in upside up $\mathbf{V}_{\mathbf{0}} \mathbf{V}_{\mathbf{1}}$ (a) Schematic observation system. $\mathrm{V}_{0} \mathrm{~V}_{1}$ was fixed on a Ni^{2+} - NTA -coated glass surface via His ${ }_{10}$ tags in the A subunits and a bead was attached to a biotinylated $V_{0}-c$ subunit. This $V_{0} V_{1}$ had the TSSA mutation to suppress the ADPMg inhibition ${ }^{11}$. (b) Rotation observed at $2,000 \mathrm{fps}$ at $40 \mu \mathrm{M}$ ATP in the presence of $0.1 \%(\mathrm{w} / \mathrm{v})$ Triton X-100. Horizontal lines are 30° apart. The time course is split into three and horizontally shifted (orange and green curves partially overlap). The record was divided into four coloured portions (black, magenta, orange and green) covering ~ 1 revolution and analysed as described in Figure 4. The angle 0, a start of a revolution on the vertical axis of the figure, was assigned to the red dot in each inset, chosen from the 12 orange spokes that fitted the dwells. The green line on the time courses shows $21-\mathrm{point}$ (10 ms) median. Boxes enclosing trajectories measure $66 \times 66 \mathrm{~nm}^{2}$. Histogram bin size is 3°. (c) Autocorrelation of the angular histogram: the continuous time courses over $1,500^{\circ}$ were 21-point median filtered and then binned at 0.25° intervals without the correction for rotational drift. (d) The power spectrum of \mathbf{c}, the arrowhead showing a peak at $\left(32^{\circ}\right)^{-1}$.
beads were attached with biotinylated $\mathrm{V}_{\mathrm{o}}-\mathrm{c}$ subunit (see Fig. 5a). The $\sim 30^{\circ}$ steps are not the consequences of the upside down configuration (Fig. 5b-d).

Taking into account the variations in the peak position in the individual power spectra, we conclude that substeps in $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ rotation are characterized by an amplitude between $27^{\circ}-32^{\circ}$.

We noticed that some dwells were observed between two $\sim 30^{\circ}$ dwell positions (Fig. 4, orange arrow heads). These may represent ATP-waiting dwells, because they were roughly 120° apart, taking the drift into account. If so, the $\sim 30^{\circ}$ steps are not synchronous with ATP binding. This is not entirely unexpected, if the $\sim 30^{\circ}$ steps arise from the stator-rotor interaction in the V_{o} domain, whereas ATP binding takes place in V_{1}. As mentioned above, ATP-waiting dwells in $V_{0} V_{1}$ do not stand out even at low [ATP]. This suggests that the driving torque produced in the V_{1} portion, the torque that can drive the DF rotor of V_{1} over 120° in a matter of 0.25 ms or less, is sustained for many seconds while the V_{o} rotor slowly proceeds over the bumps presented by the V_{o} stator every $\sim 30^{\circ}$. An alternative, less likely scenario is that every $\sim 30^{\circ}$ step is driven by ATP binding: because of friction in $V_{o}, V_{o} V_{1}$ works in a half-engaged clutch mode where 120° rotation in V_{1} results in $\sim 30^{\circ}$ rotation in V_{o}.

We also noticed that, during a long dwell, momentary excursions to a neighbouring dwell position took place in either direction, mostly forward. In Figure 4a and Supplementary Figure S2, we indicate conspicuous excursions (amplitude $>20^{\circ}$ and duration $>20 \mathrm{~ms}$) with black arrowheads, counting 49 forward (closed arrowheads) and ten backward (open) ones in the total of 17 revolutions. The basically rectangular time courses seen in the expanded insets indicate metastable nature of the neighbouring dwell positions, consistent with bumps of structural origin as with the $\mathrm{V}_{\mathrm{o}}-\mathrm{c}$ and $\mathrm{V}_{\mathrm{o}}-\mathrm{a}$ interaction.

Discussion

We have characterized the ATP-driven rotation of both V_{1} and $V_{0} V_{1}$ under the conditions where the viscous drag between the probe and medium is negligible. For V_{1}, the major results are that it pauses every 120° at all [ATP] (Fig. 2), implying that the pauses occur at ATP-waiting angles, and that at least two reactions other than ATPbinding limit each dwell. No dwells at other positions are resolved, at the resolution of $\sim 0.1 \mathrm{~ms}$, in contrast to F_{1} that shows millisecond dwells at $\sim 80^{\circ}$ past ATP-waiting angles.

The previous study using a mutated V_{1} and a slowly hydrolyzed ATP analogue suggested that hydrolysis in V_{1} occurs at 0°
(ATP-waiting angle), as opposed to the 80° hydrolysis in $\mathrm{F}_{1}{ }^{15}$, but absence of an 80° reaction(s) could not be demonstrated. In F_{1}, another reaction, Pi release, takes place at $\sim 80^{\circ}$, contributing to the millisecond $\sim 80^{\circ}$ dwells that are resolved even at saturating [ATP] if the temporal resolution is sufficiently high ${ }^{15,16}$. By contrast, the present results show that catalytic events in V_{1}, at least those that take longer than a submillisecond, all occur at the ATP-binding position. At least two events other than ATP binding occur at this position, one likely to be ATP hydrolysis and the other phosphate or ADP release (or both combined). Together, it is safe to conclude that the canonical ' 80° and 40° scheme' for F_{1} does not apply to V_{1}.
$\mathrm{V}_{0} \mathrm{~V}_{1}$ shows significantly different rotation behaviours from that of $\mathrm{V}_{1} . \mathrm{V}_{0} \mathrm{~V}_{1}$ rotated an order of magnitude slower. $\mathrm{V}_{0} \mathrm{~V}_{1}$ did not show clear 120° steps as observed in V_{1}, and instead exhibited short pauses separated by $\sim 30^{\circ}$. We could not judge whether the [ATP] dependence of the rotation speed of $\mathrm{V}_{0} \mathrm{~V}_{1}$ follows simple Michaelis-Menten kinetics because of the large scatters in the data (Fig. 1c). At all [ATP], the rotary speed of $V_{0} V_{1}$ was significantly lower than that of V_{1}. The bumps introduced by the V_{o} addition are high, such that passage has to wait for a rare thermal activation. The bumps also obscured ATP-waiting angles, although the angular histograms (Fig. 3, insets) indicate three broad peaks separated by $\sim 120^{\circ}$. Note that the ATPwaiting angles clearly observed in F_{1} or V_{1} represent the most stable orientation of the rotor in the ATP-waiting state. The rotor thermally fluctuates around this angle and actual ATP binding can take place at any point around the most stable angle ${ }^{25-27}$. In the presence of the V_{o} bumps, the motor would wait for ATP on either side of a bump ${ }^{16,28}$, resulting in more than three ATP-waiting angles.

The slow substep rotation of $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ observed here is at odds with our previous observation with a duplex of $220-\mathrm{nm}$ beads on the same upside down system (the A subunits were mutated to render the enzyme less prone to MgADP inhibition) ${ }^{14}$: the average rate of rotation was ~ 10 r.p.s. at saturating [ATP], and the molecules basically showed 120° stepwise rotation at low [ATP]. Defective interaction in the V_{o} domain could explain the discrepancy, although we are not sure if this was really the case.

The $\sim 30^{\circ}$ steps that we resolve relatively clearly in the presence of Triton are commensurate with the periodicity of the V_{0} rotor ring in T. thermophilus V-ATPase ${ }^{7}$. It is highly likely that dwells result from specific interaction between a V_{o}-c subunit in the ring and the V_{o}-a subunit in the stator. When $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ works as an ATP-driven proton pump in a membrane, proton translocation occurs at the interface between $\mathrm{V}_{\mathrm{o}}-\mathrm{c}$ and $\mathrm{V}_{\mathrm{o}}-\mathrm{a}$. It is possible that protons were also translocated in our experiment with detergent-solubilized $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ on a glass surface at one proton per $\sim 30^{\circ}$ step.

The momentary excursions to a neighbouring $\sim 30^{\circ}$ position reinforce that the $\sim 30^{\circ}$ bumps are of structural origin. Presumably, ATP hydrolysis reaction in V_{1} domain sets up an energy slope that biases the thermal ride over bumps in the anticlockwise direction, and the elastic nature of the rotor ${ }^{29}$ helps go over the bumps. Note that this view alone does not account for the strong tendency to rotate back to the original dwelling position after an excursion: the original position is somehow more stable than that of its neighbours. An obvious explanation would be the stable positions being next to an ATP-waiting angle, which must pose an energy valley until the next ATP binds. Indeed, starting angles of the excursions are grossly clustered at $\sim 120^{\circ}$ intervals, supporting this interpretation. The 120° intervals, however, were not strictly observed and there were excursions from other angles. These are likely statistical exceptions, but might point to a remote possibility that the rotor-stator interaction is not static and each time it is reconfigured, possibly accompanying protonation/deprotonation, to make the new position stable; until that happens, the previous position remains more stable.

Recently, Düser et al. ${ }^{30}$ have reported stepwise c-ring rotation relative to the stator a subunits, equivalent to V_{o}-a subunit of our $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$, in E. coli $\mathrm{F}_{\mathrm{o}} \mathrm{F}_{1}$ during ATP synthesis using single-molecule
fluorescence resonance energy transfer. They estimate the step size as $\sim 36^{\circ}$, which is consistent with the proposed c subunit stoichiometry of 10 in E. coli $\mathrm{F}_{0} \mathrm{~F}_{1}$. In their experiment, protons, presumably each one of them, directly drive the rotation of the F_{o} motor, whereas in our experiment the V_{0} motor is passively driven by the V_{1} motor and proton translocation would be the result and not the cause. The $\sim 30^{\circ}$ steps we have observed indicate that passive interactions in the V_{o} domain, possibly coupled to proton translocation, check and set the pace of ATP-driven rotation.

Methods

Proteins. The His-tagged $\mathrm{V}_{1}\left(\mathrm{~A}_{(\mathrm{His}-10 / \mathrm{C} 285 / / 55885) 3} \mathrm{~B}_{(\mathrm{C} 264 \mathrm{~S}) 3} \mathrm{D}_{(\mathrm{EA8C/Q55C})} \mathrm{F}\right)$ was expressed in E. coli. After disruption of the cells by sonication, the his-tagged V_{1} was purified by Ni^{2+}-affinity column (Qiagen) and RESOURCE Q column (GE healthcare) ${ }^{11}$. The purified his-tagged V_{1} was biotinylated at two cysteines using 6-[$\mathrm{N}-[2-$ (N -maleimide)ethyl]-N-piperazinylamide]hexyl-d-biotinamide (Dojindo). The $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$ for rotation assay was obtained by reconstitution of the V_{o} containing a His_{3} tag in each V_{o}-c subunit and the Avi-Tagged $\mathrm{V}_{1}{ }^{14}$. The bound ADP in V_{1} or $\mathrm{V}_{0} \mathrm{~V}_{1}$ was partially removed by successive EDTA-heat treatments ${ }^{14}$.

Observation of rotation of 40-nm gold beads. Streptavidin-coated $40-\mathrm{nm}$ gold beads and Ni^{2+}-NTA-coated cover glass were prepared ${ }^{28,31}$. A flow cell $(5-10 \mu \mathrm{l})$ was made of two coverslips: a $\mathrm{Ni}^{2+}-$ NTA-coated bottom one $\left(24 \times 36 \mathrm{~mm}^{2}\right)$ and an untreated top one $\left(24 \times 24 \mathrm{~mm}^{2}\right)$ separated by two spacers of $50 \mu \mathrm{~m}$ thickness. The biotinylated V_{1} or Avitagged $\mathrm{V}_{0} \mathrm{~V}_{1}(1-5 \mathrm{nM})$ in buffer $\mathrm{A}(50 \mathrm{mM}$ Hepes-KOH, pH8.0, 100 mM KCl , with $0.05 \%(\mathrm{w} / \mathrm{v})$ DDM only for $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{1}$) was applied to the flow cell and incubated for a few minutes. Unbound V_{1} or $V_{0} V_{1}$ was washed out with $20 \mu \mathrm{l}$ of buffer A more than three times. Then, $20 \mu \mathrm{l}$ of buffer A with $10 \mathrm{mg} \mathrm{ml}^{-1}$ BSA was infused to the flow cell and incubated for ~ 30 s to prevent nonspecific binding. The BSA solution in the chamber was washed out with 20μ l of buffer A more than five times. Then, buffer A containing streptavidin-coated $40-\mathrm{nm}$ beads ($10^{10} \sim 10^{11}$ particles per ml) were infused into the flow cell and incubated for a few min. Unbound gold beads were washed out with $20 \mu \mathrm{l}$ of buffer A more than five times. After infusion of $80 \mu \mathrm{l}$ of buffer A containing Mg-ATP at the indicated concentration, $2 \mathrm{mM} \mathrm{MgCl} 2,2.5 \mathrm{mM}$ phosphoenol pyruvate and $0.5 \mathrm{mg} \mathrm{ml}^{-1}$ pyruvate kinase, bead rotation was observed at $23^{\circ} \mathrm{C}$ by laser dark-field microscope ${ }^{15}$ on an inverted microscope (Olympus IX70) with a stable microscope stage (KS-O, Chuukoshaseisakujo), with some modifications ${ }^{28}$ (S. Furuike, unpublished): in place of the oblique laser-illumination ${ }^{15}$, the specimen was illuminated along the optical axis with parallel beam (diameter $\sim 10 \mu \mathrm{~m}$, power $<10 \mathrm{~mW}$), by collimating a laser beam (Millennia IIs, Spectra Physics) with an objective placed just before the specimen. After the specimen was illuminated, the transmitted beam was let out through a pinhole at the centre of a mirror while the mirror deflected the scattered light to form a dark-field image of the beads. Images were captured with a high-speed CMOS camera (FASTCAM-DJV, Photron) at 250 to 8,000 frames per s as an 8-bit AVI file. Centroid of bead images was calculated ${ }^{15,16}$.

References

1. Yokoyama, K. \& Imamura, H. Rotation, structure, and classification of prokaryotic V-ATPase. J. Bioenerg. Biomembr. 37, 405-410 (2005).
2. Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917-929 (2007).
3. Yoshida, M., Muneyuki, E. \& Hisabori, T. ATP synthase-a marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2, 669-677 (2001)
4. Yokoyama, K., Oshima, T. \& Yoshida, M. Thermus thermophilus membraneassociated ATPase. Indication of a eubacterial V-type ATPase. J. Biol. Chem. 265, 21946-21950 (1990).
5. Iwata, M. et al. Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc. Natl Acad. Sci. USA 101, 59-64 (2004).
6. Yokoyama, K. et al. Subunit arrangement in V-ATPase from Thermus thermophilus. J. Biol. Chem. 278, 42686-42691 (2003).
7. Toei, M. et al. Dodecamer rotor ring defines $\mathrm{H}^{+} /$ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proc. Natl Acad. Sci. USA 104, 20256-20261 (2007).
8. Grüber, G., Wieczorek, H., Harvey, W. R. \& Müller, V. Structure-function relationships of A-, F- and V-ATPases. J. Exp. Biol. 204, 2597-2605 (2001).
9. Boyer, P. D. The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215-250 (1993).
10. Junge, W., Lill, H. \& Engelbrecht, S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22, 420-423 (1997).
11. Imamura, H. et al. Evidence for rotation of V_{1}-ATPase. Proc. Natl Acad. Sci. USA 100, 2312-2315 (2003).
12. Imamura, H. et al. Rotation scheme of V_{1}-motor is different from that of F_{1}-motor. Proc. Natl Acad. Sci. USA 102, 17929-17933 (2005).
13. Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M. \& Tamakoshi, M. Rotation of the proteolipid ring in the V-ATPase. J. Biol. Chem. 278, 24255-24258 (2003).
14. Nakano, M. et al. ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. J. Biol. Chem. 283, 20789-20796 (2008).
15. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr \& Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F_{1}-ATPase. Nature 410, 898-904 (2001).
16. Adachi, K. et al. Coupling of rotation and catalysis in F_{1}-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309-321 (2007).
17. Ueno, H., Suzuki, T., Kinosita, K. Jr \& Yoshida, M. ATP-driven stepwise rotation of $\mathrm{F}_{\mathrm{o}} \mathrm{F}_{1}$-ATP synthase. Proc. Natl Acad. Sci. USA 102, 1333-1338 (2005).
18. Diez, M. et al. Proton-powered subunit rotation in single membrane-bound $\mathrm{F}_{\mathrm{o}} \mathrm{F}_{1}$-ATP synthase. Nat. Struct. Mol. Biol. 11, 135-141 (2004).
19. Sambongi, Y. et al. Mechanical rotation of the c subunit oligomer in ATP synthase ($\mathrm{F}_{0} \mathrm{~F}_{1}$): direct observation. Science 286, 1722-1724 (1999).
20. Yokoyama, K. et al. V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J. Biol. Chem. 273, 20504-20510 (1998).
21. Tsunoda, S. P., Aggeler, R., Yoshida, M. \& Capaldi, R. A. Rotation of the c subunit oligomer in fully functional $\mathrm{F}_{\mathrm{o}} \mathrm{F}_{1}$ ATP synthase. Proc. Natl Acad. Sci. USA 98, 898-902 (2001).
22. Yokoyama, K. et al. V-type H^{+}-ATPase/synthase from a thermophilic eubacterium, Thermus thermophilus. Subunit structure and operon. J. Biol. Chem. 275, 13955-13961 (2000).
23. Svoboda, K., Schmidt, C.F., Schnapp, B.J. \& Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721-727 (1993).
24. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. \& Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460-465 (2005).
25. Watanabe-Nakayama, T. et al. Effect of external torque on the ATP-driven rotation of F_{1}-ATPase. Biochem. Biophys. Res. Commun. 366, 951-957 (2008).
26. Hirono-Hara, Y., Ishizuka, K., Kinosita, K. Jr, Yoshida, M. \& Noji, H. Activation of pausing F_{1} motor by external force. Proc. Natl Acad. Sci. USA 102, 4288-4293 (2005).
27. Iko, Y. et al. Acceleration of the ATP-binding rate of F_{1}-ATPase by forcible forward rotation. FEBS Lett. 583, 3187-3191 (2009).
28. Hossain, M. D. et al. Stimulation of F_{1}-ATPase activity by sodium dodecyl sulfate. Biochim. Biophys. Acta 1797, 435-442 (2010).
29. Junge, W., Sielaff, H. \& Engelbrecht, S. Torque generation and elastic power transmission in the rotary $\mathrm{F}_{0} \mathrm{~F}_{1}$-ATPase. Nature 459, 364-370 (2009).
30. Düser, M. G. et al. 36 degrees step size of proton-driven c-ring rotation in $\mathrm{F}_{\mathrm{o}} \mathrm{F}_{1}$-ATP synthase. EMBO J. 28, 2689-2696 (2009).
31. Itoh, H. et al. Mechanically driven ATP synthesis by F_{1}-ATPase. Nature 427, 465-468 (2004).

Acknowledgments

We thank M. Shio for the microscope technique; R. Chiwata and T. Ogawa for technical assistance; Y. Onoue, Y. Maki, H. Yoshida, H. Imamura and E. Saita for critical discussion; S. Takahashi for lab management; and members of Yoshida and Kinosita labs, ICORP in Odaiba for help and advice. This work was partly supported by Grant-inAid from the Ministry of Education, Science, Sports and Culture of Japan to K.Y. (No. 21023009 and 21370042), Targeted Proteins Research Program (TPRP; B-37 to K.Y.), Young Scientists (B) to S.F., and Specially Promoted Research to K.K.

Author contributions

S.F. and K.Y. performed the experiments. M.N. and H.N. performed the sample preparation. S.F., K.K. and K.A. analysed the data. K.Y. designed the study. K.K., K.Y. and S.F. wrote the paper.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/ naturecommunications.

Competing financial interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/ reprintsandpermissions/.

How to cite this article: Furuike, S. et al. Resolving stepping rotation in Thermus thermophilus H^{+}-ATPase/synthase with an essentially drag free probe. Nat. Commun. 2:233 doi: $10.1038 /$ ncomms1215 (2011).

License: This work is licensed under a Creative Commons Attribution-NonCommercialShare Alike 3.0 Unported License. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-sa/3.0/

[^0]: ${ }^{1}$ Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan. ${ }^{2}$ Department of Physics, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan. ${ }^{3}$ Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan. ${ }^{4}$ Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. ${ }^{5}$ ICORP, ATP Synthesis Regulation Project, Japan Science and Technology Agency (JST), National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan. ${ }^{6}$ Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto 603-8555, Japan. †Present address: Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan. Correspondence and requests for materials should be addressed to K.Y. (email: yokoken@cc.kyoto-su.ac.jp) or to K.K. (email: kazuhiko@waseda.jp).

