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Abstract: Time synchronization plays an important role in the scheduling and position technologies of
sensor nodes in underwater acoustic networks (UANs). The time synchronization (TS) algorithms face
challenges such as high requirements of energy efficiency, the estimation accuracy of the time-varying
clock skew and the suppression of the impulsive noise. To achieve accurate time synchronization for
UANs, an energy-efficient TS method based on nonlinear clock skew tracking (NCST) is proposed.
First, based on the sea trial temperature data and the crystal oscillators’ temperature–frequency
characteristics, a nonlinear model is established to characterize the dynamic of clock skews. Second,
a single-way communication scheme based on a receiver-only (RO) paradigm is used in the NCST-TS
to save limited energy. Meanwhile, impulsive noises are considered during the communication
process and the Gaussian mixture model (GMM) is employed to fit receiving timestamp errors
caused by non-Gaussian noise. To combat the nonlinear and non-Gaussian problem, the particle
filter (PF)-based algorithm is used to track the time-varying clock state and an accurate posterior
probability density function under the GMM error model is also given in PF. The simulation results
show that under the GMM error model, the accumulative Root Mean Square Errors (RMSE) of
NCST-TS can be reduced from 10−4 s to 10−5 s compared with existing protocols. It also outperforms
the other TS algorithms in the aspect of energy efficiency.

Keywords: underwater acoustic networks; time synchronization; nonlinear clock skew

1. Introduction

Underwater acoustic networks (UANs) are important scientific observation platforms
for internal observation, information interaction and sensing detection [1,2]. Time syn-
chronization (TS) is an indispensable part of UANs [3,4]. Most of the UANs’ applications
depend on TS services. For example, data collection of distributed sensor nodes requires
the global time and the TS information is important to the underwater localization systems
(especially for the long baseline positioning system) and the communication networking
protocols [5–8] to avoid transmission collisions, such as the Time Division Multiple Access
(TDMA) protocol. Moreover, for seismic observation and forecasting, a more accurate time
is needed for ocean bottom seismographs.

There are mainly two kinds of methods for sensor nodes to obtain the reference time
in UANs. The first is based on the individual atomic clocks, which are more precise than
the crystal oscillator clocks but consume a lot of energy. Specifically, the lifetime of a sensor
node equipped with an atomic clock is about one-fourth of that equipped with a crystal
oscillator [9]. Besides, the atomic clocks also lead to error accumulations in the long term.
The second kind is based on the underwater acoustic communication where the time error
can be measured by the sensor nodes with the TS algorithms, and it has the advantages of
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low energy consumption and error compensation. In this paper, we focus on the content of
TS algorithms.

There are many TS algorithms proposed for terrestrial wireless sensor networks
(WSNs) [10–15], and Rhee et al. [16] gives an in-depth analysis and describes the methods
of estimating clock parameters of most existing clock synchronization algorithms for WSNs.
However, due to the characteristics of the UANs, these algorithms cannot be directly
applied [17]. The design of the underwater TS algorithm faces several challenges. First, the
underwater propagation delay is not negligible in the UANs due to the low propagation
speed of acoustic signals (roughly 1500 m/s in water). Second, underwater sensor nodes
are usually powered with batteries [18] and to refresh the batteries, the recovery and
deployment of the underwater nodes are expensive [19]. The lack of flexibility imposes a
high requirement in the energy efficiency of UANs. As a result, the crystal oscillators with
low energy consumption are widely used in the sensor nodes. However, they suffer from
temperature variation and thus the frequency is time varying, leading to nonlinear clock
drift [20]. Additionally, the signal transmission, which consumes the greatest percentage
of the energy compared with the other working stages of the modem, is required to be
reduced as much as possible. Third, for the sensor nodes in the UANs, the impulsive noises
in underwater environments [21] deteriorate the accuracy of the receiving time stamps.
According to the experiments, these complex noises are non-Gaussian, which enhances the
TS difficulties.

Several TS algorithms have already been proposed for the UANs [22–30]. The algo-
rithm in Cario et al. [22] presented the implementation of an acoustic synchronization and
ranging system to enable the control and cooperation of multiple Unmanned Underwater
Vehicles (UUVs). It used acoustic transmissions and Chip Scale Atomic Clocks (CSACs) in
the SeaModem to overcome the clock drift of real-time clocks (RTS), thus accurate one-way
ranging estimation during long-term missions was achieved. TSHL [23] was first put
forward for UANs, where the clock skew was estimated by linear regression over multiple
one-way reference packet exchanges. In the Tri-message [24], the intervals of reference mes-
sages were increased to improve the accuracy and the time-stamp number was decreased
to 3. D-sync [25] and NU-Sync [26] leveraged the Doppler shift caused by the relative
motion of nodes to achieve synchronization. However, TSHL, Tri-message, D-Sync and
NU-Sync assumed constant clock skew during the packet exchanges. Therefore, they all
suffer great deteriorations if the initial skew is large.

In the DA-Sync [27] algorithm, the effect of the clock skew during the process of
estimating the Doppler scale factor from the physical layer was considered. The APE-Sync
algorithm [28] also took the time-varying clock skew into account. It used DE-Sync [29] to
collect data that included time stamps of nodes and the estimation of the Doppler scale
factor. Then, the data was fed into the Kalman filter to track the variable clock skew period-
ically. In Yang et al. [30], a new skew estimation model was proposed based on a hybrid
approach to characterize the dynamics of the clock skews. The Interactive Multi-Model
(IMM) Kalman filter was employed to estimate the time-varying clock state vector. How-
ever, the DA-Sync, APE-Sync and ACSE-IMM [30] used the linear models to describe the
variation in clock skew which may deteriorate the accuracy of TS [31]. Furthermore, the as-
sumption of the white Gaussian noise model during the multiple two-way communication
processes was not accurate enough for the real underwater environments.

The problems of nonlinear variations in the clock skew and non-Gaussian noises
cannot be ignored when the sensor nodes work for a long time under the sea. The Kalman
filter is the optimal linear filter only when the input entering noise is Gaussian, which is
not relevant to this paper. The particle filter-based algorithms are sequential Monte Carlo
methods that use finite and large sets of particles to approximate a required probability
density, which is suitable for the nonlinear and non-Gaussian problems. To the best of our
knowledge, the PF-based TS algorithm has not yet been researched.
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In this work, we propose an energy-efficient TS based on nonlinear clock skew tracking
(NCST-TS), which aims to overcome the time-varying nonlinear clock skew issue for energy-
constrained UANs. The enhancement lies in the following aspects.

• First, to characterize time-varying clock skews, a nonlinear model based on the temper-
ature data collected from sea trials and the crystal oscillators’ temperature–frequency
characteristics is established. It compensates for the estimation error introduced by
clock skews and increases the TS accuracy.

• Second, based on a receive-only (RO) paradigm, a single-way communication scheme
is used to reduce the energy consumption of UANs. By receiving the periodical
broadcast signals from the reference node, any sensor node in the communication
range can measure the time of arrival (TOA) of the received packets and obtain a
series of observation equations that are used to calibrate the clock parameters. The
impulsive noises are considered during communication processes and the Gaussian
Mixture Model (GMM) is adopted to fit the noise in this paper.

• Last, to solve the nonlinear and non-Gaussian problems, an improved particle filter
(PF) algorithm is employed. Moreover, the particles’ weights are revised under the
GMM noise model and thus, accurate clock parameters can be estimated.

The simulations demonstrate that the tracking results of the NCST-TS algorithm
under the Gaussian and the GMM noise model are better than those of the existing TS
algorithms. Under the GMM noise model, the Root Mean Square Errors (RMSE) of NCTS-
TS can be reduced from 10−4 s to 10−5 s. NCST-TS also outperforms existing schemes in
energy efficiency.

The rest of the paper is organized as follows: In Section 2, the description of NCST-TS
is provided. In Section 3, we show the simulation results that compare NCST-TS and the
other TS algorithms. Finally, the conclusions are given in Section 4.

2. Algorithm Description
2.1. System Model

The model of nonlinear clock skew and the tracking process of the clock skew are
shown in Figure 1. It mainly consists of two parts. The first one is the nonlinear clock
skew model. The second is the revised PF filter which is used to track the variation in the
clock skew.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 14 
 

 

In this work, we propose an energy-efficient TS based on nonlinear clock skew track-

ing (NCST-TS), which aims to overcome the time-varying nonlinear clock skew issue for 

energy-constrained UANs. The enhancement lies in the following aspects. 

 First, to characterize time-varying clock skews, a nonlinear model based on the tem-

perature data collected from sea trials and the crystal oscillators’ temperature–fre-

quency characteristics is established. It compensates for the estimation error intro-

duced by clock skews and increases the TS accuracy. 

 Second, based on a receive-only (RO) paradigm, a single-way communication 

scheme is used to reduce the energy consumption of UANs. By receiving the period-

ical broadcast signals from the reference node, any sensor node in the communication 

range can measure the time of arrival (TOA) of the received packets and obtain a 

series of observation equations that are used to calibrate the clock parameters. The 

impulsive noises are considered during communication processes and the Gaussian 

Mixture Model (GMM) is adopted to fit the noise in this paper. 

 Last, to solve the nonlinear and non-Gaussian problems, an improved particle filter 

(PF) algorithm is employed. Moreover, the particles’ weights are revised under the 

GMM noise model and thus, accurate clock parameters can be estimated. 

The simulations demonstrate that the tracking results of the NCST-TS algorithm under 

the Gaussian and the GMM noise model are better than those of the existing TS algorithms. 

Under the GMM noise model, the Root Mean Square Errors (RMSE) of NCTS-TS can be re-

duced from 10−4 s to 10−5 s. NCST-TS also outperforms existing schemes in energy efficiency. 

The rest of the paper is organized as follows: In Section 2, the description of NCST-

TS is provided. In Section 3, we show the simulation results that compare NCST-TS and 

the other TS algorithms. Finally, the conclusions are given in Section 4. 

2. Algorithm Description 

2.1. System Model 

The model of nonlinear clock skew and the tracking process of the clock skew are shown 

in Figure 1. It mainly consists of two parts. The first one is the nonlinear clock skew model. 

The second is the revised PF filter which is used to track the variation in the clock skew. 

(1) (2) (3)( , , , )
SKEW

f t   
( )

TEMP
T f t

(1) (2) (3)( , , , )
XO

f T   

{( , )} 
m m

t T

s
k SKEW t k

f
 



k
z

k
xˆ

k
x

k


k
v

 

Figure 1. The diagram of the system model. 
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Figure 1. The diagram of the system model.

2.1.1. Nonlinear Clock Skew Model

Attributed to the low-power consumption characteristic of crystal oscillators, they
are widely used in sensor nodes to generate a local clock. However, the output frequency
of crystal oscillators is temperature sensitive, leading to a nonlinear variation in clock
skews [20,31]. Linear models used in existing TS algorithms [28–30] are bounded to
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eliminate the precision of TS accuracy. To achieve an accurate TS, we proposed a nonlinear
model to describe the dynamics of clock skews.

Generally, the temperature is constantly changing in a day. Based on the data set of
time t and temperature {tm, Tm|1 ≤ m ≤ M, M ≥ 3}, the function fTEMP is used to express
the variation in T according to time t:

T = fTEMP(t). (1)

On the other hand, the clock skew of the sensor node depends on the shape of the
crystal and capacitance and other peripheral equipment. It is influenced by T to a great
extent. Function fXO illustrates this relationship, as shown in Equation (2), in which the
frequency–temperature characteristics of the quartz crystal is expressed as a third-degree
polynomial [32]

α = fXO

(
λ(1), λ(2), λ(3), T

)
=

3
∑

n=1
λ(n)

(
T − Tre f

)n

, (2)

where Tre f is the reference temperature, and λ(n) (n = 1, 2, 3) is the n-order frequency–
temperature-fitting model parameters of the quartz crystal.

Through formula transformation, the variation in the clock skew according to time in
a day can also be obtained. We assume the sensor nodes operate at an identical sampling
to interval ∆s, and the discrete form of the clock skew can be written as

αk =
3

∑
n=1

λ(n)
(

fTEMP(t)− Tre f

)n
∣∣∣∣∣
t=k∆s

= fSKEW(λ(1), λ(2), λ(3), t)|t=k∆s
. (3)

The recursive form of the nonlinear model of the clock skew can be obtained, which is
represented as

αk = αk−1 +
3

∑
n=1

(λ(n)
(

fTEMP(k)− Tre f

)n
− λ(n)

(
fTEMP(k− 1)− Tre f

)n
). (4)

We can define the state vector as

xk = αk + ηk, (5)

where ηk denotes the system noise of the clock skew at step k and it represents Gaussian dis-
tributions.

2.1.2. Single-Way Communication Scheme under the GMM Noise Model

The single-way communication scheme in detail is illustrated in Figure 2. Reference
node A has the global time. It starts the TS process by sending messages periodically to
other sensor nodes, containing its transmission time stamps t(A). We assume that node A
waits for ∆ seconds between two successive transmissions. Unsynchronized nodes in their
communication range timestamp the local time t(B) at which it receives the messages from
node A. The local time [33] of node B can be written as

t(B)k = α
(AB)
k ×

(
t(A)
k + d(AB) + X(AB)

k

)
+ β(AB) + v(B)k , (6)

where α(AB) and β(AB) denote the nonlinear time-varying clock skew and the clock offset
between two clocks, respectively, at step k, and d = D/c is the known part of the prop-
agation delay, which is assumed as a constant value. D represents the distance between
two nodes and c is the speed of sound underwater. We assume c = 1500 m/s. The i.i.d. zero
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mean Gaussian random variable X(AB) denotes the random delay and v(B) is measurement
noise in UANs.
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Figure 2. Single-way communication scheme.

As for the underwater acoustic channel, underwater noises include environment noise,
radiation noise and self-noise of targets, etc. When there is an impulsive noise in actual
noise, it causes receiving errors of timestamps, which will deteriorate the accuracy of TS. In
this paper, the GMM [34] is used to fit receiving timestamp errors caused by non-Gaussian
noise. The probability density distribution of measurement noise v(B) is

p(v(B)|Θ) =
I

∑
i=1

φiN (v(B)|µi, σ2
i ), (7)

where Θ={φi, µi, σ2
i } is a parameter set of GMM, M is the number of components,N

(
µi, σ2

i
)

is the probability density function of the i-th Gaussian component with the mean value
at µi and variance value at σ2

i and φi is the weight value of the i-th Gaussian component

which is satisfied when
I

∑
i=1

φi = 1.

After several rounds of message exchanges, node B divides the received timestamps
into several groups. Four timestamps t(A)

2k−1, t(B)2k−1, t(A)
2k , t(B)2k consist of a group. Then, we

can produce Equation (8):

t(B)2k − t(B)2k−1 = α(AB)(k)×
(

t(A)
2k − t(A)

2k−1 + X(AB)
2k − X(AB)

2k−1

)
+
(

v(B)2k − v(B)2k−1

)
. (8)

More specifically, under the assumption that t(A)
2k − t(A)

2k−1 �
(

X(AB)
2k − X(AB)

2k−1

)
, which

is verified in the considered underwater case, by stacking the observations in vector form,
the measurement equation can be presented as zk = Hxk + v(B)k , where zk, H, v(B)k can be
obtained as

zk = t(B)2k − t(B)2k−1, (9)

H = t(A)
2k − t(A)

2k−1, (10)

v(B)k = v(B)2k − v(B)2k−1. (11)

2.1.3. Calibration of the Clock offset

The process of clock offset calibration is similar to the classical two-way synchroniza-
tion exchange as shown in TPSN [11] and Figure 3. The unsynchronized node B sends
messages to reference node A at time tB1, the skew-corrected local timestamp. Node A
receives the message at time tA2 and responses to node B at time tA3. Node B receives the
response at time tB4. Then, node B can correct the clock offset through

o f f setB =
[(tA2 − tB1)− (tB4 − tA3)]

2
. (12)
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2.2. Nonlinear Clock Skew Tracking Based on PF

Because of the nonlinear time-varying clock skews and non-Gaussian distribution of
measurement errors, PF algorithms [35] are adopted to track the clock state in NCST-TS.
Estimating results of the clock state can be calculated by particles and associated weights.
The weights are dependent on the likelihood function p(zk|x

(n)
k ), which is revised under

the GMM error model in this paper.
The steps of tracking nonlinear clock skew are shown in Figure 4.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 3. Message exchange process of clock offset calibration. 

2.2. Nonlinear Clock Skew Tracking Based on PF 

Because of the nonlinear time-varying clock skews and non-Gaussian distribution of 

measurement errors, PF algorithms [35] are adopted to track the clock state in NCST-TS. 

Estimating results of the clock state can be calculated by particles and associated weights. 

The weights are dependent on the likelihood function �������
(�)

�, which is revised under 

the GMM error model in this paper. 

The steps of tracking nonlinear clock skew are shown in Figure 4. 

( ) ( ) ( )

1 1
( | )n n n

k k k k
w w p x x

 


( ) ( )

1
ˆ{ , }n n N

k k n
x w




( ) ( )

0 0 1 0
{ , } ~ ( )n n N

n
x w p x



( ) ( ) ( ) ( )

1 1
{ , } { , }n n N n n N

k k n k k n
x w x w

 
 

( ) ( )

1
ˆ

N n n

k k kn
x x w


   

( )

1

n

k
x



 

Figure 4. Diagram of tracking nonlinear clock skew using PF under GMM noise model. 

Based on the prior probability density �(��), initial particles {��
(�)

}���
�  and weights 

{��
(�)

}���
�  are generated at � = 0. The weight of each particle is ��

(�)
= 1/�, 1 ≤ � ≤ �. 

Particles at k step ��
(�)

 can be calculated from equation (4) and (5). 

In this section, the sampling importance resampling (SIR) filter [36] is considered, 

thus prior density �(��|����
(�)

) is chosen to be the importance density. Under the GMM 

noise model, the weights of particles are revised and updated as 

��
(�)

= ����
(�)

���������
(�)

�

= � ����
(�)

× ��

�

���

×
1

√2���

�
�

�����������
(�)

��
�

���
�

.

(13)

Figure 4. Diagram of tracking nonlinear clock skew using PF under GMM noise model.

Based on the prior probability density p(x0), initial particles {x(n)0 }
N

n=1 and weights

{w(n)
0 }

N

n=1 are generated at k = 0. The weight of each particle is w(n)
0 = 1/N, 1 ≤ n ≤ N.

Particles at k step x(n)k can be calculated from Equation (4) and (5).
In this section, the sampling importance resampling (SIR) filter [36] is considered, thus

prior density p(xk|x
(n)
k−1) is chosen to be the importance density. Under the GMM noise

model, the weights of particles are revised and updated as

w(n)
k = w(n)

k−1 p(xk|x
(n)
k−1)

=
M
∑

m=1
w(n)

k−1 × φi × 1√
2πσi

e
−

(zk−Hk(x(n)k−1))
2

2σ2
i .

(13)
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Then, the weight is normalized as

w̃(n)
k =

w(n)
k

∑N
n=1 w(n)

k

, (14)

and an approximation estimation of the posterior probability density function at time k can
be expressed as

p(xk|z1:k) ≈
{

x(n)k , w̃(n)
k

}N

n=1
. (15)

For the particles at time k, the resampling method is used to solve the problem of the
degeneracy phenomenon in PF algorithms [37]. If the number of effective particles (Ne f f )
falls below some threshold (Nth)

Ne f f ≈
1

∑n w(n)
k

< Nth, (16)

a new set of particles {x̃(n)k }
N

n=1 is generated by eliminating particles having low-importance
weights and by multiplying particles having high-importance weights [36]. We employ the
multinomial resampling method in this paper. The weights are now reset to 1/N. After

resampling, we have a new set of particles {x̃(n)k , 1/N}
N

n=1.
Finally, the estimation value at time k of the clock skew is

x̂k =
1
N
×

N

∑
n=1

x̃k
(n). (17)

3. Performance Evaluation
3.1. Simulation Setup

The performance of the proposed TS algorithm NCST-TS was compared with APE-
Sync, Tri-Message and the classical PF algorithm. APE-Sync was based on the Kalman
filter algorithm. In the Tri-message, the influence of the clock skew during TS processes
was not considered. The classical PF algorithm assumed the noise satisfied the Gaussian
distribution for simplicity [35]. The parameters used in our simulations are shown in Table
1. Without loss of generality, the average of each data point is obtained by 1000 runs.

Table 1. Simulation parameters.

Parameters Value

Distance D 1500 m
Speed of sound c 1500 m/s

Maximum skew of α 40 ppm
Maximum offset of β 0.01 s

Interval between transmit messages4 2 s
Number of message L 30
Granularity of clock 0.1 µs

random delay X 10 µs

3.2. Simulation Results and Analysis
3.2.1. Performance of Tracking Results and RMSE Based on the Gaussian Noise Model

Through the observation of the collected experimental data, the Fourier series model
is used to describe temperature variation as follows:

T(t) =
Q

∑
q=0

aq cos(qω0t) + bq sin(qω0t) (18)
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where
{

aq
∣∣0 ≤ q ≤ Q

}
,
{

bq
∣∣1 ≤ q ≤ Q

}
, ω0 are the fitting coefficients, and Q denotes

the number of Fourier series. Based on this temperature model, we carried out a series
of simulations.

When the noise model satisfies the Gaussian distribution, NCST-TS is the same as the
classical PF algorithm. As a result, first, we demonstrate the advantage of the proposed
NCST-TS algorithm over the aforementioned APE-Sync and Tri-message algorithms based
on the Gaussian noise model.

In Figure 5, the clock skew tracking results of three different TS algorithms are com-
pared. In Tri-message, it is assumed the clock skew is invariable during the communication
processes, which cannot track the time-varying clock skew well. The APE-Sync algorithm
considers the variation in clock skew, fortunately. However, it uses the Kalman filter to
track the state of the clock skew which is not suited to the nonlinear model. Compared with
APE-Sync, PF-based NCST-TS can handle the nonlinear characteristic of the system well. It
outperforms both the Tri-message and APE-Sync. Figure 6 shows the accumulative RMSE
of APE-Sync, Tri-message and NCST-TS based on the Gaussian noise model, respectively,
in a day. NCST-TS shows the best tracking performance among the three synchronization
methods. It is easy to understand that the proposed algorithm has the smallest TS error. At
the end of the simulation, the accumulative RMSE of the proposed method is 3.8× 10−6s.
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3.2.2. Performance on Tracking Results and RMSE Based on the GMM Noise Model

To investigate the performance of different TS algorithms in a more realistic underwa-
ter environment, artificial mixed Gaussian errors are added to the received time stamps.
The mixed Gaussian errors follow a distribution in Equation (7).

In Figure 7, based on the GMM noise model, the clock skew tracking results of four TS
algorithms, including APE-Sync, Tri-message, the classical PF algorithm and NCST-TS, are
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compared. Clearly, NSCT-TS gives the best estimation results. The Tri-message only uses
four time stamps to calibrate clock parameters which are easily influenced by impulsive
noise. As shown in Figure 7, at the moment the impulsive noise happens, the estimated
errors of clock parameters are obvious. In the Kalman filter-based APE-Sync algorithm,
the linear system model and Gaussian measurement noise are assumed. With the GMM
measurement noise model and nonlinear clock skew model that are used in this work,
APE-Sync also results in a large number of errors in the estimation of clock parameters.
NCST-TS is not limited to these conditions. Moreover, considering GMM measurement
noise, NCST-TS uses Equation (14) to re-assign the weights of particles. The new particles
and weights are used to represent the required posterior density under the Gaussian
mixture model. Compared with the classical PF algorithm, the NCST-TS algorithm has a
better performance.
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As shown in Figure 8, the accumulative RMSE of the APE-Sync algorithm and Tri-
message TS method increase quickly because of the problem of ignorance of time-varying
clock skews. Compared to them, the conditional PF method and NCST-TS have better
performance and the NCST-TS algorithm outperforms other TS methods. At the last
moment of a day, the accumulative RMSE of the proposed method under the GMM noise
model is 3.3× 10−6s.
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3.2.3. Comparison of Different Algorithms in Terms of Energy Efficiency

Figure 9 compares the required number of re-synchronizations of different synchroniza-
tion methods under the GMM noise model. The definition is shown in Equation (19) [38],

Ω =
P(

α̂ε+(β̂−β)
α−α̂

) (19)

where P represents a period of time after TS completes and P is set to 105 s. ε is the tolerance
error, α and α̂ are the true clock skew and estimated clock skew and β and β̂ are the true
clock offset and estimated clock offset, respectively. More energy is consumed according to
the increase in the synchronization repeating times.
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Figure 9 shows that as the value tolerance error increases, Ω will become smaller. The
re-synchronization times are dependent upon the accuracy of estimated clock parameters.
The NCST-TS algorithm has the highest estimated accuracy among the four synchronization
methods. As a result, it needs a minimum number of re-synchronizations and it has the
highest energy efficiency, which is suitable for UANs.

3.2.4. Comparison of Different Algorithms in Terms of Time Error after TS

The error curves of Tri-message, APE-Sync, the classical PF algorithm and the NCST-
TS algorithm under the GMM noise model are depicted in Figure 10. Clearly, the NCST-TS
algorithm works much better than APE-Sync, the Tri-message protocol and the classical
PF method. The NCST-TS scheme achieves a more precise skew, which reduces TS errors.
Tri-message and APE-Sync cannot track the nonlinear model of clock skews, which results
in higher TS errors. Compared with the classical PF algorithm, NCST-TS recalculates the
particles’ weights under the GMM noise model, which gives a more precise posterior
density function. As a result, the NCST-TS algorithm estimates clock parameters well and
corrects the shortcomings of other schemes, which is better than the other TS algorithms.

3.2.5. Comparison of Different TS Algorithms in Terms of Consumed Energy

We assume the TS rounds of APE-Sync and NCST-TS are the same for 20 times.
The number of time stamps of the sensor node transmitting and receiving, and the energy
consumed by APE-Sync and NCST-TS, are shown in Table 2. In our simulations, 20 particles
are used.

We assume the transmitting power is 2 W, the receiving power is 0.75 W and the
transmission delay and the receiving delay are ts, tr. and ts = tr =0.7 s. The CPU we used
is Inter(R) Core(YM) i7-8750H @ 2.2 GHz and the thermal design power (TDP) is 45 W.
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The energy consumed by NCST-TS and APE-Sync on the computer is 0.333 and 0.158 J,
respectively. However, compared with processing energy, the transmission energy is the
major consumption aspect. Due to the single-way communication scheme of NCST-TS,
it saves 50% energy compared with APE-Sync. Although there are differences in energy
consumption on the modem’s DSP platform, the difference will not exceed 10 times, which
is acceptable.

In other words, although NCST-TS uses PF to track the variation in the clock skew, it
decreases the transmission frequency, which saves most of the energy of the sensor node.
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Figure 10. After TS completes, the clock error vs. time after synchronization based on GMM
noise model.

Table 2. Comparison of different methods under GMM noise model.

Algorithm Run Time
(ms)

Number of
Transmitting
Time Stamps

Number of
Receiving

Time Stamps

Energy
Consumed by
Processing (J)

Energy Consumed
by Trans and Revs

Activities (J)

NCST-TS 7.4 1 21 0.333 12.425
APE-Sync 3.5 11 11 0.158 21.175

4. Conclusions and Future Work

An energy-efficient TS algorithm based on a nonlinear clock skew model for UANs,
named NCST-TS, was proposed in this paper. To combat the problem of nonlinear clock
drift caused by temperature variation in sensor nodes, a nonlinear model was established
to describe the dynamic of clock skews. It is more accurate than the linear model. Then,
a single-way communication scheme was used by sensor nodes to synchronize with the
reference clock only through receiving reference messages. This scheme conserved a lot
of energy for the whole network. Moreover, during the communication process between
sensor nodes and the reference node, the GMM noise model was introduced to fit the
non-Gaussian errors of the receiving timestamps in underwater environments. Finally,
to deal with nonlinear and non-Gaussian problems, sensor nodes tracked the variation
in clock states based on an improved PF method. The particles’ weights formula under
the GMM noise model were revised. Our simulation results show that compared with
existing algorithms, the NCST-TS algorithm could track the clock skew well, and it is a
high-precision algorithm with a low message overhead.

Future research will focus on the exploitation of the concepts presented here to support
mobile nodes TS and multi-hop TS in large UANs. A network with well-synchronized clock
parameters may have sufficient fidelity to perform localization and navigation purposes.
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