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The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation
has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian
geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved
parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable
approximation error bound.

Q
uantum algorithms based on the circuit model have been explored to solve difficult problems in terms of
classical computers1, e.g., large integer factoring2,3 and quantum searching algorithm4. These quantum
models are composed of a sequence of quantum gates which may be generated from unitary evolution

operator U(t) with special Hamiltonian. The interacted gates or nonlocal quantum operations are views as the key
of circuit complexity. One algorithm is computable or efficient if it can be realized with polynomial interacted
gates in terms of system size5,6. One main goal of quantum computation is to investigate efficient quantum circuits
to synthesize quantum operation7–9.

The quantum circuit complexity for qubit systems has been investigated with different approaches such as the
geometric approach10–14. It provides an equivalent statement as the shortest path problem in a curved geometry.
The quantum circuit complexity may be reduced to the metric distance between the identity operation and
desired unitary using designed Riemannian metric on the unitary space. Thus the metric distance is a good
measure of the complexity of synthesizing quantum nonlocal evolution.

In comparison to the qubit system, d-dimensional quantum states (qudits for short) could be more efficient in
quantum applications. With larger state space the qudit algorithms may improve channel capacity15,16 and
quantum gates implementation17–19, increase security20–24 and explore quantum features25–27. The qudit systems
have also been experimentally realized28–31. The high-dimensional quantum system maybe provide different
quantum correlations and efficient information processing. d degenerate (in the rotating-wave approximation
sense) ground states may form the qudit, coherently coupled via a common excited state by pulsed external fields
of the same time dependence and the same detuning32. The multiple photon states may also be reformed as qudit
with the help of symmetric primitive states under the permutation invariance32,33.

In this paper we focus on the circuit complexity of qudit quantum computations. The results for qubit-
systems13 and qutrit-system14 are extended to general qudits. Algebraic methods such as eigenvalue decomposi-
tion34,35, cosine-sine decomposition36 or Householder Reflection decomposition37 and qudit computation based
on d-level cluster38 have been used to find the optimal qudit circuits. In comparison to these evaluations, the
quantum circuit complexity of nonlocal qudit evolutions are revalued in terms of the Riemannian geometry on
SU(dn). The qudit system evolution is completely determined by the geodesic equation and the initial value of the
Hamiltonian. The minimal geodesics through a desired unitary, will be investigated by deforming the known
geodesics of a special metric to the geodesics of the metric of qudit circuits. Thus the qubit or qutrit systems13,14 are
improved to qudit ones, in the sense that universal qudit gates are possible to efficiently synthesize a unitary
operation with controllable error, and present explicit relationship between the quantum circuit complexity and
total error bound, which have not ensured in previous results13,14. Three-qudit system as an explicit example is
presented in supplementary information.
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Results
A quantum gate on n-qudit states is a unitary matrix U g SU(dn)
determined by time-dependent Hamiltonian H(t) (with reduced
Planck constant) according to the following Schrödinger equation,

i
d
dt

U tð Þ~H tð ÞU tð Þ ð1Þ

with U(0) 5 I, U(T) 5 U and i~
ffiffiffiffiffiffiffiffi
{1
p

. The evolution time t g [0, T].
H can be decomposed with the generalized Gell-Mann matrices. The
Lie algebra su(dn) of SU(dn) is different from the Pauli matrices of
qubits. Thus we first present necessary results of su(dn).

Let ejk denotes the d-by-d matrix with a 1 in the j, k position and
zeros elsewhere, a basis can be described as follows:

ud
jk~ejkzekj,1ƒjvkƒd, ð2Þ

ud
jk~i ejk{ekj

� �
,1ƒkvjƒd, ð3Þ

ud
jj~diag 1, � � � ,1,{j,0d{2j

� �
,j~1, � � � ,d{1 ð4Þ

Here, diag represents the diagonal matrix, 0d 2 2j denotes the zeros of

length d 2 2j. Thus ud
jk

n o
are traceless and Hermitian matrices

which are generalizations of Pauli matrices for qudit systems.
These matrices combined with identity matrix Id : ~ud

dd span the
vector space of d 3 d Hermitian matrix

x11 z12 z13 � � � z1d

�z12 x22 z23 � � � z2d

�z13 �z23 x33 � � � z3d

..

. ..
. ..

.
P

..

.

�z1d �z2d �z3d � � � xdd

0
BBBBBBB@

1
CCCCCCCA

ð5Þ

with real xjj and complex zjk, and are also named with generalized
Gell-Mann matrices. They construct one group representation of
su(d) and other representations may be obtained by arbitrary unitary
transformations. From the unitary matrix representation a recursive
parametrization of the unitary matrix Ud is followed as

Ud~e
Pd

j,k~1
ajkud

jk ð6Þ

with special coefficients ajk.
Let x‘~ud

jk with ‘~jdzk and

Xs
‘~I6s{1

6x‘6I6d{s ð7Þ

be an operator acting on the s-th qudit with x‘ and the rest qudits
with identity operation I, ‘~1, � � � ,d2. The basis of su(dn) is consti-
tuted by YPt

t

� �
, t~1, � � � ,n, Pt~ i1, � � � ,itf g with all possible

1vi1v � � �vikƒn, where

YPt
t ~ P

t

k~1
xik

jk
ð8Þ

YP
t denotes all operators with generalized Gell-Mann matrices

xj1 , � � � ,xjk acting on t qudits at sites P~ i1, � � � ,ikf g, respectively,
and rest with identity. The element in YPt

t

� �
may be named as t-body.

To evaluate the error bound13,14 the norm of an operator A is
defined by

Ak k~ max
xk k~1

Axk k ð9Þ

which is equivalent to the operator norm given by ÆA, Bæ 5 trA{ B.
The norm of generalized Gell-Mann matrices satisfies

ujk

�� ��~1,j=k, and ukkk k~k with k~1, � � � ,d{1. If we replace

these not normalized ukk with
1
k

ukk, the generalized Gell-Mann mat-

rices are then normal with respect to the operator norm14, still
denoted by YPt

t

� �
, is normalized.

Our main result is the following theorem

Main theorem. For any small constant e, each unitary UA g SU(dn)
may be synthesized using O(e22) one- and two-qudit gates, with error

U{UAk kƒe.
To complete the proof necessary lemmas should be proved. Notice

that the generalized Gell-Mann matrices have the following com-
munication relations [xj, xk] 5 0 or cjkxs for suitable constants cjk

and generalized Gell-Mann matrix xs, specially, each generalized
Gell-Mann matrix xs may be generated by the Lie product of two
other generalized Gell-Mann matrices xj and xk. By using the tensor
product (x1 fl x2)(x3 fl x4) 5 (x1x3) fl (x2x4), it easily follows that
x‘16xs6x‘2~ x‘16 1

� ffiffiffiffiffi
cjk
p� �

xj6Id,Id6 1
� ffiffiffiffiffi

cjk
p� �

xk6x‘2

	 

. Thus

all 3-body interaction may be generated by 1-body and 2-body. By
induction it is not difficult to prove the following lemma.

Lemma 1. The 1-body and 2-body are universal for SU(dn).
This lemma may be reformed as: all s-body items (s $ 3) in the

basis of su(dn) can be generated by the Lie bracket products of 1-body
and 2-body items. With the lemma only problem is to address the
approximate accuracy under the limited 2-body items.

The time-dependent Hamiltonian H(t) is represented as

H~
X
j[I 1

hjsjz
X
s[I 2

hss
0
s ð10Þ

where I 1 denotes all possible one and two-body interactions, I 2

denotes all other more-body interactions, hj are real coefficients,
i.e., sj denotes all possible YP1

1 , YP2
2 defined in equation (8) and s0s

denotes all possible YPt
t t§3ð Þ defined in equation (8). The cost of

unitary operation U synthesization with Hamiltonian is defined as,
similar to the qubit case,

F Hð Þ~
X
j[I 1

h2
j zp

X
s[I 2

h2
s

 !1=2

ð11Þ

where p . 0 is the penalty paid for three-and more-body items13,14.
This cost gives rise to a natural distance in SU(dn). A curve CU

between the identity operation I and U is a smooth function,

CU :
U tð Þ : 0,T½ �.SU dnð Þ
U 0ð Þ~I,U Tð Þ~U

�
ð12Þ

The curve length is given by D CUð Þ:
ðT

0
F H tð Þð Þdt. D CUð Þ is invari-

ant under different parameterizations of CU , letting F(H(t)) 5 1 by
rescaling H(t) the evolution time T~D CUð Þ. The distance D(I, U)
between I and U is defined by

D I,Uð Þ~ min
VCU

d CUð Þ ð13Þ

The function F(H(?)) has defined a norm associated to a right invari-
ant Riemannian metric13 whose metric tensor is presented as

s1,s2~

0, if s1=s2

1, if s1~s2 and si are 1 or 2� body

p, if s1~s2 and si are no less than 3� body

8><
>: ð14Þ

With this metric the distance D(I, U) equals to the shortest path of the

geodesic equation
d
dt

H tð Þ,J tð Þ
� 


~i H tð Þ, H tð Þ,J tð Þ½ �h i. Here Æ?, ?æ

is the inner product on the tangent space su(dn), and J is an arbitrary
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operator in su(dn). The Lemma 1 with the basis YPt
t

� �
of su(dn) shows

all q-body items (q $ 3) may be generated by Lie bracket products of
1-body and 2-body items. Thus the metric in equation (14) is reas-
onable to find the minimal length solution to the geodesic equation13,
because the multiple-body items will be ignorable for large p. The
one- and two-body items mainly contribute to the solution.

Based on the statement above the Hamiltonian H(t) may be pro-
jected onto one- and two-qudit items H2(t). The projection error is
controllable in terms of large penalty p. And then the evolution
according to H2(t) is divided into small time intervals and approxi-
mated by a constant mean Hamiltonian over each interval.
Moreover, the evolution according to the constant mean
Hamiltonian over each interval may be composed of a sequence of
one- and two-qudit quantum gates13,14. The main problem is to evalu-
ate the total errors introduced by these approximations.

Lemma 2. If U g SU(dn) is generated by H(t) satisfying jjH(t)jj# c in
time interval [0, T], then

U{e{i �HT
��� ���ƒecT{1{cT~O c2T2

� �
ð15Þ

where �H~
1
T

ðT

0
H tð Þdt is the mean Hamiltonian.

Proof. The unitary operator U(t) has defined one Dyson operator38

with the evolution jy(t)æ 5 U(t)jy(0)æ. Its Tomonaga-Schrödinger
equation is defined

i
d
dt

U tð Þ y 0ð Þj i~H tð ÞU tð Þ y 0ð Þj i ð16Þ

with U tð Þ~I{i
ðt

0
H t1ð ÞU t1ð Þdt1 and U(T) 5 U. This

representation leads to the Neumann series of U(T) as

U Tð Þ~
X?
m~0

{ið Þm
ðT

0

ðt1

0
� � �

ðtm{1

0
H t1ð ÞH t2ð Þ � � �H tmð Þdt1dt2 � � � dtmð17Þ

with t1wt2w � � �wtm. The second term is {i
ðT

0
H t1ð Þdt1~{i �HT .

Choosing tjƒ
T

L jz1ð Þ for an integer L, thenðT

0

ðt1

0
� � �

ðtm{1

0
dt1dt2 � � � dtm~Tm= m!Lmð Þ because of TPm{1

j~1 tjƒ

Tm= m!Lm{1ð Þ. Thus we have

e{i �HT {U
��� ���~ X?

j~0

{i �HTð Þj

j!
{
X?
m~0

{ið Þm
ðT

0

ðt1

0
� � �

ðtm{1

0
P
m

k~1
H tkð Þdt1dt2 � � � dtm

�����
�����

ƒ

X?
m~0

{i �HTð Þm

m!

����
����z

ðT

0

ðt1

0
� � �

ðtm{1

0
P
m

k~1
H tkð Þ

����
����dt1dt2 � � � dtm

� �

ƒ

X?
m~2

cmTm

m!
z

LcmTm

Lmm!

� �

~ecT{1{cTzLecT=L{L{cT

ƒecT{1{cT

ð18Þ

for L R ‘, from the standard norm inequality jjXYjj # jjXjjjjYjj and the condition

jjH(t)jj # c.

Lemma 3. Suppose U2 g SU(dn) is a unitary matrix generated by
H2(t) with evolution time T. Then

U{U2k kƒdnp{1=2D CUð Þ ð19Þ

Proof. Assume two time-dependent Hamiltonians H(t) and Ĥ tð Þ
(with reduced Planck constant) generate U(t) and V(t) respectively

i
d
dt

U tð Þ~H tð ÞU tð Þ,i d
dt

V tð Þ~Ĥ tð ÞV tð Þ ð20Þ

with U(0) 5 V(0) 5 I, U(T) 5 U and V(T) 5 V. Using the triangle
inequality and unitary invariance of operator norm, we obtain

U{Vk k~ V�U{Ik k

~

ðT

0
iV tð Þ� Ĥ tð Þ{H tð Þ

� �
U tð Þ

�� ��dt

ƒ

ðT

0
V tð Þ� H tð Þ{Ĥ tð Þ

� �
U tð Þ

�� ��dt

~

ðT

0
H tð Þ{Ĥ tð Þ
�� ��dt

ð21Þ

Here, U{V~

ðT

0
i Ĥ tð ÞV tð Þ{H tð ÞU tð Þ
� �

dt is used. The Euclidean

norm of H tð Þ~
X

j
hjsj is given by H tð Þk k2

2~
XN

j~1
h2

j . From the

Cauchy-Schwartz inequality it follows

H tð Þk k~
X

j

hjsj

�����
�����ƒ

X
j

hj

�� ��ƒdn
XN

j~1

h2
j

 !1=2

~dn Hk k2 ð22Þ

Therefore from equations (21) and (22) the distance

D CUð Þ~
ðT

0
F H tð Þð Þdt

§

ðT

0
F H tð Þ{H2 tð Þð Þdt

~

ðT

0

X
ij

ph2
ij

 !1=2

dt

~

ðT

0

ffiffiffi
p
p

Hk k2dt

§

ffiffiffi
p
p

dn

ðT

0
H tð Þ{H2 tð Þk kdt

§

ffiffiffi
p
p

dn
U{U2k k

ð23Þ

Lemma 4. The distance D(I, U) always has a supremum independent
of p in terms of large p.

To prove this lemma, the Chow’s theorem39 is required. Let M be a
connected manifold andG a connection on a principal G-bundle. The
Chow’s Theorem states that the tangent space Mx 5 HxM › VxM at
any point q g M with the horizontal space HxM and vertical space
VxM (VxM%g, g denotes Lie algebra of G). Denote Zh

i

� �
as a local

frame of HqM, then any two points on M can be connected by a
horizontal curve if iterated Lie brackets of Zh

i

� �
evaluated at q span

the tangent space Mx.

Proof of lemma 4. The connection and completeness of SU(dn) gives
one choice to find the tangent space MI as its Lie algebra su(dn) at the
identity matrix I. Thus I and U g SU(dn) is connected by a unique
geodesic link associated the Riemannian metric in equation (14). The
distance D(I, U) is monotonically increased in the penalty p.
Moreover, from the Lemma 1 su(dn) may be generated with
iterated Lie brackets of 1-body and 2-body items in the basis

YPt
t

� �
. With the Chow’s Theorem the curve connecting I and U in

horizontal subspace is unique in terms of the metric in equation (14)

ð17Þ

ð18Þ
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because of the invariance of su(dn). Otherwise, special geodesic with
initial tangent vector in su(dn) may be existed. Hence D(I, U) has an
optimal upper bound d0 independent of p.

Lemma 514. If A and B are two unitary matrices, then

Ak{Bk
�� ��ƒk A{Bk k ð24Þ

for any integer k.
Based the unitary invariance this lemma is easily followed from

Ak{Bk
�� ��ƒ A{Bk k Ak{1zAk{2Bz � � �zBk{1

�� ��
ƒ A{Bk k Ak{1

�� ��z Ak{2B
�� ��z . . . z Bk{1

�� ��� �
~k A{Bk k

ð25Þ

Lemma 6. Suppose H(t) only contains one- and two-body
Hamiltonian with jhjj # 1 at time interval [0, T]. Then there is a
unitary UA satisfying

e{iHT{UA

�� ��ƒcn2T2N{1 ð26Þ

and being synthesized using at most Nd4n2 one- and two-qudit gates,
where c is a constant and N is large integer.

Proof. Divide the interval [0, T] into N intervals of size T/N. In every
interval, define a unitary matrix

UT=N~e{ih1s1
T
N e{ih2s2

T
N � � � e{ihLsL

T
N ð27Þ

where L 5 d2(d2 2 1)(n2 2 n)/2 5 O(n2) (d2 2 1 generators of su(dn))
denotes the total number of possible one- and two-body interactions
in H(t). From the Trotter formula40 (ei(A 1 B)t 5 eiAteiBt 1 O(t2) for two
Hermitian matrices A and B) there exists a constant c such that

e{iHT
N{UT=N

��� ���~ e
{i
PL

j~1
hjsj

� �
T
N
{e{ih1s1

T
N e{ih2s2

T
N � � � e{ihLsL

T
N

�����
�����

ƒcn2T2N{2 ð28Þ

Using the Lemma 5

e{iHT{UN
T=N

��� ���ƒN e{iHT
N{UT=N

��� ���ƒcn2T2N{1 ð29Þ

which means that one can approximate eiHT with at most N L # Nd4n2

quantum gates. The error is controlled by the division number N.
With these lemmas we can prove main Theorem.

Discussion
The present Theorem have explained the circuits complexity of in
quantum computation with n-qudit systems in terms of the
Riemannian geometry. Similar to the qubit case12,13 and qutrit case14

the optimal quantum circuit is reduced to the shortest path problem
based on special curved geometry of SU(dn). The qudit systems pre-
sent different algebraic derivations from qubits and qutrits.
Especially to realize the unitary invariance of the norm we take use
of operator norm in equation (9) similar to the qutrit case while the
norm jjMjj1 5 maxÆwjwæ 5 1{jÆwjMjwæj} used before is not unitary
invariant12,13. For instance, consider

M~

0 1

0 0

O

0
B@

1
CA,U~

a b

b� {a�

I

0
B@

1
CA ð30Þ

O denotes zero matrix. One has jjMjj1 5 1/2 and MUk k1~

maxx2zy2 axyzb�y2j j=1=2. Generally, one has jjMjj1 # jjMjj from

the Cauchy-Schwartz inequality. The equal case jjMjj1 5 jjMjj is
derived from M{M 5 I or M{ 5 M.

Moreover, the main theorem is more efficient than previous
results12–14. Our result shows that the approximation error for syn-
thesizing quantum qudit operation can be close to zero in terms of
nonlocal quantum gate cost. However, it12,13 reads

U{UAk kƒ D I,Uð Þ
2n

z2D I,Uð Þd{1 e
3ndffiffi

2
p

{ 1z
3ndffiffiffi

2
p

� �� �
zc2D I,Uð Þn4d2 ð31Þ

which is inexplicit because D(I, U) depends p and the sum of the last
two terms may be lower bounded with nonzero constant by choosing
d 5 1/(n2D(I, U)). Therefore the approximation interval length d
should be smaller such as 1/(nkD(I, U)) with k . 3. Moreover, their
error bounds have not shown explicit relationship between the
approximation error and total nonlocal gate cost. Our result presents
that the number of approximate nonlocal quantum operations is the
order of e22 with the approximation error bound e. In comparison to
the previous results34–38, the present geometric way shows the rela-
tionship between the quantum approximation and the evolution of
special geodesic equation. With the quantum circuit model the
detailed circuit has to be found for generating U while one needs
to find the shortest geodesic curve linking I and U for geometric
method. So, these results may be considered as different quantum
approximations with their own features.

Methods
The Lemmas 2–6 are used to prove Main Theorem. Let H(t) (at time [0, T]) be the
time-dependent normalized Hamiltonian generating the minimal geodesic of length
d(I, U) 5 T. Let H2(t) be the projected Hamiltonian with only the one- and two-body
items and generating U2 with evolution time T. From the Lemma 3 it follows that

U{U2k kƒp{1=2dnT ð32Þ

Divide the time interval [0, T] into N equal parts with length d 5 T/N. Let Uj
2 be the

unitary generated by H2(t) with evolution time d in the j-th time interval, and Uj
M be

the unitary generated by the mean Hamiltonian �H~d{1
ðjd

j{1ð Þd
H2 tð Þdt with

evolution time d. F H2 tð Þð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j
h2

j

r
ƒ1 because F Hð Þ2~

X
j
h2

j zp
X

i,j
h2

ij~1

with reasonable scaling. Hence H2 tð Þk k~
X

j
hjsj

��� ���ƒX
j

hj

�� ��ƒL
XL

j~1
h2

j

� �1=2

ƒd2n where L 5 d2(d2 2 1)(n2 2 n)/2 is the number of one- and two-body items in
H(t), i.e. the number of terms in H2(t). Then from the Lemma 2 it follows that

Uj
2{Uj

M

��� ���ƒed2nd{ 1zd2ndð Þ ð33Þ

Moreover, from the Lemma 6 there exists a unitary Uj
A synthesized using at most

Nd4n2 one- and two-qudit gates, and satisfies

Uj
M{Uj

A

��� ���~ e{i �Hjd{Uj
A

��� ���ƒcn2T2N{3 ð34Þ

with bounded �Hj on every time interval and c 5 d2n.

In the follow we show that how to construct U2 and UA in terms of Uj
2 and Uj

A ,

respectively. In fact, U2 is generated using of Hj
2 tð Þ as

d
dt

Uj
2 tð Þ~{iHj

2 tð ÞUj
2 tð Þ ð35Þ

with U1
2 0ð Þ~I,Uk

2 k{1ð Þdð Þ~Uk{1
2 , and defined on [(j 2 1)d, jd] for j 5 1,???, N.

Letting Uj
2 be an identity operator on time interval [0, Nd] except [(j 2 1)d, jd].

U2~UN
2 UN{1

2 � � �U1
2 is generated by the Hamiltonians H1

2 tð Þ, � � � ,HN
2 tð Þ. UA can be

generated similarly. Therefore

U2{UAk k~ UN
2 UN{1

P � � �U1
2 {UN

A UN{1
A � � �UA

2

�� ��
ƒ U1

2 {U1
A

�� ��z UN
2 UN{1

2 � � �U2
2 {UN

A UN{1
A � � �U2

A

�� ��
..
.

ƒ

XN

j~1

Uj
2{Uj

A

��� ���
ð36Þ

ð31Þ
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From equations (33), (34) and (36) the approximation error

U{UAk kƒ U{U2k kz U2{UAk k

ƒp{1=2dnTz
XN

j~1

Uj
2{Uj

A

��� ���
ƒp{1=2dnTz

XN

j~1

Uj
2{Uj

M

��� ���z Uj
M{Uj

A

��� ���� �

ƒp{1=2dnTzN ed2 nd{ 1zd2nd
� �� �

zc1n2T2N{2

~p{1=2dnTzTd{1 ed2nd{ 1zd2nd
� �� �

zc1n2d2

~p{1=2dnTzc0Td4n2dzc1n2d2

ƒce

ð37Þ

for a constant c 5 dnd0 1 c0d0d4n2 1 c1n2, where ed2 nd{ 1zd2nd
� �

~O d4n2d2� �
and

c0 is a constant. Choose a suitable penalty p so that D(I, U) 5 T satisfies 8d0/9 # T #

d0 from the Lemma 4 and p21/2 # e, and small d~
T
N

N??ð Þ satisfying d # e. Since

Uj
A may be synthesized with Nd4n2 one- and two-body gates the total number is

N2d4n2 5 O(e22) one- and two-body gates.
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